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Abstract

This study investigates the prediction of ground settlement induced by rectangular pipe
jacking tunnel excavation using four machine learning (ML) algorithms. The settlement
database was derived from the Liu Ye Avenue West Extension Project in Hunan Province,
comprising 104 data indicators from the right tunnel section, including jacking force,
excavation speed, grouting pressure, and settlement values. Among these, 80 data
indicators were selected as input parameters for the ML models. Hyperparameter tuning
based on particle swarm optimization (PSO) was employed to effectively explore the
optimal combination and enhance prediction performance. The performance of the ML
models was evaluated by comparing the mean squared error (MSE), mean absolute error
(MAE), and coefficient of determination (R?). Results indicated that the PSO-LSSVM
model outperformed other models in terms of surface settlement prediction accuracy
and generalization ability, with MSE, MAE, and R? values of 0.367, 0.424, and 0.941,
respectively.
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1. Introduction

With the continuous advancement of urbanization in China, the development of urban
underground space has been further promoted to alleviate the tension of urban land use and
traffic congestion. The length of subway lines has even reached one-third of the total operating
mileage[1]. During tunnel excavation, ground settlement induced by tunneling may cause
significant damage to existing structures. With the rapid development of artificial intelligence,
machine learning algorithms, as a method for exploring the intrinsic relationships and patterns
within data, have provided more valuable solutions for predicting ground deformation during
shield tunnel construction. In a typical machine learning task, a model is designed to learn from
a large amount of input data and attempt to predict future data or classify the data in a
meaningful way[2].

Chen[3] et al. established an optimized support vector machine (SVM) prediction model for
forecasting surface deformation of subway tunnels adjacent to large deep excavations,
demonstrating that machine learning-based deformation prediction remains highly accurate
under complex surrounding environmental conditions. Wang[4] et al. developed a surface
settlement prediction controller using least squares support vector machines (LSSVM) and
particle swarm optimization (PSO), with real-time shield tunneling parameters as inputs and
surface settlement as the output. This approach ultimately confined construction disturbances
within permissible limits. Inkoom[5] et al. estimated the accuracy, relative deviation, and
precision of predictions made by each model for response variables in machine learning models
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such as Bayesian prediction, providing guidance for our research on machine learning
algorithms. Guan|[6] et al. employed the synthetic minority over-sampling technique (SMOTE)
to augment the database and compared four machine learning algorithms, concluding that the
optimal model exhibited good predictive performance for ground settlement during shield
tunneling. As an alternative approach, the use of various machine learning algorithm models
for ground settlement analysis offers new insights for the design and construction of tunnels
and underground projects, as shown in Table 1.
Table 1 Application of machine learning algorithms in the prediction of land subsidence

Cite Machme.learnlng Dataset size llilva!uatlon
algorithms indicators
Ding[7](2021) MT-InSAR,LSTM 33 samples RMSE,R2
BP,GRNN, Different sections of the
Wang(8](2022) RBFElman metro tunnel RMSE
Long-term surface
. subsidence monitoring
Jiang[9](2023) MRF-GCN network with 64 RMSE,R2
monitoring sites
Wang[10](2023) EMD,CASSAELM, Metro shield tunnel RMSE

To date, there remains no definitive method to determine which algorithm is best suited for
predicting tunnel settlement. Generally, the performance of algorithm models is improved by
tuning the hyperparameters of different algorithms. Therefore, it is worthwhile to investigate
the performance comparison of various machine learning algorithms in the same case study,
given the lack of robust training in existing machine learning-based settlement prediction
models. Focusing on tunnel settlement prediction, this study integrates an improved intelligent
optimization algorithm (PSO) with least squares support vector machines (LSSVM). Relying on
real-time monitoring data from the rectangular pipe jacking tunnel construction of the West
Extension of Liu Ye Avenue, a PSO-LSSVM surface settlement prediction model is established,
with the expectation of providing theoretical support and technical reference for surface
settlement prediction of similar shield tunnels.

2. Machine Learning Algorithms

This work introduces four widely used artificial intelligence algorithms: Random Forest (RF),
Support Vector Machine (SVM), Support Vector Regression (SVR), and Backpropagation Neural
Network (BPNN). Additionally, the Particle Swarm Optimization (PSO) algorithm is integrated
into the BP neural network and the least squares-enhanced SVM model to optimize their
hyperparameters.

2.1. Least Squares Support Vector Machine Algorithm

The Least Squares Support Vector Machine (LSSVM) modifies the traditional Support Vector
Machine (SVM) by replacing the inequality constraints with equality constraints and employing
the sum of squared errors as the loss function for the training dataset. This transformation
converts the quadratic programming problem into solving a set of linear equations, thereby
enhancing the computational speed and convergence accuracy. As an improved SVM based on
statistical learning theory, LSSVM possesses a robust theoretical framework that simplifies the
solution of quadratic optimization problems into solving linear equations. Consequently, it has
been successfully applied in various fields, including data regression, pattern recognition, and
time series forecasting.
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Given the training data {(x;y:)}i=1N, where x;€Rd is the d-dimensional input vector, y;€ER is the
corresponding output, and N is the total number of training samples, the input space is mapped
to the feature space using a nonlinear function ¢(x;). The form of the nonlinear function
estimation model is as follows:

fx)=o"p(x)+b (1)

Based on the principle of structural risk minimization, the evaluation problem is formulated as
an optimization problem:

: I ; 14,
minJ(w,e)=—w w+c—) e
,b,e ( ’ ) 2 ; ! (2)
where b is the bias term; w is the weight vector of the hyperplane; ] represents the cumulative
sum of the error and regularization parameters; C is the penalty coefficient; e is the error vector;
and e; denotes the error quantity for the i-th sample.

2.2. PSO-LSSVM Algorithm

The key steps of the PSO-LSSVM algorithm include the initialization of the particle swarm,
calculation of the fitness function, updating of particle positions and velocities, and updating of
the global optimal solution. During the initialization phase, a set of particles is randomly
generated, and each particle is assigned an initial position and velocity. The fitness function is
employed to evaluate the quality of the solution for each particle, typically using indicators such
as cross-validation error or classification accuracy. The updating of particle positions and
velocities is adjusted based on their current positions and velocities as well as the global
optimal solution. The flowchart of the algorithm is shown in Fig. 1.
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Fig.1 PSO-LSSVM flow chart
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2.3. Hyperparameter selection

The hyperparameter settings for the four machine learning models are presented in the
following Table 2.
Table 2 Hyperparameter selection

Algorithmic models Hyperparameter settings Valid values
SVM c 1
gamma 1
BP learning rate 0.03
hidden_dim 20
loss 0.001
PSO-BP learning rate 0.025
learning rate 20
loss 0.001
PSO-LSSVM c 4.483
gamma 0.101
maxiter 2000

3. Engineering Case Analysis

The construction of Liu Ye Avenue adopted the manufacturing process of “oblique intersection,
oblique construction, and perpendicular jacking.” The frame bridge was constructed using a
working pit, a back wall, a sliding plate, and an on-site erected shield support frame. The frame
bridge intersects with the Changzhang Expressway at an angle of 63.881°, with a cover soil
thickness ranging from approximately 2.000 to 2.683 m above the bridge. During the
construction process, normal traffic on the expressway could not be interrupted. However,
jacking operations would inevitably cause ground disturbances and induce settlements.
Excessive settlement could compromise traffic safety. Therefore, it was essential to arrange
monitoring points on the road surface. To ensure that the frame bridge met the required
standards during construction and to guarantee construction safety, monitoring points were
strategically placed at key locations on the frame bridge and the steel shield.

4. Database Construction

To predict ground settlement for rectangular pipe jacking tunnels, this study proposes an
intelligent analysis framework based on Python, which includes Support Vector Machine (SVM),
Backpropagation Neural Network (BPNN), and Particle Swarm Optimization (PSO) algorithms.
The framework, as illustrated in Fig. 2, consists of three stages: data acquisition and
preprocessing, model establishment, and error analysis.
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| g speed pressure | | | Machine learning algorithms ‘
| \ \ I |
v I \
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******** L S SVM]L ] I
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Training dataset Testing | | \ |
| (80%) dataset(20%) | | | |
[ | | Establish 4 kinds of algorithm models |
| i ) |

Fig. 2 General Frame Diagram
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4.1. Input Parameter Selection

Currently, although scholars have proposed single-pipe jacking settlement formulas based on
Mindlin solutions and random media theory to predict surface settlement for multiple pipe
jacking operations[11], few studies have focused on utilizing machine learning algorithms to
analyze and predict surface settlement. The data for this study were obtained from the
monitoring data of the construction site of Liu Ye Avenue in Changde City, Hunan Province,
where the tunnel was constructed using the pipe jacking method. The database for this study
comprises two jacking variables and one grouting variable, totaling 26 sets of data. Each set of
data is updated in real-time by the jacking equipment and covers the parameter range for each
variable. In this study, the first 80% (i.e., the first 20 sets) are planned to be used as the training
set, while the remaining 20% (i.e., the last six sets) are used as the prediction set for forecasting.
The specific dataset is shown in Table 3.
Table 3 Data set

Variable Parameter Data
type Min. Max. Ave. S.D.
Jacking force/KN Input 15601.47 48504.561 34586.2 9814.75
Excavating velocity/(m/d) Input 0.825 1.985 1.64 0.223
Grouting pressure/MPa Input 0.063 0.416 0.27 0.079
Settlement value/mm Output -4 2 -0.23 1.245

4.2. Data Preprocessing

Given the relatively small number of data sets but the large size of individual data points,
normalization is essential. This process involves scaling the data to a specific range using a
linear equation. Normalization enhances training efficiency and overall model accuracy by
mitigating the impact of varying data scales. It also preserves data integrity, reduces the
likelihood of data corruption, and prevents gradient explosion caused by excessively large
numerical values. In this study, we continued the traditional machine learning approach of
using gradient descent to compute the minimum fitness value. Through iterative updates of the
gradient information in real-time, this method enables more accurate and efficient
identification of the optimal parameter solutions.

5. Model Evaluation

The error metrics of the models are illustrated in Table 4 Among them, the PSO-LSSVM model
exhibited a mean squared error (MSE) of 0.367, a mean absolute error (MAE) of 0.424, and a
coefficient of determination (R?) of 0.941. As shown in Table 4, the PSO-LSSVM model
outperformed the PSO-BP model in terms of prediction accuracy. The lower MAE value of the
PSO-LSSVM model compared to other models indicates its superior fitting capability and strong
generalization ability. Similarly, among the three traditional models, the BP neural network
model demonstrated superior predictive performance but required longer computation time
and exhibited some degree of overfitting. Overall, the PSO-LSSVM model was found to be
significantly better than other models in terms of both accuracy and stability.

Generally, the complex interaction mechanisms between the pipe jacking machine and the
strata, which give rise to nonlinear problems, can be effectively addressed using machine
learning methods. These methods hold potential for application in predicting ground
settlement and play an important role in improving construction efficiency, ensuring
construction safety, and reducing construction costs.
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Table 4 Error analysis data

Algorithmic MSE MAE R2 Time/s
models
PSO-LSSVM 0.367 0.424 0.941 2.97
PSO-BP 1.023 0.437 0.904 3.67
BP 0.867 0.605 0.977 74.42
SVM 1.976 0.933 0.622 2.46
Settlement/mm
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Fig. 3 Comparison chart of settlement predictions

6. Conclusion

In this study, data normalization was employed to mitigate the disparities between features,
thereby preventing certain features from disproportionately influencing the model. This
process also enhanced the convergence speed and accuracy of the model. Additionally, a
comparative analysis was conducted between models with optimized hyperparameters and
those without optimization. The results indicated that the optimal model, within a relatively
short timeframe, outperformed other models in all metrics except for the coefficient of
determination (R?), which was 0.03 lower than that of the BP neural network. The optimized
model demonstrated superior performance in predicting ground settlement. The SVM
algorithm improved with particle swarm optimization (PSO) showed a 51% increase in
accuracy and a decrease in error rate, along with enhanced generalization ability. The complex
interaction mechanisms between the pipe jacking machine and the strata can be effectively
addressed by intelligent models, which can handle the highly nonlinear nature of construction
parameters and provide references for safe and efficient pipe jacking construction. Future work
will focus on thoroughly investigating the interaction mechanisms between the pipe and the
soil, and leveraging more engineering data to explore the application of artificial intelligence
technologies in the field of tunnel settlement prediction.
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