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Abstract 

Fault diagnosis is important for avoiding catastrophic accidents and ensure the safe 
operation of machinery, and a new fault detection method based on Minkowski 
similarity and Graph Neural Networks (GNN) is proposed in this paper. Firstly, the 
vibration signal as Euclidean structured data is converted into a Minkowski distance 
similarity matrix. Secondly, the dataset is fed into the GNN along with its corresponding 
labels, which contains the graph in each hidden layer of the network, enabling the graph 
neural network to learn the eigenvalues of itself and its neighbors. Finally, the first n 
objects that are difficult to reconstruct in the GNN output layer are determined to be 
faulty objects. The effectiveness of the proposed method in this paper is verified by using 
the public bearing dataset of Xichu University and Xi'an Jiaotong University. 
Experimental results show that the proposed method can accurately diagnose bearing 
faults. 
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1. Introduction 

Graph neural networks, also known as geometric deep learning, are based on graph 
representation learning [1], which obtains dependencies in the graph through the transfer of 
information between nodes in the graph, and can update the state of the node from neighbors 
at any depth of the node [2], which can represent label information. Since 2015, GNN has 
attracted a lot of attention, and it has been widely studied and applied in various fields such as 
node classification and recommender systems [3]. 

Based on traditional deep learning algorithms, graph neural network realizes the expansion of 
deep learning in the graph domain with the help of graph theory, semi-supervised learning and 
manifold learning theory and technology, and becomes a deep learning model with strong 
generalization ability and good stability. Compared with traditional deep learning methods, 
GNN can use the geometric structure relationship between data samples to make up for the 
shortcomings of insufficient category label information, and extract the local and global 
manifold structure features of the samples to improve the generalization performance of the 
model. 

More and more scholars in the field of fault diagnosis have noticed the great potential of graph 
neural networks, and have gradually tried to apply them to the fault diagnosis of rolling 
bearings. Zhang et al. [4] established a Deep Graph Convolutional Network (DGCN) model 
consisting of a graph convolutional layer, a graph coarsening layer, and a graph pooling layer, 
and input the acoustic emission signal of the rolling bearing into the DGCN for fault diagnosis, 
which showed extremely high classification accuracy. Chen et al. [5] synthesized the observation 
data and prior knowledge, first used the structural analysis method to pre-diagnose the system 
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fault, established the required correlation graph, then introduced the weight coefficient into the 
model to construct the GCN, adjusted the data influence weight, and finally used the improved 
GCN to realize the fault diagnosis of the rolling bearing. Li et al. [6] proposed a new Multi-
Receptive Field Graph Convolutional Network (MRF-GCN) to obtain robust node features and 
designed a multi-receptive field graph convolutional layer. 

In this paper, the Minkowski similarity model is used to create a feature map model, combined 
with GNN for bearing fault diagnosis, which overcomes the shortcomings of classical deep 
learning methods, GNN can make full use of the connection between the samples, and improve 
the generalization and stability of the diagnostic system, which brings a new concept to the fault 
diagnosis research of rolling bearings. Therefore, the fault diagnosis method of rolling bearings 
based on graph neural network is the focus of this paper. 

2. Minkowski similarity principle 

The Minkowski distance is a measure of space. The Minkowski distance between two n  
dimensional variables 1 2( , , , )nx x x x  and 1 2( , , , )ny y y y  is defined as  

1
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where 𝑃 can be a positive integer, dist( , ) [0, )x y   . The degree of match can be expressed as 
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where 1 dist( , ) [1, ), ( , ) (0,1]x y x y+    . 

The transient waveform sequence of household load can be regarded as n-dimensional vectors, 
and the degree of difference or matching between waveforms can be measured by the 
Minkowski distance. From the above, it can be seen that when dist( , )x y  is closer to 0 and 

( , )x y  is closer to 1, it means that the difference between the two waveforms is smaller and 

the matching degree is greater. Conversely, the greater the difference, the smaller the match. 

3. GNN principle 

GNNs are a class of deep learning models for processing graph data [60]. Unlike traditional deep 
learning models, which can only process data with simple structures, such as tables or vectors, 
graph neural networks can directly process graph data, which has been widely used in images, 
natural language processing, social networks, and other fields. Based on the representation of 
the graph structure, the graph neural network takes nodes and edges as input data, learns the 
relationship between nodes and edges, and extracts features in the graph. Similar to traditional 
convolutional neural networks (CNNs), graph neural networks learn local and global features 
through a hierarchical structure. In each layer, the graph neural network updates the 
eigenvectors of each node and aggregates them with information from neighboring nodes for a 
higher-level representation. This aggregation operation can be implemented in a variety of 
ways, such as messaging, graph convolution, and so on. The main advantage of graph neural 
networks is their ability to directly process graph data, so they can handle a variety of complex 
relationships, such as dependencies between nodes, similarity between nodes, etc. In addition, 
graph neural networks can automatically discover relationships between nodes through end-
to-end learning, thus avoiding the tedious process of manually designing features, as shown in 
Figure 1. 
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Figure 1. Envelope spectrum of the denoised signal 

In a Euclidean structure dataset, objects are independent of each other and have no connection 
relationships. In this paper, we propose a graph construction method that uses M distance to 
transform the original disconnected relationship into a connected relation. 

4. Bearing feature construction 

The samples in the indicator set (also known as feature set) dataset are obtained by computing 
17 metrics in the time and frequency domains, which are then used as inputs to the GNN model 
for fault detection to obtain the final detection results, as shown in Table 1. 

Table 1. Characteristic indicators and calculation formulas 
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where N is the number of the data points；x(n) and x denote the data sequence and mean of 

the data sequence, respectively; iq  indicates the likelihood or membership of the 𝑖 fuzzy set 

element; mB  represents the number of subseries pairs of length 𝑚  in a time series with 

similarity less than or equal to 𝑟; mA  represents the number of subseries pairs of length 𝑚 + 1 
in a time series with similarity less than or equal to 𝑟; 𝑟 is the similarity threshold, which is used 
to determine whether two subsequences are similar; !N  is the number of all possible 
permutations, where 𝑁  is the number of different elements in the time series; ( )p i  is the 

probability of the occurrence of the i-th permutation.  

5. Experimental verification 

5.1. Bearing dataset of Western Reserve University 

The whole platform consists of a 2 horsepower motor [7], power tester and torque sensor as 
shown in Figure 2. The dataset is mainly divided into driver acceleration data, fan acceleration 
data, basic acceleration data, time series data and RPM, with sampling frequencies of 12 kHz 
and 48 kHz. This time, the base acceleration data with a sampling frequency of 12 kHz are 
selected, including the inner ring fault, the outer ring fault and the rolling element fault with a 
fault diameter of 0.1778 mm. The specific types are shown in Table 2. 

 
Figure 2. Bearing test bench of Western Reserve University 
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Table 2. Dataset division of Western Reserve University 

Type Fault diameter(mm) Sample number 

Nomal 0 800 

Inner race fault 0.1778 400 

Ball fault 0.1778 400 

Outer race fault 0.1778 400 

Total / 2000 

5.2. Xi'an Jiaotong University bearing dataset 

In this section, the proposed model is verified by using the XJTU bearing acceleration test data 
published by Xi'an Jiaotong University, and the test bearing is LDK UER204 rolling bearing, and 
the experimental platform is shown in Figure 3.  

 
Figure 3. Bearing test bench of Xi'an Jiaotong University 

The dataset is shown in Table 3, and two accelerometers are installed in the horizontal and 
vertical directions of the test bearing, with a sampling frequency of 25.6 kHz, a sampling 
interval of 1 min, and a sampling duration of 1.28 s. In this paper, the vibration data in the 
horizontal direction is used, and the data of three faulty bearings in the second working case 
and the normal signal of normal operation in the early stage are selected as the training set. 

Table 3. Dataset division of Xi'an Jiaotong University 

Type Fault diameter(inch) Sample number 

Nomal 0 800 

Inner race fault 0.007 400 

Cage fault 0.007 400 

Outer race fault 0.007 400 

Total / 2000 

5.3. Experiment results 

Ten experiments are carried out on the bearing datasets of Case Western Reserve University 
and Xi'an University of Technology, and the accuracy is shown in Figure 4. The highest accuracy 
rate can reach 96.3% on the bearing dataset of Xi'an University of Technology, but the variance 
is slightly larger than that of Xi'an University of Technology. The dataset of Western Reserve 
University is more ideal, and the accuracy is more stable. The average accuracy of these 
methods is more than 80%, which  proves the effectiveness of this method.  
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Figure 4. The recognition accuracy 

6. Conclusion 

In this paper, a new fault detection scheme based on graph neural network based on Minkowski 
similarity is proposed to solve the problem of bearing fault diagnosis. Because the amplitude 
and intensity of the characteristic signal are very small, its characteristics are extremely 
inconspicuous, and it is easy to be masked by system interference and noise, which is difficult 
to detect by traditional methods. To solve this problem, we design a new graph neural network 
structure, which is specially designed for unsupervised fault detection. Firstly, the M similarity 
algorithm is used to convert the 17 feature matrices of the vibration signal into the graph data 
required by the GNN, and then the feature matrix and the graph data are input into the GNN for 
training, and finally the experiments are carried out on the bearing datasets of Case Western 
Reserve University and Xi'an Jiaotong University, which validates the effectiveness of the 
proposed method in this paper. 
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