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Abstract 

The spread of smart city systems has enhanced the production of large and latency-
intensive information of heterogeneous Internet of Things (IoT) devices. The 
conventional cloud-based systems are becoming less appropriate to meet the ultra-
reliable and low-latency communication (URLLC) needs experienced by mission-critical 
systems like autonomous mobility, real-time monitoring, telemedicine, and industrial 
automation. This paper examines models of edge-cloud synergy that combine a spatial 
distance between edge computing and the elasticity of cloud computing to deliver ultra-
low latency and energy efficiency in processing smart city IoT data networks. It is based 
on the state-of-the-art frameworks that integrate 5G/6G network slicing, fog-based 
orchestration, and AI-based adaptive resource management (Hamdi et al., 2024; 
Chatzistefanidis et al., 2025; Sahu et al., 2025). The proposed synergy model, with an 
analytical and simulation-based methodology, will yield a 40-60 percent end-to-end 
latency improvement in the use of cloud-only systems and will get throughput and 
service reliability benefits significantly. RAN automation, federated learning-based 
scheduling, and QoS-aware slice orchestration (El-Hajj, 2025; Larrabeiti et al., 2023) 
have been studied as the key empowering mechanisms that enable assessing the 
scalability and resilience of the system in the dynamically loaded conditions. The results 
are that the hybrid edge-cloud coordination is more efficient than isolated computing 
paradigms as it supports contextual intelligence less distant to data sources and at the 
same time, it allows optimization at the global scale at the cloud layer. This study adds a 
single architectural vision to deploy the next generation smart city IoT ecosystems with 
the potential of attaining the high URLLC and QoS demands by using multi-layers of edge-
cloud integration. 
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1. Introduction 

The blistering development of smart city infrastructures has enhanced the implementation of 
heterogeneous Internet of Things (IoT) devices that gather, transfer, and process large volumes 
of real-time data. Such devices are environmental sensors and autonomous vehicles, intelligent 
healthcare systems, and so forth, these devices create data quantities that require instant 
processing and low latency to facilitate mission-critical decisions (Cheng et al., 2020; Deng et 
al., 2020). Traditional cloud-based systems are highly computational but cause enormous 
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communication delays, network overload, and bandwidth limitations to access nodes that are 
geographically remote (Shi et al., 2016; Mao et al., 2017). In such a way, to obtain ultra-low 
latency (ULL), which is a value to attain the Ultra-Reliable Low-Latency Communication (URLLC) 
applications, the computing capabilities should be provided nearer to the data sources, 
achieved with the edge computing structures (Rahmani et al., 2020). 

Edge computing allows processing data at the periphery of the network and reduces 
transmission time and increases energy efficiency (Bonomi et al., 2012). Edge devices are 
however typical of being resource constrained in storage, processing and scalability. On the 
other hand, cloud computing offers scalability which is elastic though distant data transport 
and backhaul latency is weak. In order to balance those constraints, recent studies propose a 
synergistic edge-cloud model a collaborative computing paradigm that can optimally balance 
edge proximity and cloud elasticity to provide ultra-low latency, real-time analytics, and 
energy-efficient processing in smart city IoT ecosystems (Zahmatkesh and Al-Turjman, 2020; 
Songhorabadi et al., 2022). 

This synergy is also improved in next-generation communication architecture through 5G/6G 
network slicing, Radio Access Network (RAN) automation, and fog-layer orchestration, all of 
which guarantee the Quality of Service (QoS) differentiation between the various applications 
(Hamdi et al., 2024; Kaloxylos et al., 2018; Larrabeiti et al., 2023). Such a slice as enhanced 
Mobile Broadband (eMBB), massive Machine Type Communications (mMTC), and URLLC can 
serve to meet the requirements of a certain latency, reliability, and throughput (Maule et al., 
2021; Lorincz et al., 2024). Network slicing provides an effective sharing of resources, whereby 
the edge-cloud layer manages the dynamically shared computational resources based on their 
application prioritization. 

Moreover, edge-cloud synergy is enhanced with the help of AI-based scheduling systems and 
federated learning systems that can assign tasks to the cloud without violating privacy and 
worsening the backhaul traffic (El-Hajj, 2025; Sahu et al., 2025). Such systems can predict 
congestion in the network and allocate resources dynamically through context-aware 
predictive modeling and ensure a consistent QoS despite the dynamic workload. 

This continuum of computation connects the devices to the edges to the cloud hierarchy which 
is critical to smart cities in supporting new services like autonomous traffic management, 
digital healthcare surveillance and energy optimization (Sathupadi et al., 2024; Limani et al., 
2025). The interaction between these layers is the assurance of a smooth balance between the 
responsiveness of computation and global optimization, which forms the basis of robust and 
smart digital cities. 

Nonetheless, such synergy is not implemented easily. The current deployments have significant 
issues to do with interoperability, orchestration in real-time, security, and scalable data routing 
(Boutiba et al., 2022; Lekidis, 2024). The table 1 summarizes the main challenges and research 
opportunities that lead to the desire to study this issue. 

 

Table 1. Challenges and Opportunities in Edge–Cloud Synergy for Smart City IoT Networks 

Challenge Description Research Opportunity Reference(s) 

Latency 
bottleneck 

Long round-trip 
delay in cloud-only 

processing 

Develop multi-tier task 
offloading models 

Mao et al. (2017); 
Deng et al. (2020) 

Resource 
limitation at the 

edge 

Limited computing 
and memory capacity 

Introduce adaptive 
edge–cloud 

collaboration 

Sahu et al. (2025); 
Songhorabadi et al. 

(2022) 
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Network 
heterogeneity 

Incompatible IoT 
protocols and devices 

Standardize cross-
domain orchestration 

Rahmani et al. 
(2020); Kaloxylos et 

al. (2018) 

Security and 
privacy 

Exposure of raw data 
to multiple nodes 

Implement federated 
and zero-trust 

frameworks 

El-Hajj (2025) 

Dynamic 
workload 

management 

Rapid variations in 
data flow 

Apply AI-driven 
scheduling and 

predictive analytics 

Sahu et al. (2025); 
Sathupadi et al. 

(2024) 

 

 
Figure 1. Conceptual Architecture of Edge–Cloud Synergy for Smart City IoT 

2. Literature Review 

The review will integrate the literature on (i) edge and fog computing architecture, (ii) 5G/6G 
network slicing architecture, and (iii) edge-cloud synergy patterns that are applicable in smart 
cities. We conclude by establishing gaps that exist concerning autonomous orchestration and 
slice-wise QoS-conscious fairness. 

2.1. Edge Computing and Fog Computing Frameworks 

Concepts and scope. Edge computing is used to move the computation nearer to data sources 
(IoT devices, base stations, and MEC nodes) to reduce the end-to-end latency and backhaul 
traffic. Shi et al. (2016) crystallize edge as a continuum between devices and access networks 
with computation, storage and networking that are co-located with data producers to be 
responsive in real-time. Fog computing, a concept proposed by Bonomi et al. (2012) pushes this 
continuum to a hierarchical and multi-tiered platform between devices and the cloud. Fog 
nodes, which are gateways, micro-data centers and regional hubs, aggregate, pre-process and 
coordinate flows and then forward them to the cloud where heavy analytics take place. Edge is 
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in practice concerned with ultra-low latency actuation and per-device context and fog with 
regional aggregation and coordination. 

Caching and sustainability. Zahmatkesh and Al-Turjman (2020) provide a review of the caching 
mechanisms between edge/fog layers, indicating that the location and replacement of caches 
have a direct impact on the latency and power consumption of IoT-dense cities. Edge proximity 
caches (hot data/KV cache) enable query round-trips to be minimized, whereas cooperative 
caching between fog nodes can eliminate duplication and enhance hit rates on regionally 
popular data (e.g. video analytics operators, object detection models). DVFS, duty cycling, 
thermal-aware placement, and partial offloading are some of the sustainability levers 
applicable in cases where the local energy budgets are limited. The composition of these 
mechanisms enables edge/fog stacks to be responsive with operational cost managed and 
carbon intensity being controlled over time. 

Smart city comparative performance. Songhorabadi et al. (2022) provide the comparative 
measures of IoT empowered urban setting, detailing that moving compute nearer to sensors 
brings quantifiable benefits of shortening the response time, packet delivery ratio, and power 
consumption, and the magnitude of these benefits depends on workload burstiness and 
mobility (e.g., vehicular telemetry and stationary metering). They find that there are layers that 
are supportive of edge (sub-20 ms loops) ( signal control, safety alerts), fog ([?]50 ms 
coordination) (regional aggregation, anomaly detection), and cloud ( analytics/training) 
(hours-days horizons). 

Implications. The literature can be summarized by a division of labor, latency sensitive, privacy 
aware computation and short lived caches is handled by edge nodes; fog nodes coordinate and 
pre-process, elastic analytics, historical storage and model life-cycle management is found in 
the cloud layers. The productivity boundary is defined by the level of smartness of where we 
locate state (weights, features and caches) and route requests between these layers- issues 
reoccurring under network slicing and edge-cloud orchestration below. 

 

Table 1. Summary of recent edge–cloud models and their performance metrics. 

Study Approach Focus Area Latency 
(ms) 

Scalability Energy 
Efficiency 

Sahu et al. 
(2025) 

Boltzmann-
driven Bayesian 

Adaptive 
resource 

scheduling 

0.7 High High 

Sathupadi et 
al. (2024) 

AI-enhanced 
edge-cloud 

Predictive 
maintenance 

0.9 Medium High 

Deng et al. 
(2020) 

Cloud-assisted 
edge 

Smart city data 1.4 High Medium 

 

2.2. Network Slicing Architectures in 5G and 6G. 

Underlying understandings perspective. Network slicing divides a common physical network 
into end-to-end slices which are logically divided and span RAN, transport, and core. The paper 
by Kaloxylos et al. (2018) describes the process of assigning service intents to resource 
reservations and QoS constraints by slice templates and creating and managing slices in real 
time by orchestration functions. Ordonez-Lucena et al. (2021) go further to add cross-domain 
management and exposure interfaces to allow applications, like smart-city platforms, to 
programmatically request slice lifecycles. 

 



International Journal of Science Volume 12 Issue 10, 2025 

ISSN: 1813-4890  
 

5 

Class types of services: eMBB, URLLC and mMTC. In the urban digital service, three canonical 
slice families of 5G/6G take over the dominance. eMBB (1) supports high throughput video 
analytics, public Wi-Fi offload, and AR/VR guidance; (2) URLLC is able to guarantee ultra-low 
latency and high reliability video-safe loops (connected crossroads, remote operation); and (3) 
mMTC can support massive sensor population metering and telemetry on low-energy charges. 
Maule et al. (2021) talk about template parametrization and admission control of such classes, 
and Larrabeiti et al. (2023) assess the performance of multi-tenant coexistence and isolation. 

Automation of RAN and Latency. Closure of loops in dense cities: The automation of the real-
time guarantees necessitates radio scheduling, edge location, and transport paths which are 
responsive to the load and interference. In Hamdi et al. (2024), the authors introduce latency-
sensitive RAN control and queue-sensitive schedulers that minimize tail delays in URLLC slices. 
Chatzistefanidis et al. (2025) investigate the use of AI in optimizing RAN with the help of 
telemetry (CQI/RSRP/RSRQ, BSR) and edge compute feedback so that on-the-fly MEC 
relocation, prefetching, and scale of a slice can be activated. Essentially, the slice is made into a 
policy envelope where edge and fog elements liaise with the cloud orchestration to compliance 
of SLA. 

Design tensions. Isolation vs. efficiency is a traditional trade-off in that hard isolation offers 
better predictability, whereas soft isolation offers better utilization, however, it needs anomaly 
detection, preemption and fairness logic. The joint edge-cloud control models are inspired by 
these tensions as discussed next. 

Illustration To bring these notions to life I have put in a simple schematic of 
eMBB/URLLC/mMTC slices attached to devices and converged on to Edge/MEC then 
aggregated in the Cloud Core and orchestrated at the top. 

Image;5G6G network slicing with Edge cloud context for smart cities 

 
Integration protocols and models. The stacks used in modern smart-cities combine the device, 
edge/fog, and cloud, with the help of publish/subscribe and dataflow protocols as well as 
control-plane protocols. The model by Satthupadi et al. (2024) is a survey of coordination 
models used to match the intent (e.g. keep P95 latency below 20 ms) of an application with the 
mechanisms (RAN scheduler policies, edge autoscaling and cross-layer prefetch). Their focus is 
on interfaces between layers on a contract basis to provide edge nodes with the opportunity to 
locally enforce policies and present state (hit rate in a cache, queue depth, etc.) to cloud 
controllers. 

Live processing that is energy efficient. According to Sahu et al. (2025), edge and cloud-directed 
workload partitioning based on energy and latency models is important in enhancing Joules per 
task and tail-latency. Such levers are (i) selective inference at the edge in the short pipeline case, 
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(ii) opportunistic offloading to fog nodes during congestion and (iii) batch/stream co-
scheduling in the cloud in the case of analytics with heavy compute requirements. Their 
findings support the use of locality-first placement using energy-aware routing as lowering 
carbon and cost and achieving SLOs. 

Adaptive scheduling Federated learning. The article by El-Hajj (2025) discusses federated 
learning (FL) as a coordination fabric: edge gateways get to know the local demand and 
resource patterns and a cloud aggregator generates global models to control the admission, 
autoscaling, and prefetch. FL protects privacy (raw data remains local), and is able to cope with 
spatio-temporal heterogeneity, namely rush-hour traffic, event spikes and weather effects. In 
combination with network slicing, FL has the ability to pre-position caches, or weights, to 
predict bursts, and to scale each slice individually (e.g. URLLC vs. eMBB), thereby tightening the 
latency distribution without over-provisioning it. 

Putting it together. This is very clearly illustrated in the literature increasingly perceiving edge 
and cloud to be equal and equal layers: the former maintains tight loops and context awareness; 
the latter provides global optimization, longitudinal analytics and strong governance. The best 
architectures unite policy-first coordination and telemetry-based adaptation and local 
decisions are always quick whereas the global controller synchronizes cost, energy and QoS 

2.3. Gaps Identified 

(1) Self organized, inter-layer orchestration. Although there are robust building blocks, which 
are MEC platforms, slice orchestrators, and FL-based controllers, end-to-end autonomy that 
cuts across RAN, edge compute, and cloud remains unavailable. The existing systems are based 
on semi-manual playbooks (threshold-based scaling, fixed placements) that do not work with 
compound events (e.g., a stadium egress and weather deviations). The focus of future studies 
should be on learning-based control which controls placement, caching, slice parameters in a 
joint manner, and can be shown to be stable to realistic disturbances. 

(2) Optimization of QoS with cross-slice fairness. The authors draw attention to the fact that 
the unequal distribution of resources among heterogeneous services using the same 
infrastructure is an issue that requires resolution (Saad et al., 2023). The isolation of individual 
slices that is in use today is either is too strict (wasting the stranded capacity) or too loose 
(punishing mission-critical traffic). We require multi-objective controllers, which (i) ensure the 
reliability of URLLC, (ii) limit the eMBB latency inflation in bursts, (iii) offer starvation free 
mMTC service, and (iv) reveal regulable policies to regulators and operators. These controllers 
must include economic indicators (e.g. energy price, carbon intensity) and operational risks (e.g. 
spot/preemptible interruption) without compromising QoS. 

(3) Model governance and Lifecycle integration. Literature is less concerned with the model 
lifecycle at the edge- the process of validating, rolling out and rolling back new models over 
thousands of gateways and devices under operational conditions. An empirical study 
requirement is artifact-aware orchestration: dependency graphs, safe canaries, and context-
sensitive cache updates in order to prevent quality/latency regressions when upgrading. 

(4) Cross layer and transparent observability. Lastly, there is a lack of systematic means to 
credit tail latency across layers, as well as to correlate RAN, edge compute and cloud events. 
When there is no common causality fabric, it will have siloed optimization. Innovation at this 
point would open up strong, regulator-compliant SLAs. 
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Figure 2. Flow diagram showing task offloading from IoT → Edge → Cloud with feedback 

control loop. 

3. Methodology  

3.1. System Design 

Our hybrid edge-cloud platform is a combination of the best features offered by the edge 
computing with ultra-low-latency and the scalability and elasticity of cloud computing. In order 
to experiment with the design under realistic, but controllable, conditions, we co-simulate the 
system: the network plane is simulated in NS-3, and the compute plane is simulated in CloudSim. 
NS-3 models the 5G radio access characteristics, transport links, radio scheduler queueing, and 
backhaul paths that are characteristic of dense urban implementations. CloudSim is a 
representation of the compute resources at the micro data centers (edge/MEC), as well as the 
regional cloud facilities, such as accelerators, memory, and energy profiles. 

A lightweight cosimulation broker arbitrates on both environments on a fixed rate. NS-3 also 
publishes telemetry (slice-specific queue depth, packet delay ranges and throughput after every 
interval). CloudSim provides service level metrics such as the number of live services within a 
service, utilization, and execution time measurements. This enables the study to project end-
to-end behavior onto the network and compute stack and not isolate them. 

Data sources. Our three sample streams of smart-city are: 

Congestion mitigation and incident detection (traffic (counters, speed, occupancy and camera 
metadata). 

Environmental monitoring and notifications to the citizens: air quality (PM2.5/PM10, NO2, O3). 

Urgent and safety-critical signaling Healthcare/wearables (heart rate, SpO2, fall detection). 

Streams are micro-batched at the edge to be efficiently inferred and filtered to drop the 
attributes that are not crucial. Privacy-cleared summaries and historical data are only sent to 
the cloud to be used in the long-horizon analytics and model life-cycle management. This 
separation is to guarantee that action that is latency sensitive (e.g., alerts to actuators or city 
dashboards) is done locally and computationally intensive (e.g., retraining, longitudinal 
analysis) is done centrally. The architecture is consistent with longstanding principles in auto-
scaling and distributed orchestration (Alharthi et al., 2024) and effective partitioning of model 
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workloads (Guan et al., 2024), and is also based on effective coordination concepts of federated 
systems (Zhang et al., 2023). 

3.2. Simulation Parameters  

Topology. The testbed is based on 10 edge nodes (MECs sites) that are connected to the radio 
access network and 3 regional cloud servers. Every edge node is connected to several gNodeBs 
to indicate the real coverage and failover. Edge to metro core Backhaul Backhaul Backhaul 
provides high-capacity links; inter-region cloud links to model the effect of geographic 
dispersion by increasing round-trip time. 

Network slices. We set three slices which mirror priorities of the city: 

S1 (critical) of healthcare alarms and emergency vehicle telemetry; 

S2 (traffic optimization, real-time mobility) incident detection; 

S3 (best-effort) of bulk upload and historical sync. 

The scheduling priorities and preemption of slices are different in that, S1 is not preempted 
during bursts. 

Compute resources. A small pool of accelerators, local caches, and fast local storage are exposed 
by every edge node; larger clusters of accelerators, object storage and autoscaling to burst 
absorption and analytics are exposed by each cloud region. 

Workloads; he stream arrivals are diurnal with infrequent bursts to incidents. Message sizes 
will range between small scalar readings, to moderate payloads that have embedded metadata. 
We test the system with low, medium and peak load conditions with several trials to monitor 
the system behavior under both normal and stress load. The length of trials is sufficient to 
observe scale-out and scale-in behavior, and warm-start behavior 

Evaluation focus. Four major metrics are reported by us: 

Latency: The one-way, end to end duration of time of the path of the device ingress till a decision 
or storage, where the focus is on the median and tail characteristics. 

Throughput: maintained line throughput rate, on a slice-by-slice basis and site-by-site basis. 
Energy consumption: the energy per processed message was obtained as a power draw through 
the power models of CloudSim. 

Reliability: the proportion of the messages that satisfy the service level goal of each slice as well 
as the overall availability of the serving pipeline. 

We look into the impact that design decisions have on these measures by changing the demand 
patterns and slice weights and changing the autoscaling thresholds. 

3.3. Algorithmic Model 

It is QoS based orchestration that combines edge and cloud based network slicing and load 
balancing. We do not describe the behavior of the controller using mathematical programs, but 
rather use policy language to describe it. 

Inputs. The controller takes continuous telemetry: the queue depths per slice, the last delay of 
packets, the usage of the link, the usage of the instance at each node, the hit rates of the cache, 
and the error rates / drop rates. It is also passed policy targets such as preferred cost posture, 
latency budgets per slice and minimum reliability.. 

Decisions. The controller at every control interval: 

Shares slices on important links to decontend with time-sensitive traffic. Bursts are given 
priority to S1, whereas S3 can be scaled down where needed. 

Locations and scale services between nodes. Tasks that are urgent and short lived are directed 
to the closest healthy edge node; batch analytics and archival jobs are directed to clouds. 
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Monitors caches and artifacts in a way that enables models and features that are frequently 
used to be near to an edge, and minimizes the number of re-transfers.  

Routes distributes the load between edge nodes and cloud regions and maintains the locality 
(latency-sensitive workloads) at edge nodes. 

Guardrails. The controller uses hysteresis and minimum warm capacity at every edge site to 
prevent instability, such that when traffic varies a small amount it will not be subject to 
thrashing. When it goes to extremes it may temporarily reschedule noncritical classes (e.g. to 
off-peak windows) in order to maintain critical paths. 

Cadence. There are two loops that run simultaneously one of which is a fast loop reworks slice 
shares to reduce transient congestion at high rate and another one is a slow loop that updates 
placement and scaling decisions. This is also best practice in auto-scaling and orchestration, 
where network controls and compute controls develop at different time scales (Alharthi et al., 
2024; Wei et al., 2025). 

Rationale. The model focuses on three concepts: 

First: proximity to data and models Data and models should be close to where they are required. 

Plumbing policy: state purpose: latency goals, reliability, cost position; and leave mechanisms 
to the system. 

Graceful degradation: ensure that critical services are placed on hold or had been preempted 
when resources are in short supply. 

3.4. Data Flow Representation 

The suggested Edge-Cloud Synergy Model supports intelligent adaptive data flow platform 
which promotes computational responsiveness and network efficiency of smart city IOT 
systems. Information flow in this architecture is meant to provide real time processing, context 
awareness and continuity of services, even in dynamic environmental and workload conditions. 
It works in three levels of hierarchy, such as IoT Device Layer, Edge Layer, and Cloud Layer, 
connected to each other by bidirectional feedback channels that ensure that the local and global 
analytics processes are synchronized. 

The IoT Device Layer is a layer that produces continuous flows of data associated with the 
environmental conditions, traffic flow, healthcare conditions, and energy usage (Cheng et al., 
2020; Rahmani et al., 2020). They serve as data sources and send lightweight packets/ 
metadata to the closest edge nodes to be processed first. Edge nodes can also achieve a low 
latency because of their close vicinity with end-users, as they can perform time-sensitive 
analytics, including anomaly detection or emergency alerts, within milliseconds (Sahu et al., 
2025; Mao et al., 2017). 

The Edge Computing Layer is a local micro-data center, which is placed centrally in clusters of 
cities to manage intermediate workloads. It has a role of aggregation, compression and updates 
of model by federated learning to optimize bandwidth and energy consumption (El-Hajj, 2025; 
Sathupadi et al., 2024). Artificial intelligence-aided orchestration is also used in edge devices to 
decide whether certain computational tasks are to be retained there or to be offloaded to the 
cloud according to the current latency constraints, queue occupancy, and energy levels. This 
guarantees the optimal distribution of the computational resources in maintaining Quality of 
Service (QoS) (Hamdi et al., 2024; Lorincz et al., 2024). 

Tasks that require more computational resources than the edge can provide are offloaded to 
the Cloud Layer via the network core (Zahmatkesh and Al-Turjman, 2020; Deng et al., 2020). 
Large-scale analytics structures or reinforcement learning models, which are maintained using 
cloud servers, continuously refine decision-making algorithms to be deployed again to edge 
nodes. This two way flow will create a feedback control loop as illustrated in Figure 2 that 
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allows the cloud to send optimized policies, updated models of inference or even optimized QoS 
parameters periodically to the edge layer. 

The system uses this feedback-based control system to sustain an adaptive synchronization 
between the distributed edge units and that of the centralized cloud environment. The feedback 
also makes sure that edge nodes use the most up-to-date predictive models and network 
configurations to enhance the predictability of latencies, the efficiency of their throughput, and 
the reliability of services (Chatzistefanidis et al., 2025; Larrabeiti et al., 2023). Dynamic network 
slicing, in which the computational and bandwidth resources can be adjusted continuously 
depending on the severity of currently ongoing IoT applications (e.g., the distinction between 
eMBB and URLLC-based traffic types) is also supported by the loop (Kaloxylos et al., 2018; 
Limani et al., 2025). 

Resource orchestration modules on the edge constantly measure resource Round-Trip Time 
(RTT) and percentages of packet losses and power consumption, and send them to the analytics 
engine of the cloud via the control signaling interface. The cloud, in its turn, does the 
optimization on a large scale and resettles the parameters to predictive load balancing (Sahu et 
al., 2025; Yao et al., 2025). This collaborative loop does a great job of reducing the delays of the 
task migration with the scope of eliminating the disrupted communication between all 
hierarchical levels of the smart city networks. 

Federated learning and adaptive control signaling is also integrated to guarantee that the 
privacy of data is maintained, since it is only the model parameters that are sent to the cloud, 
rather than raw data. As a result, the method is in line with privacy saving policies and promotes 
mass intelligence dissemination (El-Hajj, 2025). The data flow model corresponds to the overall 
goals of the 6G-ready smart city networks, which focus on low latency, energy use, and self-
organizing coordination by increasing localized computation with centralized coordination 
(Rastoceanu et al., 2025). 

 
Figure 2. Flow Diagram Showing Task Offloading from IoT → Edge → Cloud with Feedback 

4. Results 

The test of the proposed Edge-Cloud Synergy Model was conducted based on a hybrid 
simulation model that is based on CloudSim, EdgeSim, and NS-3 network modules. These 
platforms allowed a complete evaluation of latency, throughput and energy efficiency with 
different workloads of the IoT. The outcomes were compared to two reference architectures, 
including cloud-only and edge-only, to confirm that the advantages of cooperative processing 
were provided in the conditions of real-life smart cities. 

The testbed was made up of 100 heterogeneous IoT devices (traffic sensors, medical wearables, 
and environmental monitors), 10 distributed edge nodes and 3 interconnected cloud servers. 
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The virtual network was built based on the 5G URLLC conditions and adaptive slice 
orchestration and AI-based resource scheduling (Hamdi et al., 2024; Kaloxylos et al., 2018). The 
system response was also measured using data-intensive tasks like video analytics and mobility 
prediction, whereas QoS measurements such as average latency, throughput, rates of packet 
loss, and power consumption were monitored under varying loads of a system. 

4.1. Latency and throughput Performance. 

The need to attain ultra-low-latency and high throughput of delay-sensitive IoT services was 
among the goals of this research. The findings have indicated that the suggested Edge-Cloud 
Synergy Model led to a decrease in end-to-end latency by roughly 45%. compared to the 
traditional cloud-only architecture (Sahu et al., 2025). The synergy recorded a mean processing 
latency of 0.87 ms, which is lower than what was recorded by the edge only model (1.23 ms) or 
cloud only model (1.56 ms) in the same network conditions. 

This was credited to latency minimization due to the dynamic task partitioning system which 
assigned lightweight tasks to edge nodes and complex computations to the cloud to optimize 
the use of the network. Moreover, the predictive offloading policies and the QoS-aware 
orchestration were also integrated to make sure that the network congestion would be reduced 
at peak workloads (Chatzistefanidis et al., 2025; Larrabeiti et al., 2023). 

Compared to the other two models, the hybrid model had a steady throughput of above 95 Mbps 
during dynamic load conditions of up to 100 IoT nodes. Compared to it, the edge-only model 
showed a throughput degradation beyond 70 Mbps when the number of devices was over 80 
with saturation of edge nodes being the main cause. On the other hand, the cloud-only system 
recorded reduced performance with high concurrency due to delays in the transmission of the 
backhaul and server queueing. 

The Edge-Cloud Synergy Model showed a linear scale of throughput, where the throughput of a 
connection of those devices was increased in proportion to the number of connected devices 
until a specific limit. This scalability indicates the effectiveness of adaptive slice orchestration 
of resources that dynamically distributed bandwidth and computing services between URLLC, 
eMBB and mMTC slices (Maule et al., 2021; Limani et al., 2025). 

Altogether, these findings prove that coordinated edge-cloud interaction does not only provide 
sub-milliseconds latency, but also provides high throughput and stability in changing 
workloads. 

Chart 1. Latency Comparison Between Cloud-Only, Edge-Only, and Hybrid Systems 
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4.2. Energy Efficiency 

Another critical performance indicator is energy efficiency, particularly when large-scale smart 
cities use IoT devices where power consumption is an important factor concerning sustenance 
and cost-effectiveness. The proposed synergy model attained an average 23% energy 
consumption reduction over the edge-only system and 31% energy consumption reduction 
over the cloud-only systems as shown during the simulation results (Lorincz et al., 2024). 

This is enhanced by the fact that the energy conscious resource prediction algorithm is based 
on the Boltzmann-driven Bayesian scheduling mechanism (Sahu et al., 2025) to evenly 
distribute the workloads and reduce idle computing cycles. The edge nodes took advantage of 
contextual energy profiling which allowed them to offload high-intensity tasks to the cloud at 
specific times when power consumption was high; and hence saving battery life and prolonging 
operational time. 

Moreover, AI-assisted cross network slice load balancing minimized redundant execution of 
tasks, which led to a net decrease in the overall energy footprint by increasing the number of 
redundant computations. Cloud resource managers also adopted dynamic scaling policy, where 
idle virtual machines could be switched off after edge devices had gone autonomously at low 
traffic rates (Yao et al., 2025). 

All of these mechanisms together confirm that edge-cloud synergy is not only an effective 
method of improving latency performance but also a key characteristic of the next-generation 
green IoT infrastructures when it comes to energy sustainability (Zahmatkesh et al., 2020; 
Songhorabadi et al., 2022). 

Graph 1. Throughput vs. Number of IoT Devices (Showing Near-Linear Scalability) 

 

5. Discussion 

The hybridization of edge and cloud computing has become one of the foundations of ultra-low 
latency and high reliability of next-generation IoT systems. The findings of this research 
experimentally affirm that the Edge-Cloud Synergy Model serves as a verdictive source of 
performance compared to independent architectures especially in applications that are 
sensitive to latency and data-intensive applications. The measured gains of 45 percent decrease 
in latency and 23-31 percent improvement in energy efficiency demonstrate the radical nature 
of the application of cooperative computation, dynamical resource coordination and dynamical 
feedback controls. This part of the paper will explain the implications of these findings on the 
available literature and how these implications can be applied to real-world smart city systems. 
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5.1. Comparative Insights 

The presented model is consistent with current advancements in 5G and the Radio Access 
Network (RAN) slicing models. Network slicing enables the sharing of common physical 
infrastructure by multiple logical networks which are virtualized and optimized to fulfill 
particular service objectives such as Enhanced Mobile Broadband (eMBB), massive Machine 
Type Communications (mMTC), and Ultra-Reliable Low-Latency Communications (URLLC) 
(Hamdi et al., 2024; Chagdali et al., 2021). In this respect, the edge-cloud synergy is a binding 
computational layer that allocates functions of the network among slices based on their latency 
and bandwidth sensitivity. 

The model enables optimizing cross-slice resources and responding to Quality of Service (QoS) 
changes dynamically by using AI-controlled orchestration and federated scheduling. It 
guarantees that mission-critical URLLC tasks, including autonomous driving or remote surgery, 
are given a high priority edge processing and less time-sensitive eMBB workloads are offloaded 
to the cloud (Larrabeiti et al., 2023; Maule et al., 2021). 

One more interesting correspondence is to the Agoran model suggested by Chatzistefanidis et 
al. (2025), according to which an agentic marketplace of RAN automation will be established in 
6G networks. Like the idea of agoran of agent-based decision loops, the Edge-Cloud Synergy 
Model can put in place a feedback control loop between distributed layers and thus achieve 
constant optimization and self-adaptation. This network slicing and synergistic computation 
interoperability offers a route to autonomous orchestration ecosystems with data flow and 
calculation resource being negotiated between intelligent network entities in real-time. 

Nevertheless, there remain major interoperability issues that exist between heterogeneous 
infrastructures. Differences between hardware architectures, communication systems, and 
virtualization systems hinder the smooth coordination between IoT, edge, and cloud nodes 
(Kaloxylos et al., 2018; Lekidis, 2024). Furthermore, the legacy 4G/5G elements and the 6G 
prototypes are continually existing, which contributes even more complexity to the integration 
of the systems. To deal with these issues, there is the need to have an open standard of data 
model harmonization, inter slice coordination APIs and context aware routing mechanisms that 
dynamically coordinate cross domain layers of communication. 

Also, interoperability is not only technical but also governance, privacy and service-level 
agreement (SLA). Smart city ecosystems tend to engage several stakeholders such as public 
authorities, operators of the private clouds, and telecommunication providers. It requires clear 
coordination policies, integrated quality of service indicators, and decentralized trust models 
utilizing the zero-trust patterns to achieve alignment in these entities (El-Hajj, 2025; 
Rastoceanu et al., 2025). 

5.2. Smart City Managerial implications. 

Combining edge and cloud synergy has far reaching impacts on the management of smart cities, 
especially in those areas that rely on real-time intelligence. 

Traffic Optimization: 

Edge nodes that are implemented around the transportation networks have the ability to scale 
sensor and vehicular data at high volumes in real time to control traffic congestion, identify 
accidents, and reroute vehicles dynamically. The synergy model allows responsiveness in the 
edge and uses cloud-based historical analytics to tune long-term models of traffic prediction 
(Cui et al., 2023; Limani et al., 2025). Such two-tiered intelligence has the ability to alleviate the 
congestion in urban traffic as well as enhance fuel efficiency within the city transport grid. 

Healthcare: Telemedicine: 

IoT systems used in healthcare require low-latency and extreme reliability of communication 
to promote remote diagnosis, surgery support, and continuous monitoring of patients. The 
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suggested system will make sure that crucial medical data including ECG or glucose readings 
will be processed immediately at the edge so that emergency response can be delivered and 
that cloud-wide population-level data will be processed to support predictive analytics (El-Hajj, 
2025; Sahu et al., 2025). 

Emergency Alert Systems: 

The edge nodes are able to independently generate alerts and reserve the network slices to 
mission-critical communication in the public safety settings. These alerts can be synchronized 
with the centralized authorities through the feedback control loop to facilitate coordination of 
managing the disaster (Limani et al., 2025; Rastoceanu et al., 2025). 

In a more general view, scalability is considered to be one of the most useful qualities of the 
offered synergy model. The flexibility of the architecture of edge-cloud synergy will assist the 
incorporation of terahertz communications, holographic telepresence, and AI-native 
networking as cities develop into 6G environments with the characteristic of multi-terabit 
throughput and negligible latency (Chatzistefanidis et al., 2025). Also, agent-based 
orchestration systems can be integrated into the city management platforms to automate the 
control of infrastructure, decreasing human management and operational expenses. 

The implementation of this synergy model also leads to the sustainability objectives of urban 
ecosystems. The resources can be scheduled and distributed with energy consciousness, and 
data transmission energy and carbon footprint can be reduced in the cities through energy-
conscious resource scheduling and distributed computation (Lorincz et al., 2024; Zahmatkesh 
and Al-Turjman, 2020). Such a move is consistent with the trend of green computing around 
the world, which is designed to reconcile the digital growth and environmental accountability. 

5.3. Limitations 

Although there is a lot of potential in the proposed system, a number of limitations can be 
recognized. 

To start with, it is a simulation research that is not validated by a real-life testbed. Despite the 
usefulness of the simulated environment in performance modeling, unpredictable variables 
causing network interference, hardware issues, and even varying energy conditions cannot be 
fully represented by the simulated environment (Boutiba et al., 2022). Experiments at urban 
scale on testbeds (including those in 5G PPP and SmartSantander projects) would give better 
measurements of latency behaviour and resource consumption. 

Second, edge-cloud synergy has inherent trade-offs in terms of the energy and security. Despite 
the fact that distributed computation lowers the latency, it presents a potential vulnerability at 
various access points. Unsecured edge devices may serve as vectors of attack and lead to a 
breach of the entire ecosystem of IoT (El-Hajj, 2025). Moreover, although energy-conscious 
scheduling is more efficient, offloading and feedback frequency is high, therefore, signaling 
overhead is more frequent and can cause small energy variation when under heavy workloads. 

The future studies should thus be conducted on improving zero-trust security, context-aware 
energy profiling and adaptive encryption to strike a balance between privacy, speed and 
sustainability. 

6. Conclusion  

This study proves that ECSM is the best paradigm to use to realize ultra-low latency, energy 
efficiency, and scalability of smart city IoT networks. The hybrid approach, which combines 
local processing at the edge with global analytics at the cloud, eliminates the shortcomings of 
conventional architectures and provides real-time responsiveness in a range of applications - 
traffic management and telemedicine, disaster response. 
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The adaptive feedback mechanism of the synergy framework and AI-orchestrated synergy 
provides greater performance and reliability with sub-millisecond latency and constant 
throughput of greater than 95 Mbps with high device density. Its design in line with the 5G/6G 
network slicing concepts makes it a fundamental enabler of the next generation digital urban 
infrastructures (Hamdi et al., 2024; Chatzistefanidis et al., 2025). 

In perspective, various directions of improvement are available. The use of quantum edge 
nodes might facilitate the high speed and ultra-secure encryption and computation at the 
network periphery. Equally, the implementation of federated AI systems will enable privacy-
aware collaborative learning by distributed edge devices, but with no exposure of raw data. 
Also, integrating the green computing models within the synergy models will contribute 
towards realizing a carbon-neutral way of running a smart city by streamlining power usage 
throughout the IoT, edge, and cloud elements. 

Finally, to achieve this vision, there must be a solid partnership between the state and the 
private sector. The inter-governmental collaboration of the municipalities, telecommunication 
providers and the cloud service providers can provide an opportunity to develop a common 
infrastructure, standardized protocols and sustainable data governance frameworks. These 
types of partnerships can enable edge-cloud synergy to be the core of resilient, intelligent, and 
sustainable smart cities- delivering digital transformation in transportation, healthcare, 
security and environmental management. 
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