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Abstract 

Siamese network has become one of the research hotspots for visual target tracking, but 
when it comes to complex scene changes, the existing siamese network suffers from the 
problem that the target feature information extraction is not abundant enough. An 
improved siamese network target tracking algorithm MDASiam, which adopts a deep 
residual network to extract target features, improve the discriminative ability of the 
network model, improve the backbone network module to efficiently utilize the network 
feature information and improve the tracking performance of the algorithm; this paper 
also incorporates a meta-learning network to obtain an adaptive target feature space to 
overcome the complex changes of target appearance. The test results on the OTB100 
dataset show that the MDASiam algorithm has robust tracking performance in complex 
scenarios such as background interference, target deformation, in-plane rotation and 
scale change, among which the in-plane rotation scenario performs particularly well, 
with a 15.5% improvement in success rate and 12.0% improvement in accuracy 
compared to the benchmark SiamFC algorithm. 
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1. Introduction 

Visual object tracking has always been a fundamental and challenging task in the fields of 
artificial intelligence and computer vision. In recent years, visual object tracking has found 
extensive applications in areas such as intelligent video surveillance, drones, robotics, and more 
[1]. However, real-world tracking scenarios often present challenges like low resolution, 
background interference, target deformations, occlusions, scale changes, and lighting 
variations. As a result, developing real-time and accurate object tracking algorithms in the face 
of these challenges has become a hot topic and a formidable research task. 

The core problem of object tracking is to differentiate the foreground object from a complex 
background. Given the initial position of any target in the first frame, the tracker aims to 
successfully distinguish and locate that target in subsequent frames [2]. Traditional tracking 
algorithms from the last century, such as Mean Shift [3] and Kalman filtering, paved the way for 
tracking. The CSK algorithm proposed by Okada et al. [4] introduced cyclic shift samples to 
increase the number of training samples and improve template efficiency. The Kernelized 
Correlation Filter (KCF) algorithm, developed by Henriques et al. [5], utilized HOG image 
features as algorithm inputs and optimized the computational efficiency using a Gaussian 
kernel function, achieving a minor breakthrough in correlation filter-based tracking. 
Subsequently, Danelljan et al. introduced the Correlation Filter with Circulant Matrix (CCOT) 
and the Efficient Convolution Operators (ECO) algorithms [6,7]. These algorithms aimed to 
reduce the impact of boundary effects and enhance tracking performance by employing more 
efficient kernel functions, as well as multi-feature fusion methods. 
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Traditional tracking algorithms have faced challenges such as insufficient feature extraction 
and limited precision in the network framework, making them less effective in handling 
complex scenarios like background interference and target deformations. In recent years, 
researchers have shown widespread interest in neural network frameworks with richer feature 
information and higher precision. One such algorithm is MDNet, proposed by Hyeonseob et al. 
[8], which is based on a Convolutional Neural Network (CNN) framework. MDNet uses video 
training to obtain a network structure capable of efficient binary classification and performs 
online updates. Another algorithm, TCNN, introduced by Ashutosh et al. [9], utilizes multiple 
convolutional networks (CNNs) to jointly represent the target state and determine the path for 
model updates within a decision tree. Subsequently, Siamese networks gained popularity due 
to their simplicity and efficiency. The SiamFC algorithm, developed by Luca Bertinetto et al. [10], 
is a Siamese Fully Convolutional Network. It utilizes two network branches, one for the 
template and the other for the target. By calculating similarity through correlation layers, it 
achieves good performance in terms of speed and accuracy, ranking first in the VOT2017[11] 
real-time challenge. 

While the SiamFC Siamese network tracker has achieved a certain level of tracking accuracy, it 
still faces some challenges. One of its limitations is that it uses a relatively shallow network, 
AlexNet [12], for extracting convolutional feature information, which results in less rich feature 
learning. SiamFC also forgoes the time-consuming online updating approach, making it less 
robust in handling complex scene variations and more susceptible to interference from 
background information, which can lead to tracking drift. 

The research team attempted to replace the shallow network AlexNet with deeper networks 
such as VGG [13] and ResNet [14]. However, the experimental results showed a decrease in 
performance. Upon investigation, it was found that these deeper networks were optimized for 
image classification tasks. In image classification tasks, the precise localization of specific 
objects is not highly weighted in the network. Therefore, they cannot be directly applied to 
tracking tasks.In neural network architecture, the receptive field [15] refers to the size of the 
region in the original image that is mapped to a pixel in the output feature map of each layer in 
a CNN. If the receptive field and the size of the target object differ significantly, it can lead to 
convergence difficulties and significantly impact algorithm performance.In image processing 
tasks, the stride of a neural network represents the sampling interval of the convolution kernel 
as it passes through the input feature map. The stride directly affects the accuracy of feature 
information processing in CNNs. 

This paper, based on the SiamFC tracking algorithm, conducted numerous experiments and 
found that the presence or absence of edge padding in CNNs has a significant impact on tracker 
performance. This effect is particularly pronounced when the tracked target is very close to the 
boundary of the candidate search region. The presence or absence of edge feature padding can 
lead to substantially different results in target localization. Consequently, the study concludes 
that in the task of object tracking, the neural network's receptive field, stride, and edge padding 
are the main factors influencing whether the use of deep network structures can improve 
tracking performance. Furthermore, adapting to changes in the target's appearance is often 
challenging, and obtaining an ideal representation of target feature information is a pressing 
issue for researchers. Past algorithms often designed a candidate set for multi-scale template 
matching. When generating candidate samples in the motion model, a large number of 
candidate boxes with varying sizes are generated, or tracking is performed on multiple targets 
of different scales, producing multiple predictions. The best result among these predictions is 
then chosen as the final tracking target. However, in optimizing object tracking models, 
classifier overfitting often occurs due to the insufficient training dataset, and this can lead to 
difficulties in accurately recognizing target changes during tracking, resulting in target loss in 
such update strategies. 
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To address the aforementioned issues, this paper replaces the shallow network AlexNet used 
in SiamFC with a deeper ResNet network. This allows the neural network to receive more 
accurate feature information. Furthermore, the main network structure has been improved to 
better suit the tracking task's requirements, resulting in enhanced tracker performance.In 
addition, to tackle the problem of target loss due to insufficient training data and the inability 
to accurately identify target changes during appearance variations, this paper incorporates a 
meta-learning network. This meta-learning network can accurately acquire target feature 
information and its changes with a small amount of sample data, enabling it to predict the most 
suitable target position in the next frame. By adaptively learning target size parameters through 
the meta-learning network and optimizing the iterative size appearance of target features and 
search areas, an adaptive target feature space is provided to the tracking network. This 
substantial improvement greatly enhances the system's performance.  

2. MDASiam tracker 

After extensive experimental work, this paper proposes an object tracking algorithm called 
MDASiam, which incorporates a meta-learning module. MDASiam utilizes a deeper CIResNet-
22 network as the target feature extractor, effectively enhancing the discriminative capabilities 
of the network model. Additionally, it employs a meta-learning network to adaptively learn 
target feature scale parameters, iterating to generate the most suitable feature representation 
space for the tracking task. This ensures that the tracker can adapt to complex changes in the 
target's appearance, thereby improving the algorithm's tracking performance 

 
Fig.1   Framework of the MDASiam algorithm 

By optimizing through the meta-network, an adaptive appearance model is obtained. Then, 
using the Siamese network, similarity is computed to generate the correlation response maps 
between the target and candidate regions. The most likely position for the target in the current 
frame is predicted based on the maximum value in the correlation response map. As shown in 
Fig.1, the MDASiam network structure consists of three main components.  

(1) The first step involves selecting the template region and the search region. "Target" 
represents the tracking target provided in the first frame, while the "Search Region" refers to 
the candidate search area determined by the algorithm based on the previous frame's target 
location. The size of the search candidate area is typically set to 1.5 to 2 times the size of the 
target region. Additionally, the algorithm chooses an appropriate search region based on the 
target's location. 
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(2) The second part of the network consists of the feature extraction layer. In this paper, an 
improved CIResNet-22 network is used to extract the initial target features. These target 
features extracted from both the target and search images are then passed to the meta-learning 
prediction network. This process results in obtaining more precise target features in terms of 
size and appearance, ensuring that the algorithm can adapt to various changes in the target's 
appearance. 

(3) The third part of the network is the correlation calculation module. It processes the final 
target features obtained from the previous layers through convolution to generate response 
maps. The highest score in the correlation response map represents the predicted position of 
the target in the current frame. 

2.1. MDASiam network improvement unit design 

2.1.1. Cropping-Inside Residual (CIR) 

In residual networks, residual units play a crucial role in enabling convolutional kernels to 
capture richer information representations. The residual unit is the most important module in 
a residual network. As shown in Fig.2(a), the original residual unit consists of three stacked 
convolutional layers with a skip connection. 

 
Fig.2  CIR unit of the MDASiam algorithm 

Based on research analysis, it was found that the feature padding in the original ResNet network 
significantly affects the performance of the Siamese network-based object tracker. To address 
this issue, the research team decided to remove the feature padding when using a residual 
network as the main network for feature extraction in the tracking algorithm. They applied an 
improved residual unit called Cropping-Inside Residual (CIR)[16], which trims the outermost 
part of the residual unit affected by the feature padding while retaining other valuable feature 
information. As shown in Fig.2(b), this improved network structure allows the object tracker 
to obtain a more rich feature representation, thereby enhancing its performance. 
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2.1.2. Cropping-Inside Residual with Downsampling (CIR-D) 

 
Fig.3  CIR-D unit of the MDASiam algorithm 

Within residual networks, there is a need for a structure that can effectively reduce the spatial 
size of feature maps while increasing the number of feature channels. Hence, another crucial 
component within residual networks, known as the Cropping-Inside Residual with 
Downsampling (CIR-D) block, has been introduced, as illustrated in Fig.3(a). This CIR-D unit is 
designed to downsample feature maps, enabling higher-level feature representations and 
contributing to improved network performance.Similarly, in order to mitigate the impact of 
feature padding on CIR-D, improvements to its network structure are required. 

As shown in Fig.3(b), similar to the Inner Cropping Residual Unit, cropping is performed at the 
end of the downsampling residual network to remove the outermost part while retaining other 
feature information. To ensure that even the outermost layers of the network can receive 
feature information, this paper designs the downsampling operation as a maximum pooling 
operation[17]. Additionally, the convolutional strides for the skip connections and bottleneck 
layers are set to 1 in order to maintain the stability of the network's internal structure 
performance. Through these operations, it is ensured that as the network depth increases, 
effective feature information is also collected, thus ensuring the improvement of network 
performance. 
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layer, following the original residual structure 2(a), while the rest are composed of CIR units 
2(b). In the second part, the network's stride is set to 4, and cropping layers with a size of 2 are 
introduced to reduce the impact of feature padding on the network structure. In the first two 
parts, the research team employed the original ResNet structure for downsampling. In the third 
part, CIR-D units from 3(b) are used to perform feature downsampling, with the network's 
stride set to 8. Additionally, the receptive field size of the last layer of the residual network is 
set to 70% of the sample image size. This design ensures an organic combination of the 
receptive field, network stride, and feature padding. By using the improved residual network 
as the backbone network for feature extraction in the twin-object tracking algorithm, this paper 
successfully establishes a deeper and higher-performing target tracking algorithm network. 

2.2. Meta-learning networks in the MDASiam 

In tracking tasks, real-world scenarios often involve unpredictable changes in the appearance 
of the target. This gives rise to two challenges in tracking algorithms: how to obtain more 
suitable feature information and how to adaptively cope with changes in the target's 
appearance. Many tracking algorithms have been improved along these two directions. As 
researchers have become more adept at optimizing CNN-based applications, we can efficiently 
extract more accurate target feature information.  However, adapting to changes in the target's 
appearance remains a pressing issue. In light of this, this paper introduces meta-learning 
networks to provide the tracking network with more appropriate feature dimensions for the 
target to be tracked and the search area. 

The feature extraction architecture of the MDASiam algorithm primarily consists of two 
components: the matching network and the meta-learning network. The matching network 
conveys meta-information to the meta-learning network, while the meta-learning network, in 
turn, provides the matching network with the adaptive target feature space required for 
tracking. The matching network is structured as a convolutional Siamese network, having two 
inputs: 𝑧, which represents the sample image (the target to be tracked), and 𝑥, which represents 
the search region image in the current frame, selected based on the target's previous frame 
location. The matching network employs a deep feature extractor through a CNN network to 
extract feature functions ∅𝑤(∙) from the input images and, by employing cross-correlation 
operations between these feature functions, ultimately obtains the response map 𝑓𝑤(𝑧, x), as 
shown in Formula (1):  

𝑓𝑤(𝑧, x) = ∅𝑤(𝑧) ∗ ∅𝑤(𝑥)                                                       (1)                     

In the formula, the ∗ symbol represents the cross-correlation operator between the two feature 
functions, and 𝑤 = {𝑤1, 𝑤2, ⋯ , 𝑤𝑁} represents the set of trained kernel weights for the various 
layers of the feature extractor CNN. 

2.2.1. Meta-learning networks and gradient information 

Gradients have found increasingly wide applications in image processing. As shown in Fig.4, the 
yellow box represents the tracking target. In the first column, the research team attempted to 
mask the target region with a black rectangle. In the second column, the deep red color 
represents regions with higher gradient values, and it is evident that there are significant 
gradient magnitudes in the occluded region of the target.To further investigate the role of 
gradients, in the third column, this paper conducted experiments in a scenario with a similar 
background interference, and it was found that even when the target and the background are 
similar, there are still significant differences in the gradients between them. Therefore, the 
research team concluded that gradient information can effectively represent changes in the 
target and the spatial relationship between the target and the background[19]. 
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Fig.4  Gradient information 

The meta-learning network provides specific target weights to the matching network, given the 
tracking target 𝑧 and the context patch 𝑥𝛿 = {𝑥1, … , 𝑥𝑀} cropped around the target. In order to 
adapt the weights to the tracking target, this paper utilizes the iterative update based on the 
average negative gradient of the last layer's loss function in the matching network. The average 
negative gradient 𝛿[20] is computed as follows： 

𝛿 = ∑ −
1

𝑀

𝑀

𝐼=1

𝜕𝑙(𝑓𝑤(𝑧,𝑥𝑖),𝑦̂𝑖)

𝜕𝑤𝑁
                                                        (2) 

Where 𝑦̂ is the generated binary correlation response graph assuming that the target is located 
at the correct location 𝑧𝑖 within the context patch. The design of the meta-learning network is 
based on the fact that the features of 𝛿 in the meta-learning network vary with the learning 
object. Then, given as input, the meta-learning network  𝑔𝜃(·) can generate target-specific 
weights corresponding to the input 𝑤𝑡𝑎𝑟𝑔𝑒𝑡  : 

𝑤𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑔𝜃(𝛿)                                                     (3) 

Where 𝜃 is the parameter to be optimized in the meta-learning network. The new weights are 
used to update the original weights of the matching network, as shown in Equation (4): 

𝑓𝑤𝑎𝑑𝑎𝑝𝑡(𝑧, x) = ∅𝑤𝑎𝑑𝑎𝑝𝑡(𝑧) ∗ ∅𝑤𝑎𝑑𝑎𝑝𝑡(𝑥)                                            (4) 

Where 𝑤𝑎𝑑𝑎𝑝𝑡 = {𝑤1 , 𝑤2 , … . [𝑤𝑁 , 𝑤𝑡𝑎𝑟𝑔𝑒𝑡]}  , connects 𝑤𝑡𝑎𝑟𝑔𝑒𝑡  to the last layer 𝑤𝑁  for feature 
extraction. The meta-learning network also generates sigmoid attention weights for each 
channel of the feature mapping to further adjust the feature representation space, and these 
weights can be applied by channel multiplication. 

 
Fig.5  Schematic diagram of the meta-learning algorithm 

In Fig.5, the target gradient 𝛿 from the final layer of the matching network is transferred to the 
meta-learning network, obtaining adaptive target features and search candidate region feature 
blocks. Through the meta-learning network, input weight calculations are performed without 
any iterative optimization, avoiding overfitting. With just a single forward pass, a rapidly 
adaptive target feature space can be constructed [21].  
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3. Experimentation and Analysis 

The tracking task was carried out on the OTB100 dataset to assess the performance of the 
MDASiam algorithm. Additionally, the research team compared the test metric results of the 
MDASiam algorithm with those of relevant mainstream algorithms to verify whether its 
tracking performance meets expectations. As illustrated in Fig.6, MDASiam performs well on 
the OTB dataset. The videos from left to right include basketball, bird1, boy, and carscale. The 
tracked target is denoted by the green box, and the predicted target position in the current 
frame is indicated by the yellow box. The yellow number in the top left corner of each frame 
represents the frame number in the video sequence. 

 

 
Fig.6  Tracking results of the MDASiam on OTB video 

 
Fig.7 Comparison of precision rate and success rate of each algorithm on OTB100 

The performance of the tracking algorithm is evaluated using two metrics: Precision Rate and 
Success Rate. Precision Rate is defined as the success tracking rate within a given 20-pixel 
threshold for the Euclidean distance error between the predicted box and the ground truth box 
center. Success Rate is calculated by measuring the overlap of pixels between the algorithm's 
predicted box and the ground truth box region.Firstly, a one-time analysis is employed to 
quantitatively assess the distance precision and threshold success rate of the tracking 
algorithm MDASiam, comparing it with mainstream trackers on the OTB100 dataset. 

The experiment selected nine tracking algorithms for comparison on the OTB100 dataset, 
including the baseline algorithm SiamFC, deep convolutional neural network algorithms such 
as SiamRPN[22], DeepSRDCF, and correlation filter-based methods like Staple[23], CCOT, 
CFNet, FDSST, SRDCF, and the gradient feature-based GradNet. As shown in Fig. 7, the MDASiam 
algorithm outperforms the comparison algorithms in tracking success rate.For this algorithm, 
at an overlap rate of 0.5 and a center error of 20, the success rate and precision rate are 0.849 
and 0.869, respectively, both higher than most comparison algorithms. Compared to the 
SiamFC algorithm that uses AlexNet as the backbone network, the success rate has increased 
by 15.5%, and the precision rate has improved by 12.0%. This further validates the superior 
tracking performance of the MDASiam algorithm. 
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In order to further investigate the strengths and weaknesses of the algorithm, a specific 
evaluation was conducted to assess the performance of the MDASiam target tracking algorithm 
in various complex scenarios, comparing it with relevant mainstream algorithms. Fig.8 
illustrates the success rate and precision rate of each algorithm in 11 complex scenarios, 
including fast motion, background interference, motion blur, and target deformation. In these 
diverse and challenging scenarios, the MDASiam algorithm demonstrates excellent tracking 
performance, highlighting its capability to handle complex tracking situations effectively. 

 

 
         （a）fast motion    （b）background clutter   （c）motion blur   （d）deformation 

 

 
（e）illumination variation  （f）in-plane rotation   （g）low resolution （h）occlusion 

 

 
（i）out-of-plane rotation  （j）out of view （k）scale variation 

Fig.8  Tracking comparison of each algorithm on OTB100 
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As shown in the figure, the MDASiam tracking algorithm exhibits significantly improved 
performance over the baseline SiamFC algorithm in the mentioned 11 scenarios. Moreover, it 
performs optimally or sub-optimally in scenarios involving fast motion, background 
interference, motion blur, target deformation, in-plane rotation, and scale changes. Particularly 
noteworthy is its outstanding performance in handling in-plane rotation. This further validates 
the strong discriminative capability of the MDASiam tracking algorithm, showcasing its ability 
to discern and track targets effectively in a variety of complex scenarios. 

4. Conclusion 

To enhance the accuracy of the Siamese network-based target tracking algorithm, a Siamese 
network tracking algorithm called MDASiam is proposed, incorporating a meta-learning 
module. It employs a deeper CIResNet-22 network to extract target features, providing primary 
features to the matching network, thus effectively improving the discriminative capability of 
the network model. Simultaneously, the meta-learning network is utilized to adaptively learn 
target feature scale parameters, iteratively generating a feature representation space that best 
suits the tracking task. This ensures that the tracker can adapt to the complex variations in the 
appearance of the target. 

The experiments on the OTB dataset demonstrate that the MDASiam tracking algorithm 
exhibits excellent tracking performance and maintains robustness across various complex 
scenarios. However, it involves a relatively deep network framework, which may consume 
significant computational resources during runtime. If applied to small devices such as drones, 
it demands high-performance onboard computers. Additionally, the algorithm's training 
dataset is singular, which may lead to overfitting. In future work, the plan is to validate the 
tracker on different datasets to enhance its performance. 
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