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Abstract 

Semi-Markov Jump Systems (SMJSs), as a special stochastic control system, has become 
a research hotspot in the field of automatic control and probability analysis because of 
its wide application in model uncertainty and decision process. In this paper, the basic 
concept, main theoretical basis, main achievements and research prospects of semi-
Markov jump systems are briefly reviewed. We first introduce the basic knowledge of 
semi-Markov process and the dynamic characteristics of the jump system, then discuss 
the stability analysis of the semi-Markov jump system, the research progress of the semi-
Markov jump system, and the application in complex networks and multi-agent systems. 
Finally, we explore current challenges and possible future research directions in this 
field. 

Keywords 

Semi-markov jump system, complex network synchronization, multi-agent consensus. 

1. Introduction 

Semi-Markov Jump Systems (SMJSs) are a class of dynamic systems with random jump 
characteristics, which are very common in practical applications, such as economic systems, 
industrial process control, biomedical engineering, communication networks, etc[1]. The 
characteristic of this kind of system is that the transformation of the system state not only 
depends on the current state, but also is affected by the experienced time, which makes the 
semi-Markov jump system more accurate than the traditional Markov jump system to describe 
the behavior of many real world dynamic systems[2]. 

The study of semi-Markov jump systems is very important for understanding and controlling 
complex systems with stochastic and temporal properties[3]. Because of its powerful modeling 
capabilities, SMJSs is used in many fields to improve system performance, reliability and 
efficiency. Especially when the randomness and delay in the system need to be accurately 
modeled and analyzed, the semi-Markov model shows its unique advantages. Studying the 
stability, control strategy and optimization algorithm of such systems can significantly improve 
the safety of engineering design, and also provide a new perspective for dealing with high 
complexity problems[4]. 

The study of semi-Markov jump systems originated from the study of Markov and semi-Markov 
processes in the middle of the 20th century[5]. Initially, researchers focused on the 
fundamental and statistical properties of these random processes. Over time, researchers have 
begun to apply these random processes to the modeling of real systems, especially in situations 
where state transitions are clearly time-dependent. Since semi-Markov processes were 
introduced into the study of jump systems, the theory and application of SMJSs have gradually 
expanded, forming a multidisciplinary research field[6]. 

In the study of semi-Markov jump systems, some basic problems are constantly proposed and 
explored. (1) System identification: how to accurately identify and estimate the parameters of 
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semi-Markov jump systems from data, including the jump rate, transition probability and dwell 
time distribution[7]. (2) Stability analysis: how to judge the stability of the system under 
various random influences, including probabilistic stability, moment stability and almost 
certain stability[8-9]. (3) Control and  optimization: how to design control strategies to 
optimize the performance of the system to achieve stable control, robust control and adaptive 
control[10-11]. (4) Performance evaluation: How to evaluate the performance of the system 
under different working conditions, involving fault detection, performance optimization and 
other aspects[12]. 

2. The main results already achieved 

2.1. Advances in semi-Markov jump systems 

Stability is the core problem in the study of semi-Markov jump systems. In control theory, 
stability usually refers to the ability of a disturbed system to return to an equilibrium state over 
time or to remain within a bounded region. For a system with a semi-Markov jump, the 
definition of stability can be divided into the following categories: (1) Probabilistic stability: A 
system is considered to be probabilistically stable if the state of the system, starting from any 
initial distribution, converges over time to a steady-state distribution with the probability of 1. 
(2) Moment stability: A system is considered to have moment stability if a moment of its state 
(such as a first or second order moment) is bounded or tends to zero with time. (3) The system 
is considered to be almost necessarily stable if the state of the system is almost necessarily (i.e., 
with probability 1) towards an equilibrium point or bounded region [5]. 

The stability analysis of semi-Markov jump systems usually involves complex mathematical 
tools and methods, mainly including: ① Random Lyapunov function: By constructing an 
appropriate non-negative function, the expected value of the function decreases along the 
trajectory of the system, thus proving the stability of the system[8]. ② Probabilistic analysis: 
Use probabilistic and statistical methods to directly analyze the state transition probability and 
residence time distribution of the system, so as to evaluate stability[13]. ③ Moment equation 
method: Establish the dynamic equation of the system state moment, and study the moment 
stability of the system state by analyzing these equations[14]. 

In the field of stability research of semi-Markov jump systems, scholars have made a series of 
important achievements. Reference [4] studies the stability analysis and stabilization of 
random switching systems under a class of switching signals, in which the switching signals are 
assumed to be semi-Markov switching. The almost inevitable stability, mean square stability 
(first moment stability) and probabilistic stability of switching systems are considered, and the 
corresponding sufficient conditions are given. Reference [5] studies the asymptotic stability of 
semi-Markov switching stochastic systems. Based on the multiple Lyapunov function method 
and the semi-Markov process structure, the sufficient conditions for the stochastic asymptotic 
stability of a semi-Markov switching random system without bound transition rate constraint 
are given. The generalized moment stability of nonlinear systems with semi-Markov jumps is 
discussed in reference [6]. Based on this, the generalized moment stability of stochastic 
nonlinear systems with semi-Markov jumps is further derived in reference [15]. It is pointed 
out in reference [16] that the additional restriction of residence time is not considered in 
previous literatures when analyzing the stability of semi-Markov hopping linear systems. To 
solve this problem, literature [17] proposes a new stochastic analysis method under the 
assumption of modular correlation linear comparability, and studies the exponential stability 
of semi-Markov stochastic nonlinear systems. It should be pointed out that the semi-Markov 
kernel method is an effective method to solve the stability and stabilization problem of the 
semi-Markov jump system because it can synthesize the statistical information of mode jump 
and dwell time [6]. In order to obtain numerically testable stability and stabilization conditions, 
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[18-19] a bounded dwell time was introduced, and then a semi-Markov kernel method was 
adopted in literature [20-21] to solve the stability problem under unbounded dwell time. 

The control problem of random switching system is one of the most important research fields 
in recent decades. As a kind of important random switching system, the control problem of 
semi-Markov jump system has been widely concerned by scholars in recent years. Reference 
[22] studies the anti-interference observer control of fuzzy chaotic semi-Markov jump systems 
with multi-disturbance hybrid actuator failure. Reference [23] studies the model-based fuzzy 
l2-l∞ filtering problem for a class of discrete semi-Markov jump nonlinear systems. The 
problem of asynchronous generalized H2 control for a class of continuous discrete state semi-
Markov jump linear systems is studied in reference [24]. The sliding mode control is considered 
to be an effective control method because of its strong robustness to model uncertainties, 
parameter changes and external disturbances. It is worth mentioning that sliding mode control 
has been successfully applied to various practical systems, such as aircraft navigation and 
control, power system stabilizers, etc. Therefore, the problem of sliding mode control design 
receives more and more attention. In reference [25], the state estimation and sliding mode 
control of phase type semi-Markov jump systems are studied. In literature [26], the sliding 
mode control problem of a class of random switching systems with semi-Markov processes is 
studied by using the adaptive event triggering mechanism. Reference [27] uses the output 
feedback method of integral resident time distribution function to deal with sliding mode 
control of continuous-time semi-Markov jump systems. 

2.2. Applications in complex networks and multi-agent systems 

 A complex network is a network consisting of a large number of nodes and the edges that 
connect them. These networks are characterized by a complex and dynamic structure, in which 
each node is a basic entity with a specific system. The theory of semi-Markov jump systems can 
provide a deep understanding and effective control of network dynamics. Since complex 
networks can describe many real-world systems, such as the World Wide Web, epidemic 
transmission networks, power grids, and cellular neural networks, this research direction has 
attracted a lot of attention. The problem of fault-tolerant synchronization control for complex 
dynamic networks with semi-Markov jump topology is studied in reference [28]. Reference [29] 
studies the dissipative synchronization problem of complex dynamic networks with semi-
Markov switching topology. Reference [30] studies the finite-time H∞ synchronization 
problem of complex networks with time-varying delay and semi-Markov jump topology. Multi-
agent system is a kind of system which is closely related to complex network. They are two 
related but distinct concepts that differ in their object of study, focus, and field of application. 
Complex networks focus on the structural properties of networks (such as small-world 
properties, scale-free properties) and the dynamic processes on the network (such as 
propagation, synchronization). The multi-agent system is composed of a group of interacting 
agents, and focuses on the autonomy, distribution and cooperation and competition between 
agents on this basis. Each agent in a multi-agent system can have its own goals, decision-making 
capabilities, and action strategies, and they can be software agents, robots, or humans. In the 
research of multi-agent systems, people focus on how to design protocols and algorithms to 
achieve effective cooperation and coordination among agents. 

As a key problem in the research of multi-agent systems, the consistency problem has always 
been the focus of scholars. The basic goal of consistency is to design a suitable consistency 
control protocol, which can realize the convergence of all agents to a common value only 
through local information exchange with neighboring agents. In recent years, the consistency 
problem of semi-Markov hopping multi-agent systems and multi-agent systems with semi-
Markov switching topology has received a lot of attention. Reference [31] studies the reliable 
leader-follower consistency of discrete-time semi-Markov hopping multi-agent systems. 
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Reference [32] studies the consistency of semi-Markov hopping multi-agent systems with 
random mismatched topology. Reference [33] studies the extended dissipative finite time 
distributed time-varying delay active fault-tolerant consistency control for semi-Markov jump 
nonlinear multi-agent systems. Reference [34] studies the mixed event leader-following 
consistency problem of nonlinear multi-agent systems with semi-Markov jump parameters. 
Reference [35] studies the leader-following consistency of semi-Markov jump nonlinear multi-
agent systems under hybrid network attacks. Reference [36] studies the adaptive event 
triggering and biquantization consistency problems of leader-attendant multi-agent systems 
with semi-Markov jump parameters. It should be pointed out that the above literature studies 
the consistency problem of the equation of state with jump parameters of multi-agent systems. 
In fact, the communication topology between agents often changes during their movement. The 
way to deal with this time-varying topology in the existing literature is to model it as a random 
switching topology. However, semi-Markov processes have attracted much attention in recent 
years because they can describe a wider range of random time-varying topologies. Reference 
[37] studies the consistency control problem of nonlinear multi-agent systems with semi-
Markov switching topology and incremental quadratic constraints. Reference [38] studies the 
pulse consistency of random multi-agent systems in semi-Markov switching topology and its 
application. 

In literature [39], the event-triggered adaptive consistent tracking control for non-affine multi-
agent systems is studied. Reference [40] studies the H∞ consistency problem of multi-agent 
systems with semi-Markov switching topology and mode-dependent delay. Reference [41] 
studies the finite-time fault-tolerant consistency of pilot-following multi-agent systems in semi-
Markov interactive topology. Reference [42] studies the proportional consistency of multi-
agent systems with semi-Markov switching topology from the perspective of probability. It 
should be noted that literature [39-42] only considers the communication topology as semi-
Markov switching. In the real multi-agent system, randomness not only appears in the 
communication topology, but also in the system dynamics equation. In this paper [43], the 
observation consistency problem based on adaptive event triggering mechanism for multi-
agent systems with semi-Markov switching topology and semi-Markov dynamics is also 
considered. 

3. Future research 

In the future work, the semi-Markov jump system still has the following problems worthy of 
further study: 

(1) Adaptive fault-tolerant cooperative control of nonlinear semi-Markov hopping multi-agent 
systems in fading channels; 

(2) The consistency and cooperative control of heterogeneous semi-Markov hopping multi-
agent systems under network attack are discussed; 

(3) The finite time fault-tolerant consistency problem of multi-agent systems with semi-Markov 
jump dynamics and multi-type actuator faults is discussed. 

(4) Considering the multi-agent system cooperative control problem under the influence of 
multiple factors such as noise, event triggering, random communication and network attack; 

(5) The quantitative consistency, finite time consistency and fault-tolerant control problems of 
generalized semi-Markov jump multi-agent systems are studied. 

(6) Study the consistency of hidden semi-Markov hopping multi-agent systems and hidden 
semi-Markov switching topology; 

(7) Considering the pulse control, asynchronous control and filtering of semi-Markov jump 
fuzzy systems under state delay and spoofing attacks; 
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(8) Consider the stability, stabilization, quantization control, dissipation control and event-
triggered control of two-dimensional semi-Markov jump systems; 

(9) Consider the application of semi-Markov jump systems to practical problems such as 
financial systems, power network systems and sensor networks. 

4. Conclusion 

In this paper, we briefly review the literature on semi-Markov jump systems and their 
applications in complex networks and multi-agent systems in recent decades. However, it is not 
difficult to see that the stability, stabilization, control, filtering of semi-Markov jump systems, 
complex network synchronization with semi-Markov switching topology, multi-agent system 
consistency and other problems have been widely concerned by scholars. Relevant research 
results have been published in major journals in the field of Automatic Control, such as 
Automatica, IEEE Transactions on Automatic Control, and Systems & Control Letters. It also 
shows that the use of semi-Markov process to describe the randomness of the system has been 
recognized by scholars in this field. The relevant theoretical research is bound to be further 
developed in the future, which will also promote the application of the theoretical achievements 
of semi-Markov jump systems in practice. 

Acknowledgements 

This work was supported by the Scientific Research Project of Tianjin Municipal Education 
Commision under Grant 2019KJ142. 

References 

[1] S. Ouaret. Production control problem with semi-Markov jump under stochastic demands and 
deteriorating inventories, Applied Mathematical Modelling, vol. 107 (2022), 85-102. 

[2] S. Jafari, K. Savla. A principled approximation framework for optimal control of semi-Markov jump 
linear systems, IEEE Transactions on Automatic Control, vol. 64 (2018), 3616-3631. 

[3] L. Zhang, T. Yang, P. Colaneri. Stability and stabilization of semi-Markov jump linear systems with 
exponentially modulated periodic distributions of sojourn time, IEEE Transactions on Automatic 
Control, vol. 62 (2016), 2870-2885. 

[4] D. Chatterjee, D. Liberzon. Stabilizing randomly switched systems, SIAM Journal on Control and 
Optimization, vol. 49 (2011), 2008–2031. 

[5] B. Wang, Zhu, Q. Stability analysis of semi-Markov switched stochastic systems, Automatica, vol. 94 
(2018), 72–80. 

[6] H. Schioler, M. Simonsen, J. Leth. Stochastic stability of systems with semi-Markovian switching, 
Automatica, vol. 50 (2014), 2961–2964. 

[7] Z. Ning, L. Zhang, P. Colaneri. Semi-Markov jump linear systems with incomplete sojourn and 
transition information: Analysis and synthesis, IEEE Transactions on Automatic Control, vol. 65 
(2019), 159-174. 

[8] B. Wang, Q. Zhu. Stability analysis of discrete-time semi-Markov jump linear systems, IEEE 
Transactions on Automatic Control, vol. 65 (2020), 5415-5421. 

[9] J. Wang, S. Ma, C. Zhang. Stability analysis and stabilization for nonlinear continuous-time descriptor 
semi-Markov jump systems, Applied Mathematics and Computation, vol. 279 (2016), 90-102. 

[10]  G. Zong, W. Qi,  H. R. Karimi. ℒ₁ Control of Positive Semi-Markov Jump Systems With State 
Delay, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51 (2020), 7569 -7578. 

[11]  Z. Xu, H. Su, P. Shi, Z. G. Wu. Asynchronous H∞ control of semi-Markov jump linear systems, Applied 
Mathematics and Computation, vol. 349 (2019), 270-280. 



International Journal of Science Volume 11 Issue 1, 2024 

ISSN: 1813-4890  
 

93 

[12] G. P. Dai, B. Q.Yin, Y. J. Li. H.S. Xi. Performance optimization algorithms based on potentials for semi-
Markov control processes, International Journal of Control, vol. 78 (2005), 801-812. 

[13] J. Huang, Y. Shi. Stochastic stability and robust stabilization of semi‐Markov jump linear 
systems, International Journal of Robust and Nonlinear Control, vol. 23 (2013), 2028-2043. 

[14] J. LIU, Z. LI. Stability analysis and synthesis of discrete-time semi-Markov jump singular 
systems, International Journal of Control, 2023, 1-10. 

[15] H. Schioler, J.  Leth, M. Simonsen, A. R. Khan. (2015) Stochastic stability of diffusions with semi-
Markovian switching. Proceedings of 54th IEEE Conference on Decision & Control (CDC), Osaka, 15-

18 December 2015，1870-1877. 

[16] L. Zhang, T. Yang, P. Colaneri. Stability and stabilization ofsemi-Markov jump linear systems with 
exponential modulated periodicdistribution of sojurn time, IEEE Transactions on Automatic 
Control, vol. 62 (2017), 2870–2885. 

[17] X. Wu, P. Shi, Y. Tang, S. Mao, F. Qian. Stability analysis of semi-Markov jump stochastic nonlinear 
systems, IEEE Transactions on Automatic Control, vol. 67 (2021), 2084-2091. 

[18] L. Zhang, Y. Leng, P. Colaneri. Stability and stabilization of discrete-time semi-Markov jump linear 
systems via semi-Markov kernel approach, IEEE Transactions on Automatic Control, vol. 61 (2016), 
503–508. 

[19] L. Zhang, T. Yang, P. Shi, M. Liu. Stability and stabilization of a class of discrete-time fuzzy systems 
with semi-Markov stochastic uncertainties, IEEE Transactions on Systems, Man, and Cybernetics: 
Systems, vol. 46 (2016), 1642–1653. 

[20] L. Zhang, T. Yang, P. Colaneri. Stability and stabilization ofsemi-Markov jump linear systems with 
exponential modulated periodicdistribution of sojurn time, IEEE Transactions on Automatic 
Control, vol. 62 (2017), 2870–2885. 

[21] B. Wang, Q. Zhu. Stability analysis of discrete-time semi-Markov jump linear systems with partly 
unknown semi-Markov kernel, System Control Letters, vol. 140 (2020), 104688. 

[22] R.Abinandhitha, R. Sakthivel, N. Tatar, R. Manikandan. Anti-disturbance observer-based control for 
fuzzy chaotic semi-Markov jump systems with multiple disturbances and mixed actuator 
failures, Chaos, Solitons & Fractals, vol. 164 (2022), 112679. 

[23] J.Wang, Y.Zhang, L. Su, J. H. Park, H. Shen. Model-Based Fuzzy l2-l∞ Filtering for Discrete-Time Semi-
Markov Jump Nonlinear Systems Using Semi-Markov Kernel, IEEE Transactions on Fuzzy 
Systems, vol. 30 (2021), 2289-2299. 

[24] B. Xin, D. Zhao, Generalized H2 control of the linear system with semi-Markov jumps, International 
Journal of Robust and Nonlinear Control, vol. 31 (2021), 1005-1020. 

[25] F. Li, L. Wu, P. Shi, C. C. Lim, State estimation and sliding mode control for semi-Markovian jump 
systems with mismatched uncertainties, Automatica, vol. 51 (2015), 385-393. 

[26] W. Qi, G. Zong, W. X. Zheng. Adaptive event-triggered SMC for stochastic switching systems with 
semi-Markov process and application to boost converter circuit model, IEEE Transactions on 
Circuits and Systems I: Regular Papers, vol. 68 (2020), 786-796. 

[27] Y. Tian, H. Yan, H. Zhang, X. Zhan, Y. Peng. Dynamic output-feedback control of linear semi-Markov 
jump systems with incomplete semi-Markov kernel, Automatica,  vol. 117 (2020), 108997. 

[28] D. Ye, X. Yang, L. Su. Fault-tolerant synchronization control for complex dynamical networks with 
semi-Markov jump topology, Applied Mathematics and Computation, vol. 312 (2017), 36-48. 

[29] X. Song, R. Zhang, C. K. Ahn, S. Song. Dissipative synchronization of semi-Markov jump complex 
dynamical networks via adaptive event-triggered sampling control scheme, IEEE Systems Journal, 
vol. 16 (2021), 4653-4663. 

[30] H.Shen, J. H. Park, Z. G.Wu, Z.  Zhang. Finite-time H∞ synchronization for complex networks with 
semi-Markov jump topology, Communications in Nonlinear Science and Numerical 
Simulation, vol. 24 (2015), 40-51. 



International Journal of Science Volume 11 Issue 1, 2024 

ISSN: 1813-4890  
 

94 

[31] H. Yang, H. Zhang, Z. Wang, H. Yan. Reliable Leader-Following Consensus of Discrete-Time Semi-
Markovian Jump Multi-Agent Systems, IEEE Transactions on Network Science and Engineering, doi: 
10.1109/TNSE.2023.3266281. 

[32] G. Wang, Y. Huang, X. Wang. Consensus of semi‐Markov multi‐agent systems with stochastica -lly 
unmatched topologies, IET Control Theory & Applications, vol.15 (2021), 1003-1017. 

[33] X. Zhu, Y. Xia, J. Han, X. Hu, H. Yang, Extended Dissipative Finite-Time Distributed Time-Varying 
Delay Active Fault-Tolerant Consensus Control for Semi-Markov Jump Nonlinear Multi-Agent 
Systems, IEEE Transactions on Circuits and Systems II: Express Briefs. doi: 10.1109/ TCSII.  
2023.3342806. 

[34] J. Wang, Y. Wang, H. Yan, J. Cao, H. Shen, Hybrid event-based leader-following consensus of 
nonlinear multiagent systems with semi-Markov jump parameters. IEEE Systems Journal, vol.16 
(2020), 397-408. 

[35] D. Li, L. Su, H. Shen, J. Wang. Leader-following consensus of semi-Markov jump nonlinear multi-
agent systems under hybrid cyber-attacks, Journal of the Franklin Institute, vol.360 (2023), 5878-
5891. 

[36] C. Gong, G.  Zhu, P.Shi, Adaptive event-triggered and double-quantized consensus of leader–follower 
multiagent systems with semi-Markovian jump parameters, IEEE Transactions on Systems, Man, 
and Cybernetics: Systems, vol.51(2019), 5867-5879. 

[37] J. Huang, Q. Li, X. Zhao, M. Zhang, Y. Zhang. Consensus control of nonlinear multi‐agent systems with 
semi‐Markov switching topology and incremental quadratic constraints, International Journal of 
Robust and Nonlinear Control, https://doi.org/10.1002/rnc.7054. 

[38] Z. Hu, X. Mu. Impulsive consensus of stochastic multi-agent systems under semi-Markovian 
switching topologies and application, Automatica, vol.150 (2023), 110871. 

[39] S. Li, Y. Pan, H. Liang, Y. Tian. Event-triggered adaptive consensus tracking control for non-affine 
multi-agent systems, Neurocomputing, vol.393 (2020), 46-53. 

[40] X. Mu, M. He. H∞ consensus of multi-agent systems with semi-Markovian switching topologies and 
mode-dependent delays, International Journal of Systems Science, vol.52 (2021), 173-184. 

[41] K. Z. Miao, J. N. Li, Y. J. Chen, S. Xu. Finite-time fault-tolerant consensus for leader-following multi-
agent systems with semi-Markov switching topologies, International Journal of Control, vol.97 
(2022), 1-14. 

[42] X. Guo, J. Liang, J. Lu. Scaled consensus problem for multi-agent systems with semi-Markov 
switching topologies: A view from the probability, Journal of the Franklin Institute, vol.358 (2021), 
3150-3166. 

[43] J. Cai, J. Wang, J. Feng, G. Chen, Y. Zhao. Observer-Based Consensus for Multi-Agent Systems with 
Semi-Markovian Jumping Via Adaptive Event-Triggered SMC, IEEE Transactions on Network 
Science and Engineering, vol.10 (2023),1736-1751. 

 

 

https://doi.org/10.1002/rnc.7054

