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Abstract 

The role of object detection algorithms in the field of transmission line insulator 
inspection has become increasingly important. To address the issues of high network 
complexity and low detection accuracy of insulator defects in complex backgrounds, this 
paper proposes an improved YOLOv8 algorithm for insulator defect detection based on 
attention mechanism and multi-scale feature fusion. By incorporating the CBAM 
attention mechanism at the Backbone, replacing the PANet structure in the Neck with 
the BiFPN structure, and adopting SIoU as the loss function during the regression process, 
the YOLOv8 model's feature extraction capability for insulator self-explosion, broken, 
and flashover regions is enhanced, while mitigating the impact of complex backgrounds 
such as lighting and vegetation on detection accuracy, thereby improving the model's 
detection precision. To validate the effectiveness of the proposed algorithm, 
experiments are conducted on a public dataset of insulators. The improved YOLOv8 
model demonstrates excellent performance on real samples, achieving a detection 
precision of 93.7%, which represents an improvement of 9.4% in P and 2.3% in mAP 
compared to the original YOLOv8 model, making it suitable for practical inspection tasks. 

Keywords 

YOLOv8, Detection Algorithm. 

1. Introduction 

Due to long-term exposure to harsh outdoor environments, insulators are prone to 
malfunctions, posing significant safety hazards to the safe operation of the transmission 
network[1]. Therefore, regular attention should be paid to the status of insulators, transmission 
line inspections should be arranged, and insulator faults should be promptly eliminated. The 
traditional manual inspection approach faces challenges such as high inspection difficulty, 
compromised safety assurance, and heavy reliance on human expertise for inspection results, 
leading to difficulties in ensuring inspection accuracy. With the advancement of technology, 
unmanned aerial vehicles, robots, and other intelligent inspection methods have gradually 
replaced manual inspections[2].  

Wang et al. [3] proposed using the instance segmentation network Mask R-CNN for insulator 
defect detection, effectively solving the problem of complex background and small insulator 
defect objects in drone aerial images, which are difficult to accurately identify. Zhao et al. [4] 
proposed an enhanced Faster R-CNN model and applied it to locate insulators within complex 
background images. This method contributes to an improved accuracy in both insulator 
recognition and fault detection. Qi et al. [5] embedded a dual attention mechanism in Faster R-
CNN, effectively avoiding errors and omissions in bolt defect detection of transmission lines. 
Yang et al. [6] applied the Faster R-CNN model to ground glass density shadow detection in lung 
CT images and achieved good results, demonstrating the effectiveness of the two-stage object 
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detection algorithm. However, the two-stage model has too many region proposals and 
adjacent windows have redundant information, resulting in high computational complexity and 
slow detection speed. Jia et al. [7] proposed an improved SSD algorithm that introduces 
Xception deep separable convolution to achieve the detection of small objects on the sea surface. 
Starting from the YOLOv1 model, the YOLO series of models have iteratively developed versions 
such as YOLOv2, YOLOv3, and YOLOv4 after years of development. Stefenon et al. [8] introduced 
a hybrid approach called YOLOu-Quasi-ProtoPNet for the detection and classification of faulty 
insulators. The proposed method based on DenseNet-161 achieved an F1 score of 0.95165, 
outperforming similar models in the classification task. Cai et al. [9] introduced the stacked 
hourglass network and K-means clustering algorithm into  

 
Figure 1 Original YOLOv8 model structure 

the YOLOv3 model, which was supplemented by pruning operations to achieve multi person 
pose evaluation, proving the practical value of the YOLO model. Liu et al.[10] proposed a 
YOLOv3 model based on SPP (spatial pyramid pooling) network and multi-scale prediction 
network to detect insulator defects, achieving high detection accuracy. However, the complex 
network structure and large volume of the model result in slower inference speed. Chen et al. 
[11] combined the encoding structure of Transformer with the YOLOv5 model to perform 
pruning operations, reducing the complexity of the model and improving inference speed, but 
with a decrease in detection accuracy. The aforementioned methods have shown individual 
improvements in both detection accuracy and inference speed, but they have not managed to 
achieve a balance between the two. In addition, the method of manual annotation significantly 
impacts the detection results. Hao et al.[12]proposed a weakly supervised and phased transfer 
learning method based on YOLOv5 to recognize insulators and different types of ice, such as 
snow, frost, mixed frost, ice particles, and normal states, which markedly improved the 
inefficiency associated with manual annotation. 

In order to meet the requirements of precise detection of insulator defects on mobile devices 
such as unmanned aerial vehicles and intelligent inspection robots, and to address the high 
complexity of the YOLOv5 model and the low detection accuracy for small objects and complex 
backgrounds, this paper proposes an improved YOLOv8 model. The proposed improved 
YOLOv8 model based on attention mechanism and multi-scale feature fusion can further 
improve detection accuracy. Firstly, the attention mechanism of CBAM (Convolutional Block 
Attention Module) (Woo et al.[13]) is integrated between the fourth C2f module of the YOLOv8 
backbone feature extraction network and the SPPF (Spatial Pyramid Pooling Fast) module to 
enhance the model's feature extraction ability and improve the recognition accuracy of small 
objects and occluded objects; On this basis, in the feature fusion stage, BiFPN (Bidirectional 
Feature Pyramid Network) (Tan et al.[14]) structure was used to replace the original PANet 
(path aggregation network) structure, simplifying the network structure while enhancing the 
model's feature fusion ability; Finally, taking full account of the impact of the angle loss between 
the prediction box and the ground truth box on the prediction results in the regression process, 
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SIoU (Gevorgyan[15]) is used as the loss function of the head end regression stage to accelerate 
the rate of convergence of the model. 

2. YOLOv8 Model  

The network structure of the YOLOv8 model is illustrated in Figure 1, mainly composed of four 
parts, including the input end, the backbone feature extraction network, the feature fusion 
network, and the prediction end. The original YOLOv8 model continues the Mosaic data 
augmentation technology used by YOLOv5 at the input end, but this method easily makes the 
model learn some information that is useless for detection. Therefore, YOLOv8 turns off the 
Mosaic data augmentation technology in the last 10 rounds of training. In the backbone feature 
extraction network, the YOLOv8 model borrows the design concept of ELAN (Wang et al.[16]) 
in YOLOv7 and replaces all C3 modules used in YOLOv5 with C2f modules. The structures of C2f 
modules and C3 modules are shown in Figure 2. The C2f module utilizes split operation instead 
of convolution operation to layer features and concat all Bottleneck outputs, ensuring YOLOv8 
lightweight while obtaining richer gradient flow information. In the feature fusion network, 
YOLOv8 removes the CBS convolution module before the two upsampling operations, and 
replaces the C3 module used in YOLOv5 with the C2f module. On the prediction end, YOLOv8 
abandons the Anchor-based idea and adopts the Anchor-free (Zhu et al.[17]) idea for design. 
Anchor-free to some extent solves the problem of severe imbalance between positive and 
negative samples caused by the excessive number of Anchor-based preset anchor boxes and 
the presence of a large number of negative samples in the background area. 

In addition, YOLOv8 also uses Decoupled Head instead of Coupled Head, which decouples 
regression tasks and classification tasks, to some extent alleviating the conflicts between 
classification and regression tasks caused by spatial misalignment (Zhang et al.[18]). Although 
this may reduce the inference speed of the model to some extent, it can improve the detection 
accuracy of the model. In terms of loss function, YOLOv8 model only calculates classification 
and regression loss, and no longer calculates confidence loss separately. BCE loss is used for 
classification loss, and DFL (Distribution Focal Loss) and CIoU are used for regression loss. In 
YOLOv6, DFL has already been used. Due to the possibility of ambiguity in  

 
Figure 2 C3 module and C2f module structures 

data distribution, DFL simplifies the prediction box positions of continuous distributions to 
discrete distributions.  
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3. Improved YOLOv8 Model  

3.1. Incorporates CBAM attention mechanism 

Although the backbone network of the YOLOv8 model has strong feature extraction capabilities, 
in natural outdoor environments, aerial images of insulators are susceptible to factors such as 
lighting, occlusion, complex backgrounds, and the small area of insulator defects, making it 
difficult to recognize the images. Considering that the spatial features of the input image are 
significantly weakened after the ninth layer of feature extraction, this paper integrates the 
CBAM attention mechanism between the fourth C2f module and SPPF module of the YOLOv8 
backbone feature extraction network to solve the above problem. The CBAM attention 
mechanism combines channel attention module (CAM) and spatial attention module (SAM), 
The feature map maintains the channel dimension unchanged in CAM, compresses the spatial 
dimension, and makes the model pay more attention to the category information of the image; 
Keeping the spatial dimension unchanged and compressing the channel dimension in SAM 
makes the model pay more attention to the position information of the image. 

The CBAM attention mechanism strengthens the feature expression of spatial and semantic 
information in the input feature map, in order to transmit stronger semantic and spatial 
features during the feature fusion stage, making the YOLOv8 model pay more attention to the 
characteristics of the insulator itself, while weakening the influence of factors such as lighting, 
occlusion, and complex background on the detection results. The CBAM attention mechanism 
structure used in this article is shown in Figure 3.  

In CAM, in order to calculate the semantic features of images more efficiently, it is necessary to 
compress the spatial dimensions of the input image. The CAM structure is shown in Figure 4. 
SENet (Squeeze and Extraction Network) proposes the use of global average pooling to 
compress spatial dimensions, and CAM adds the global maximum pooling method on this basis. 
The specific steps of CAM are as follows: First, the input feature maps are pooled globally to the 
maximum and globally to the average, so that the size of the feature map changes from W * H * 
C to 1 * 1 * C. Then, the two feature maps obtained are input into the shared MLP, and the two 
activated results are obtained through the ReLU activation function. Finally, the two output 
results of the shared MLP are added and multiplied by the original input feature map through 
the sigmoid function, so that the image size changes back to W * H * C. 

 
Figure 3 CBAM structure 

 
Figure 4 CAM structure 
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Figure 5 SAM structure 

In SAM, in order to calculate the spatial features of images more efficiently, it is necessary to 
compress the channel dimension of the input image. The output feature map of the channel 
attention module is used as the input feature map, and the SAM structure is shown in Figure 5. 
The specific steps are as follows: first, the channel feature map is globally maximally pooled and 
globally averaged to obtain two W * H * 1 feature maps. These two feature maps are concated, 
and then dimensionally reduced to a single channel feature map through a convolutional layer 
with a kernel size of 7 * 7. Finally, the sigmoid function is used to multiply the input feature map, 
causing the image size to return to W * H * C, and finally, the output feature map of the CBAM 
attention mechanism is obtained. 

In view of the characteristics of complex background and easy occlusion of aerial image of field 
insulators, CBAM attention mechanism module is fused in YOLOv8 model to enhance the 
learning of areal feature of image defects such as insulator defect, self explosion, flashover, etc., 
improve the object detection accuracy, and improve the generalization of the model. 

 
Figure 6 BiFPN structure 

3.2. Bidirectional feature pyramid network 

Although YOLOv8 replaced all the C3 modules in YOLOv5 with C2f modules on the Neck end, 
and also removed the convolution operation before two upsampling operations, it still adopts 
YOLOv5's PANet idea in the feature fusion stage, without fundamentally improving the feature 
fusion network. 

In actual inspection scenarios, due to issues such as shooting angle, shadow occlusion, and 
insufficient lighting conditions, the image quality of insulator defects may be poor. For such 
images, the YOLOv8 model cannot extract meaningful features, and the feature fusion effect is 
poor, which may even affect the learning ability of the model. Therefore, we propose to use the 
BiFPN structure instead of the original PANet structure to solve the above problems. The BiFPN 
structure is shown in Figure 6.From Figure 6, it can be seen that the BiFPN structure removes 
nodes with a single input edge and adds connections between input and output nodes in the 
same layer. As nodes with only one input edge do not perform feature fusion, their contribution 
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to the feature fusion network is small. Therefore, deleting a single input edge node has little 
impact on the feature fusion effect. At the same time, deleting a single input edge node can 
simplify the network structure, reduce computational complexity, and retain the unmerged 
information of the original nodes. In addition, the BiFPN structure can also perform weighted 
fusion on the input feature maps. Due to the varying contributions of different input feature 
maps for feature fusion, simply performing Concat operation is not the best approach. 
Therefore, we use Fast Normalized Fusion for weighted feature fusion, which allows feature 
images that contribute significantly to feature fusion to obtain more weights. The weighted 
calculation method (taking the 6th layer node as an example) is shown in Formula 1. 
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Among them, P  is the input or output feature of a certain layer node, Conv  is a convolution 
operation, resize  is an upsampling or downsampling operation,  is a weight parameter that 
distinguishes the importance of different features,   and is a bias term. 

In response to the problem of small object scales in defect areas such as insulator image damage 
and flashover, this paper proposes a multi-scale feature fusion method using BiFPN structure, 
which can improve the detection accuracy of YOLOv8 model for small object while reducing 
network complexity and redundant calculations. 

3.3. SIoU loss 

YOLOv8 original model used CIoU as the loss function in the regression phase of the prediction 
box. It calculated the loss of the aspect ratio of the regression box on the basis of DIoU, and 
comprehensively considered the overlap rate, aspect ratio, and center point distance between 
the ground truth box and the prediction box (Zheng et al.[19]). This can accelerate the 
regression speed of the prediction box to a certain extent, making the prediction box more 
accurate in the regression process. However, in the regression process of the prediction box, 
when the height and width of the prediction box are proportionally enlarged and shrunk, the 
regression of the prediction box cannot continue to be optimized, and CIoU also fails to consider 
that the angle between the prediction box and the ground truth box is also an important factor 
affecting the regression. Based on the above two considerations, this paper takes SIoU as the 
loss function in the regression stage of the prediction box. SIoU includes four parts: angle loss, 
distance loss, shape loss, and intersection merge ratio loss. 

In view of a series of problems caused by CIoU as the loss function in the regression phase, using 
SIoU as the loss function in the regression process of the prediction box can fully consider the 
angle influence between the prediction box and the ground truth box, and improve the Rate of 
convergence and regression accuracy of the model, making the whole regression process pay 
more attention to high-quality anchor boxes. The improved YOLOv8 model structure is shown 
in Figure 7. 
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Figure 7 Improved YOLOv8 model structure 

4. Experimental results and analysis 

4.1.   Experimental data processing 

The insulator defect samples used in this article are public datasets provided by the Kaggle 
competition platform. This dataset contains a total of 400 images of insulator damage, self 
explosion, and flashover. The training set and validation set were randomly divided in an 8:2 
ratio. For insulators that have broken or self exploded, label a single insulator, while for 
insulators that have flashover, only label the flashover area.  

4.2. Experimental environment and model configuration parameters 

Table 1 Experimental environment configuration 
Configuration Version 

OS Windows10 
CPU Intel i7-9700F 
GPU Geforce 2060 6GB 

Python 3.9 
CUDA 11.7 

Pytorch 1.13 

 
Table 2 Main parameters of the experiment 

Parameter Name Parameter Value 
epochs 150 

batchsize 16 
image size 640*640 
optimizer SGD 

lr0 0.01 
momentum 0.937 

decay 0.0005 
 

In order to verify the effectiveness of the improved YOLOv8 model, Python 1.13 was used as 
the basic framework for algorithm validation, and CUDA 11.7 was used to accelerate the 
training process of the model. The specific experimental environment is shown in Table 1. 

During the experiment, SGD is used as the optimizer. The initial Learning rate is set to 0.01, the 
initial momentum is set to 0.937, the weight Attenuation coefficient is set to 0.005, and the IoU 
threshold is set to 0.5. Other main parameters are shown in Table 2. 
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4.3. Evaluating indicator 

Using precision and recall as basic evaluation indicators, precision is responsible for evaluating 
the accuracy of model detection, and recall is responsible for evaluating the comprehensiveness 
of model detection. mAP (mean Average Precision) can be calculated through precision and 
recall, and its expression is shown in formula 2. Among them, TP  is the number of positive 
samples detected as positive samples, FP is the number of negative samples detected as 
positive samples, is the number of positive samples not detected, FN is the number of 
categories, and is the number of categories being tested. Using mAP with an IoU threshold of 
0.5 as the final evaluation indicator to evaluate the effectiveness of the improvement on the 
YOLOv8 model. 
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4.4. Experimental results 

The benchmark model used is YOLOv8, which is compared with the proposed improved 
YOLOv8 model to verify whether the proposed method can improve the detection accuracy of 
the model. In terms of detection accuracy, we compared the detection performance of the 
original YOLOv8 model and the improved YOLOv8 model in the same application scenario and 
dataset. The specific experimental results are shown in Figure 8.  
 

 
Figure 8 Comparison of original YOLOv8 model and improved YOLOv8 model detection results 

The detection results in Figure 8 (a) and Figure 8 (e) show that the improved YOLOv8 model 
can improve the confidence of object detection, and it can be seen that the confidence in 
detecting broken insulators has increased by 0.11. The improved YOLOv8 model has improved 
the feature extraction ability, making object detection more accurate; The detection results in 
Figure 8 (b) and Figure 8 (f) indicate that the original YOLOv8 model identified intact insulators 
as broken insulators, resulting in misdetection.  
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However, the improved YOLOv8 model accurately identified whether insulators had broken 
faults, effectively avoiding misdetection; The detection results in Figures 8 (c) and 8 (g) indicate 
that the original YOLOv8 model duplicatedly detects a single object and cannot detect broken 
insulators with a large occluded area when detecting broken insulators. However, the improved 
YOLOv8 model can extract the features of the occluded insulator image and accurately identify 
the insulators with broken faults; The detection results in Figure 8 (d) and Figure 8 (h) indicate 
that the original YOLOv8 model missed detection when detecting insulation components that 
were shaded and had flashover faults, while the improved YOLOv8 model weakened the 
influence of shadows on feature extraction and fusion, effectively improving the accuracy of 
insulation component fault recognition. 

From Figure 8, it can be seen that the improved YOLOv8 model has stronger feature extraction 
ability, performs better in distinguishing similar features, integrates multi-scale features more 
thoroughly, has stronger ability to detect small objects, and has lower miss detection and 
misdetection rates. Even in complex outdoor natural environments, it has good detection 
performance, good robustness and generalization, and can meet the requirements of unmanned 
inspection. 

In order to objectively verify the effectiveness of the improved YOLOv8 model, this article 
conducted comparative experiments with mainstream object detection models using the same 
dataset in the same experimental environment. 

 

Table 3 Comparative experimental results of different object detection models 
Model mAP@50 

Faster R-CNN 66.8% 
RetinaNet 71.0% 
YOLOv5 68.6% 
YOLOv6 74.0% 
YOLOv8 75.5% 

This article 77.8% 

Table 3 shows the comparison of detection accuracy between the improved YOLOv8 model and 
mainstream object detection models such as Faster R-CNN, RetinaNet, YOLOv5, YOLOv6, and 
YOLOv8. The experimental results show that when the IoU threshold is selected as 0.5, the mAP 
of the improved YOLOv8 model increases by 11.0%, 6.8%, 9.2%, 3.8%, and 2.3%, respectively, 
further demonstrating the superior performance of the proposed improved YOLOv8 model. 

4.5. Ablation Experiment 

Our proposed improved YOLOv8 model improved the original YOLOv8 model on the Backbone 
end, Neck end, and Head end, respectively, and underwent ablation experiments. The impact of 
various improvements and their combinations on model performance has been explored, and 
the results of the ablation experiment are shown in Table 4. 

From Table 4, it can be seen that the improved YOLOv8 model has significant improvements in 
detection accuracy, specifically by 9.4% in Precision and 2.3% in mAP. Through comparison, it 
can be seen that when CBAM, BiFPN, and SIoU are separately introduced, the detection accuracy 
of a dataset is improved by 5.4%, 1.2%, and 2.2%, respectively; By combining SIoU with CBAM, 
CBAM with BiFPN in pairs, the detection accuracy of the same dataset was improved by 4.2% 
and 3.5%, respectively. Overall, various improvements and their combinations have 
contributed to the improvement of model detection accuracy, with the CBAM attention 
mechanism contributing the most to the improvement of model detection accuracy. 
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Table 4 Results of ablation experiment 

Model Precision mAP@50 
YOLOv8 84.3% 75.5% 

YOLOv8+SIoU 86.5% 77.6% 
YOLOv8+CBAM 89.7% 76.3% 
YOLOv8+BiFPN 85.5% 76.3% 

YOLOv8+SIoU+CBAM 88.5% 74.6% 
YOLOv8+SIoU+BiFPN 83.3% 77.6% 

YOLOv8+CBAM+BiFPN 87.8% 77.5% 
This article 93.7% 77.8% 

5. Conclusion 

This article proposes an improved YOLOv8 insulator defect detection algorithm by analyzing 
possible problems in actual inspection scenarios, combining attention mechanism with multi-
scale feature fusion. Compared with the YOLOv5 model, this algorithm reduces model 
complexity and shortens detection time; Compared to the original YOLOv8 model, it improves 
detection accuracy and performs well in overall performance. The specific conclusions are as 
follows: 

1) In response to the complex natural environment in the field and the susceptibility of 
collected insulator defect images to light and complex backgrounds, the CBAM attention 
mechanism is integrated into the main feature extraction network to effectively reduce the 
impact of complex backgrounds on detection accuracy. The unique channel and spatial 
attention module of the CBAM attention mechanism effectively improve the task of small and 
medium-sized object detection in insulator fault recognition and object detection in complex 
backgrounds; 

2) In response to the problem of complex and poor feature fusion performance in the original 
PANet network, a multi-scale feature fusion with BiFPN structure is adopted, fully considering 
the importance of different feature maps in the feature fusion process. Using weighted fusion 
method for feature fusion can significantly improve the model's feature fusion ability for objects 
of different scales, especially small objects; 

3) In order to solve the problem that the CIoU cannot continue to optimize the prediction box 
due to the proportional growth of its length and width in the regression process of the 
prediction box, SIoU is used instead of CIoU, which can pay more attention to the high-quality 
anchor box in the regression process, accelerate the Rate of convergence of the model, and 
further improve the robustness and generalization of the model. 

Through experimental verification, it can be seen that the application of the algorithm proposed 
in this article can timely and accurately identify insulator faults, reduce model complexity, and 
improve fault identification accuracy. It is of great significance for the detection of insulator 
faults in transmission and distribution networks and the safe operation of transmission and 
distribution networks. 
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