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Abstract. This paper proposed a robust non-fragile H∞ control method for satellite attitude control 

system with uncertainties and subject to external disturbances, gyro drifts and controller perturbation. 

First, the model of satellite attitude system is established and converted into a state space form with 

uncertainties. Sufficient condition for the existence of state feedback robust non-fragile H∞ controller in 

terms of additive perturbation is given based on linear matrix inequalities (LMIs). When a feasible 

solution of LMIs is obtained, the controller gain can be known under the condition of certain given 

values. Then, the theorem of mixed H2/H∞ is given to compare with the method proposed in this paper. 

The simulation results of non-fragile H∞ control and mixed H2/H∞ based on closed-loop satellite 

attitude control system are presented to demonstrate the effectiveness and performance of the proposed 

control method. 

Keywords: Satellite attitude control system; Parameter uncertainties; Additive perturbation; H∞ control. 

1. Introduction 

 Many uncertain factors such as external disturbance torques, gyro drifts and controller 

perturbations may result in damage and affect the satellite performance during its on-orbit service. 

Satellite attitude control system becomes more and more sophisticated due to the increasing 

requirements for high functionality and performance. In the bad space environment, the complex 

system inevitably confronts different types of disturbance. Methods centered on robust H∞ control have 

attracted considerable attention during the past few years. Robust non-fragile control has been widely 

applied in neutral dynamic systems 
[1]

, stochastic nonlinear time-delay systems 
[2]

, active magnetic 

bearing system 
[3]

 and so on.  

The robust H∞ controller can guarantee that the closed-loop system still satisfies certain H∞ 

performance when bounded parameter uncertainties exist 
[ 4 , 5 ]

. Nevertheless, the performance of 

robustness also relies on precise realization of controller. The controller parameters could accrue some 

variations due to some disturbances. The traditional feedback control methods are sensitive to the small 

variations 
[6]

. It has shown that even a very small perturbation on controller parameters may lead to the 

degradation of performance or destabilize the closed-loop system. Sensitivity analysis of H∞ quadratic 

stability problem for continuous-time system was performed to show that proper method can lead to 

tight perturbation bounds 
[7]

. Thus, it is necessary to design a controller that is robust against its own 

parameters variations which is called non-fragile controller. This problem has been widely investigated 

by many researchers, who have applied control theory to non-fragile control problem with different 

requirements. For example, a non-fragile controller was designed by solving a pair of indefinite 

algebraic Riccati equations for a known linear time-invariant system in [8]. A non-fragile procedure was 

introduced in [9] to study the problem of synchronization of neural networks with time-varying delay. 

However, due to the complicated satellite attitude control system, the parameter uncertainties have not 
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been all taken into consideration in the existing studies. Moreover, they have less relation with satellite 

attitude control problems in the above literatures. 

The main contribution of this paper is to propose the robust non-fragile H∞ control method for a 

class of satellite attitude control systems with parameter uncertainties and subject to external disturbance 

torques, gyro drifts, controller perturbations, H∞ performance constraint and quadratic stability. Based 

on the Lyapunov theory, sufficient conditions for the existence of robust non-fragile state feedback 

controller are given based on linear matrix inequalities (LMIs). Then, the robust non-fragile H∞ state 

feedback controller can be regarded as a convex optimization problem subject to LMI constraints. Once 

the controller is obtained, the satellite attitude maneuver and stability can be accomplished. The 

simulation results based on satellite attitude control system are presented to demonstrate the 

effectiveness of the proposed control method. 

2. Satellite Attitude Dynamics 

Consider a rigid-body satellite in a circular orbit, the three coordinate frames for satellite attitude 
dynamics modeling include the local vertical and local horizontal reference frame (LVLH) with its 
origin at the center of mass of the satellite, a satellite centered satellite fixed reference frame (SCSF) and 
an earth centered inertial reference frame (ECI). 

In the inertial coordinate system, the attitude dynamics of a satellite can be described as 

 ( )b b c g dI I T T T         (1) 

Choose 

( )b x y zI diag I ,I ,I   

And let  

, ,

cx gx dx

c cy g gy d dy

cz gz dz

T T T

T T T T T T

T T T

    
    

      
        

  

Then, equation (1) can be converted into 

 

( )

( )

( )

x x z y y z cx gx dx

y y x z z x cy gy dy

z z y x x y cz gz dz

I I I T T T

I I I T T T

I I I T T T

  

  

  

     


    
     

       (2) 

To describe the orientation of SCSF with respect to LVLH, in terms of three Euler angles ,  and ,    

which are roll, pitch and yaw attitude angles respectively, a typical sequence of three successive body-
axis rotations is yaw→pitch→roll. 

Under small angle approximation, we can get 

2

0 0

2

0 0

( ) ( )

( ) ( )

x y z y z x cx gx dx

x cy gy dy

z y x x z y cz gz dz

I I I I I I T T T

I T T T

I I I I I I T T T

    



    

        


  


       

  (3) 

 As is known, Tg is easily shown as 
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2

0

2

0

3 ( )

3 ( )

0

gx y

g gy x

gz

T I

T T I

T

 

 

    
  

     
  

   

z

z

I

I   (4) 

Then, the final attitude dynamic equation can be obtained 

2

0 0

2

0

2

0 0

4( ) ( )

3 ( )

( ) ( )

x y y z x dx

y x cy dy

z y x x z y cz dz

z cxI I I I I I T T

I I T T

I I I I I I T T

    

  

    

       


   


      

zI   (5) 

Choosing state variable as 

[ ] , [ ]T T

x y zx y               

The satellite attitude control system model with gyro drift can be obtained as follows: 

 

  1 2

1 1 2

2

(t) (t) (t) (t)

(t) (t) (t) D

(t) (t)

x A A x B u B w

y C x D d

z C x

    


  
 

  (6) 

where x(t) is the vector of state variables, u(t) is the vector of control inputs, w(t) is the vector of 
disturbance inputs, d(t) is the vector of gyro drift, y(t) and z(t) are the measurable output and controlled 
output, (t)A  is the parameter uncertainty which is the form of (7), others are system coefficient 

matrices of appropriate dimensions. 

 
1 1 1 1 1( ) ( ) , ( ) ( ) ,TA t M F t N F t F t I t      (7) 

where 
1M  and 

1N  are known constant real matrices of appropriate dimension,  1F t  is an unknown 

matrix function with Lebesgue measurable elements. 

2 1 1

0 0

2 1

0

2 1 1

0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

4 ( ) 0 0 0 0 ( )

0 3 ( ) 0 0 0 0

0 0 ( ) ( ) 0 0

x y z x y x z

y x z

z y x z y x z

A
I I I I I I I

I I I

I I I I I I I

 



 

 



 

 
 
 
 
 
     
  
 
     

 , 

1 1 1

1 2 1 3 30 (I , I , I )x y zB B D diag   


       ,

T

cx cy czu T T T     ,
T

dx dy dzw T T T     ,

 2 1 4 00 0D   , 
3 3 3 3

1

3 3

0I
C

B I

 



 
  
 

  ,  2 6 6C I  . 

3. The Design of Controller 

Design a state feedback robust non-fragile H∞ controller 

 (t) ( ) (t)u K K x     (8) 

K means controller gain perturbation, here only considers additive perturbation, so 

 2 2 2 2 2( ) , ( ) ( )TK M F t N F t F t I     (9) 

Substituting (8) into (6) yields the following closed-loop system: 
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 1 1 2

2

( ) ( )

( ) ( )

x t A A B K B K x B w t

z t C x t

       




 (10) 

For all uncertainties (t)A and K ，the following two conditions are satisfied. 

（1） Closed-loop system (10) is quadratically stable. 

（2） For a given 0  , (t)z  satisfies H∞ performance constraint. 

Definition 1 If there is a symmetric positive definite matrix P>0 and a positive constant , for 

arbitrary uncertainty, the time derivative of Lyapunov function (x, t)V  satisfies 

 
2

2
(x, t) (t)V x    (11) 

Then, system (10) ( (t) 0w  ) is quadratically stable. 

Definition 2 For a given 0   , if the controlled output z(t) satisfies (11), then, we can say z(t) 

satisfies H
 performance constraint. 

 
2 22

2 2
(t) (t)z w   (12) 

Lemma 1 Let , , ( )m n mH E R F t S   , and F(t) satisfies (t) (t) ITF F   , then for a scalar 0  , 

 1(t) (t)T T T T THF E E F H HH E E      (13) 

Lemma 2 (Schur complement lemma) Let the partitioned matrix 

 
11 12

12 22

T

A A
A

A A

 
  
 

  (14) 

be symmetric. Then 
1 1

11 22 12 11 12 22 11 12 22 120 0, 0 0, 0T TA A A A A A A A A A A            (15) 

or 
1 1

11 22 12 11 12 22 11 12 22 120 0, 0 0, 0T TA A A A A A A A A A A            (16) 

 

Theorem1 When controller gain perturbation is the form of (9), for given 
1 20, 0    and 

0  ,uncertain system (10) is quadratically stable under the condition of robust non-fragile H∞ 

controller (8), and z(t) satisfies H∞ performance constraint if there exists a symmetric positive definite 

matrix X and a matrix W, such that the following LMI holds: 

1 1 1 1 1 2 2 2 2

1

1 1

1 1

T 1

1 2 2

2 2

2

2

2

0 0 0 0 0

0 0 0 0 0

0( ) 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

T T T T T T

T

T

AX B W XA W B M XN B M XN XC B

M I

N X I

B M I

N X I

C X I

B I















   
 

 
 
 

 
 
 

 
  

  (17) 

Furthermore, if LMI (17) has a feasible solution, the state feedback controller 1K WX   . 

Proof Define Lyapunov function 

 (x(t)) x(t) (t)TV Px  

Where 1P X  . 

Then 
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1 1 1 1

1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2

1 1 1 1 1 2 2

(x(t)) x(t) (t) x(t) (t)

x(t) ( ) (t) x(t) ( ) x(t)

x(t) ( (t) N (t) ) (t) x(t) ( (t) (t) ) x(t)

x(t) ( ) ( (t) N (t

T T

T T T

T T T

T T

V Px Px

A A B K B K Px P A A B K B K

A M F B K B M F N Px P A M F N B K B M F N

A B K M F B M F

 

           

       

     2 1 1 1 1 1 2 2 2

1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2

1 1 1 1 1 1 1 1 1 2 2

) ) (t) x(t) ( ) ( (t) (t) ) x(t)

x(t) ( ) ( (t) N (t) ) ( ) ( (t) (t) ) (t)

= x(t) ( ) ( ) (t) N (t) (t)

T T

T T T

T T T T T

N Px P A B K M F N B M F N

A B K P M F B M F N P P A B K P M F N B M F N x

A B K P P A B K PM F N F M P PB M F N

      

         

      2 2 2 2 1

1 1

1 1 1 1 1 1 1 1 2 1 2 2 1 2 2 2

(t) (t)

x(t) ( ) ( ) + N + (t)

T T T T

T T T T T T T

N F M B P x

A B K P P A B K PM M P N PB M M B P N N x    

  

       

 

Considering(17), multiplied by  ,  ,  ,  ,  ,  ,  diag P I I I I I I  at both sides simultaneously, (18) can be 

obtained. 

1 1 1 1 1 2 2 2 2

1

1 1

1 1

T 1

1 2 2

2 2

2

2

2

0 0 0 0 0

0 0 0 0 0

0( ) 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

T T T T T T

T

T

PA PB K A P K B P PM N PB M N C PB

M P I

N I

B M P I

N I

C I

B P I















   
 

 
 
 

 
 
 

 
  

  (18) 

Let  
1 1

0 1 1 1 1 1 1 1 1 2 1 2 2 1 2 2 2( ) ( ) + N +T T T T T TM A B K P P A B K PM M P N PB M M B P N N            

According to(18), we can know 
0 0M    

Furthermore,  

0 max 0(x(t)) x(t) x(t) ( ) x(t) x(t)T TV M M    

Let
max 0( ) 0M    , then,  

2

2
(x, t) (t)V x    

By definition 1, system (10) is quadratically stable under the condition of robust non-fragile H∞ 

controller (8). 

To establish the L2 [0, ∞) norm bound
22

2
(t)w  , consider the following functional: 

 
2

0
[ (t) (t) (t) (t)]T TJ z z w w dt



    

As closed-loop system has quadratic stability, for arbitrary nonzero
2(t) L [0, )w   , let x (0) =0, then, 

2

0

2

0 2 2 1 1 1 1 1

1 1

1 1 1 2 1 2 2 1 2 2 2 2 2

0

[ (t) (t) (t) (t) ] (x( )) (0)

{ (t) (t) (t) (t) (t) [( ) ( )

+ N + ] (t)+ (t) (t) (t) (t)}dt

(t) (

T T

T T T T T T

T T T T T T T

T

J z z w w V(x(t)) dt V V

x C C x w w x A B K P P A B K PM M P

N PB M M B P N N x w B Px x PB w

x w



 

  



 

     

      

 




∞

∞

∫

∫

1 1 1 1 1

21 1

1 1 1 2 1 2 2 1 2 2 2 2 2

2

2

( ) ( )
(t)

t) + N +
(t)

T T

T T T T T T

T

A B K P P A B K PM M P
PB x

N PB M M B P N N C C
w

B P I



  



 

    
  

       
   

  

According to schur complement lemma and (18), 0J   holds, namely, z(t) satisfies H∞ performance 

constraint. 
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Theorem 2
[10]

 . The performance of
2

H and H


are both satisfied if and only if there exist W , two 

symmetric matrices Z  and X  such that 

  

1 1 2 2

2

2

1 1 2 1 1

2 2

1 1 2

( ) 0

0
( )

(Z)

( ) ( )

0

T T

T

T T

T T

AX B W AX B W B B

Z C X

C X X

trace

AX B W AX B W B C X D W

B I D

C X D W D I











     


 
   



    
 
   

   

  (19) 

  

By minimizing
2

c c 
 

  , where 2

2   , the state feedback gain matrix can be constructed as K=WX
-1

.  

4. Numerical Results 

In this section, non-fragile H∞ control approach and mixed H2/H∞ method are illustrated with 

simulations on a satellite attitude control system with uncertainties to demonstrate the effectiveness of 

the proposed method. 

The inertia parameters are assumed as 2 2 2200 , 200 , 30 ,x y zI kg m I kg m I kg m       the orbit 

height is 300km. Attitude angles and angular velocities are measured with star sensors and gyros. The 

constant value of gyro drift 
[11]

 can be assumed as d(t)=6×[10
-5

 10
-5

 10
-5

]
T
. 

Choose the initial state as 

    0 0.07 0.06 0.05 0.012 0.010 0.008
T

x    

Where, the unit of angle is rad and the unit of angular velocity is rad/s. The expected state is zero. The 

disturbances are white noise modeled as 
5

5

5

0.5cos(10 )

0.5cos(10 )

0.5cos(10 )

t

w t + / 4 N m

t + / 3



 

 

 
 

  
 
 

 

Meanwhile, choose 

1 1

2 2

1 2 1 0 2 0

=[0.8 1.1 1.3 1.5 1.6 1.8] , =[-0.1 -0.2 -0.3 -0.4 -0.2 1],

=[0.01 0.01 0.01] , =[0.1 0.01 0.1 0.01 0.1 0.01],

=0.1, =0.1, =0.1 (t) 0.5sin( t), (t) 0.5sin( t / 4),

T

T

M N

M N

F F       ，

  

With Theorem1 we can attain the corresponding state feedback gain as follow 

-6403.48 -2918.61 -18241.85 -6377.88 -997.95 3162.98

2936.43 -12946.14 -30455.17 -1002.68 -5872.17 1278.85

581.26 -842.72 -6355.15 525.36 169.28 -2270.24

K

 
 


 
  
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FIG. 1 Attitude angle 
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FIG. 2 Angular velocity 
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FIG. 3 Disturbance torques of white noise 
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FIG. 4 Control torques 
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FIG. 5 Error for attitude angle  
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FIG. 6 Error for attitude angle changing rate

FIG. 1-FIG. 6 show the simulation results with the non-fragile H∞ controller under the condition 

of additive perturbation with Theorem1. FIG. 1 and FIG. 2 show the measurable output of attitude 

angles and angular velocity, respectively, from which we can see that the attitude control system can 
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achieve a steady state within approximately 3s with quick response. FIG. 3 shows the external 

disturbance torques of white noise. When simulation is conducted, the amplitude of the noise is 

assumed bigger than actual value to show the strength of the proposed method. FIG. 4 shows the 

control torques of the actuator without considering the maximal control input. FIG. 5 and FIG. 6 show 

the error for attitude angle and its changing rate when the satellite attitude system is of a steady state 

chosen between 15s and 24s here. The absolute errors are all at 10-4 or even 10-6 orders of magnitude 

which are so small as to satisfy the required accuracy. 

 To demonstrate the good performance of the proposed method in this paper, a mixed H2/H∞ control 

method in [10] is used for simulation, the results can be seen as follows. 

 With Theorem2 we can attain the corresponding state feedback gain as follow 
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FIG.7 Attitude angle with mixed method 
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FIG.8 Angular velocity with mixed method 

 The attitude angle and angular velocity with mixed H2/H∞ method can be seen in FIG.7 and FIG.8. 

Obviously, with uncertainties and other disturbances, the satellite attitude control system can have a 

better robustness with the method in this paper. Furthermore, the system can response much more 

quickly can have much less error with the robust non-fragile H∞ control method. 

5. Conclusion 

This paper proposes a new robust non-fragile H∞ controller design method for satellite attitude 

control system with parameter uncertainties and external disturbances. The design of the controller is 

subject to the constraints of H∞ performance and quadratic stability. By using LMI techniques resulting 

from Lyapunov theory, the satellite attitude control problem is transformed into a convex optimization 

problem with LMI constraints. Compared with the results of mixed H2/H∞ method, the proposed method 

on uncertain satellite attitude control system has better practicability and effectiveness. Further research 

in terms of multiplicative perturbation is under way. 
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