International Journal of Science Volume 11 Issue 3, 2024
ISSN: 1813-4890

A Three-Step Pedagogical Approach to Teaching C Programming

Ren Yuan

School of Electronics and Information, Shanghai Dianji University, Shanghai 201203, China.

Abstract

Teaching a programming language is a challenging job for college teachers. This paper
proposes a three-step pedagogical approach to teaching c programming. Step 1: Students
are required to complete their code and make their programs executable. Step 2:
Students are asked to debug their programs so the results will be completely correct.
Step 3: Students are encouraged to enhance their programs from the perspective of users.
This approach has been adopted on international students' courses in Shanghai Dianji
University (SDJU) for several years, and has turned out to be effective.

Keywords

Pedagogical approach, C programming, three-step, international student, SDJU.

1. Introduction

Teaching programming has always been a challenging job for educators in all levels of schools
as well as learning programming for students [1-4]. In this paper, we propose a three-step
pedagogical approach to teaching programming in the C language [5].

In step 1, students must make their programs runnable by eliminating all grammatic errors.
Furthermore, in step 2, students should fix all logical errors so the output will be correct. Finally
in step 3, students are encouraged to improve the results in various aspects. This approach has
been experimented on international students in Shanghai Dianji SDJU for several years, and the
results turn out to be as expected. Fig. 1 illustrates the core this approach.

4 El t
y egan

Correct
Runnable

Fig. 1 Three steps of teaching programming

2. Step 1: Make the code runnable

Like studying a natural language such as English, Chinese or French, grammar is the very
foundation for using that language preliminarily by forming key words into statements.
Beginners always make a lot of grammatic errors when learning a new programming language.
It is therefore the first step to eliminate all grammatic errors so the code will compile into an

233



International Journal of Science Volume 11 Issue 3, 2024
ISSN: 1813-4890

executable program. Usually, it takes much longer time for students to locate and correct errors
than to write code. If some students cannot succeed in fixing errors and finally making the code
runnable like most others will do in class, they are likely to give up learning [6]. In this
extremely crucial phase, teachers should do whatever they could to help students run their
programs without red-wavy underlined code or a long list of errors or warnings. Students'
confidence and interests will greatly rise if they are able to obtain results from their programs
after having tried hard to make every single mistake disappear.

For most, if not all courses, students' learning outcomes in the first several weeks (usually less
than a month) will largely determine their behaviors in the whole semester. In this period,
students are encouraged to focus on problems that prevent their programs from going through
compilations. Even if the programs produce incorrect results or no result at all, they can still
feel a sense of accomplishment. The process of error correction also enhances students'
comprehension of abstract grammar.

3. Step 2: Make the result correct

Even if the code is compiled into a runnable program, the program may not produce logically
correct results at all times or may unexpectedly crash with an exception thrown at runtime. It
usually takes a great amount of time to debug a program to eliminate logical errors and to make
the results completely correct [7]. A lot of work and efforts are required in this step. Textbooks
and handbooks can explain grammar very clearly, under the guidance of which students can
locate and fix compilation errors. But few books can explicitly illustrate show how to look for
and solve problems from a program that the compiler cannot even find errors.

For example, a program is supposed to add two input integers but ends up with the product of
the numbers. Most beginners will feel helpless after reading the code many times without
having any idea about the source of the error. In this phase, teachers should focus on step-by-
step demonstrations of debugging the program by simply printing out variable values and
intermediate results or more preferably by setting breakpoints.

Testing a program is also an important job for programmers. A program may be correct
sometimes but incorrect under other circumstances. For example, a program that finds the
absolute of input may prints undesirable results with negative input is some arithmetic
operators are missing in the code. But when students test the program, they tend to type in
simple input such as positive integers and ignore the other cases.

4. Step 3: Make the program elegant

After obtaining correct results from the program, students are encouraged to further improve
the interface through which the program interacts with users including the way how the
program takes input and presents output [8]. They are supposed to switch their roles and think
from the perspective of users instead of programmers. For instance, programmers know how
their programs are designed to work, so they will enter all input as expected even without any
prompt messages. Users, nevertheless, will have no idea what they are supposed to do if input
is required with no hints, or they will even think the program is frozen or unresponsive because
no output will be shown no matter what key they hit. Programs like these will be considered
user-unfriendly. There are many aspects in which students can enhance their programs and
make them elegant:

(1) To show unambiguous prompt messages before requiring input, such as the format of
expected input. Sometimes, it is even necessary to provide a sample if textual descriptions are
not clear enough for users to enter input in the exact format. For example, when reading date,
it will be more favorable to show a sample like "24/12 /07" than to say "Enter year/month /day".

234



International Journal of Science Volume 11 Issue 3, 2024
ISSN: 1813-4890

(2) Allow users to make mistakes and give them more chances to try. Not only users but
programmers themselves will make mistakes when entering input to programs. The programs
will be considered unrobust or unstable if they crash whenever unexpected data are received,
leaving users completely confused about what's happening. High-level programming languages
like C provide mechanism for handling exceptional cases at runtime. Programs should warn
users that errors occur due to their incorrect input, explain the reasons if possible, and then
give them more chances to try until correct results can be generated.

5. Conclusion

Using the abovementioned three-step approach, students can achieve desirable learning
outcome in the C programming course. This approach can also be applied to teaching of other
programming languages such as Java, C++ and Python. In the future, this approach will be
constantly improved by encouraging students to enhance their programming skills in more
aspects.

References

[1] Yu, Fang; Liu, Yan; Xiao, Fengyan: Research on Construction and Practice of Precision Teaching
Classroom for University Programming Courses, IEEE Access, Vol. 11(2023), p. 9560-9576.

[2] Roldan-Alvarez, David; Mesa, Francisco J.: Intelligent Deep-Learning Tutoring System to Assist
Instructors in Programming Courses, IEEE Transactions on Education, Vol. 67(2024), No. 1, p. 153-
161.

[3] Lv, Na; Zhao, Xiuyang; Tian, Jinglan; Zhang, Qianqian; Xu, Meihui; Fan, Xue: The application of mixed
teaching mode in programming courses, 14th International Conference on Computer Science and
Education, 2019, p. 627-630.

[4] Khomokhoana, Pakiso: Understanding Elements, Strengths and Challenges of Explicit Instruction
for The Teaching of Computer Programming, The Independent Journal of Teaching and Learning,
2023, p. 59-80

[5] Rong, Wenge; Xu, Tianfan; Sun, Zhiwei; Sun, Zian; Ouyang, Yuanxin; Xiong, Zhang: An Object Tuple
Model for Understanding Pointer and Array in C Language, IEEE Transactions on Education, Vol.
66(2023), Issue 4, p. 318-329.

[6] Oka, Hiroki; Ohnishi, Ayumi; Terada, Tsutomu; Tsukamoto, Masahiko: System for Detecting Learner
Stuck in Programming Learning, Sensors, Vol. 23(2023), Issue 12.

[7] Alaboudi, Abdulaziz; LaToza, Thomas D.: What Constitutes Debugging? An Exploratory Study of
Debugging Episodes, Empirical Software Engineering, Vol. 28(2023), Issue 5.

[8] Yuen, Kevin K. F; Liu, Dennis Y. W; Leong, Hong Va: Competitive Programming in Computational

Thinking and Problem Solving Education, Computer Applications in Engineering Education,
Vol(2023). 31, Issue 4, p. 850-866

235



