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Abstract 

This study investigates the prediction of ground settlement induced by rectangular pipe 
jacking tunnel excavation using four machine learning (ML) algorithms. The settlement 
database was derived from the Liu Ye Avenue West Extension Project in Hunan Province, 
comprising 104 data indicators from the right tunnel section, including jacking force, 
excavation speed, grouting pressure, and settlement values. Among these, 80 data 
indicators were selected as input parameters for the ML models. Hyperparameter tuning 
based on particle swarm optimization (PSO) was employed to effectively explore the 
optimal combination and enhance prediction performance. The performance of the ML 
models was evaluated by comparing the mean squared error (MSE), mean absolute error 
(MAE), and coefficient of determination (R²). Results indicated that the PSO-LSSVM 
model outperformed other models in terms of surface settlement prediction accuracy 
and generalization ability, with MSE, MAE, and R² values of 0.367, 0.424, and 0.941, 
respectively. 
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1. Introduction 

With the continuous advancement of urbanization in China, the development of urban 
underground space has been further promoted to alleviate the tension of urban land use and 
traffic congestion. The length of subway lines has even reached one-third of the total operating 
mileage[1]. During tunnel excavation, ground settlement induced by tunneling may cause 
significant damage to existing structures. With the rapid development of artificial intelligence, 
machine learning algorithms, as a method for exploring the intrinsic relationships and patterns 
within data, have provided more valuable solutions for predicting ground deformation during 
shield tunnel construction. In a typical machine learning task, a model is designed to learn from 
a large amount of input data and attempt to predict future data or classify the data in a 
meaningful way[2]. 

Chen[3] et al. established an optimized support vector machine (SVM) prediction model for 
forecasting surface deformation of subway tunnels adjacent to large deep excavations, 
demonstrating that machine learning–based deformation prediction remains highly accurate 
under complex surrounding environmental conditions. Wang[4] et al. developed a surface 
settlement prediction controller using least squares support vector machines (LSSVM) and 
particle swarm optimization (PSO), with real-time shield tunneling parameters as inputs and 
surface settlement as the output. This approach ultimately confined construction disturbances 
within permissible limits. Inkoom[5] et al. estimated the accuracy, relative deviation, and 
precision of predictions made by each model for response variables in machine learning models 
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such as Bayesian prediction, providing guidance for our research on machine learning 
algorithms. Guan[6] et al. employed the synthetic minority over-sampling technique (SMOTE) 
to augment the database and compared four machine learning algorithms, concluding that the 
optimal model exhibited good predictive performance for ground settlement during shield 
tunneling. As an alternative approach, the use of various machine learning algorithm models 
for ground settlement analysis offers new insights for the design and construction of tunnels 
and underground projects, as shown in Table 1. 

Table 1 Application of machine learning algorithms in the prediction of land subsidence 

Cite 
Machine learning 

algorithms 
Dataset size 

Evaluation 
indicators 

Ding[7](2021) MT-InSAR,LSTM 33 samples RMSE,R2 

Wang[8](2022) 
BP,GRNN, 
RBF,Elman 

Different sections of the 
metro tunnel 

RMSE 

Jiang[9](2023) MRF-GCN 

Long-term surface 
subsidence monitoring 

network with 64 
monitoring sites 

RMSE,R2 

Wang[10](2023) EMD,CASSA,ELM, Metro shield tunnel RMSE 

 

To date, there remains no definitive method to determine which algorithm is best suited for 
predicting tunnel settlement. Generally, the performance of algorithm models is improved by 
tuning the hyperparameters of different algorithms. Therefore, it is worthwhile to investigate 
the performance comparison of various machine learning algorithms in the same case study, 
given the lack of robust training in existing machine learning–based settlement prediction 
models. Focusing on tunnel settlement prediction, this study integrates an improved intelligent 
optimization algorithm (PSO) with least squares support vector machines (LSSVM). Relying on 
real-time monitoring data from the rectangular pipe jacking tunnel construction of the West 
Extension of Liu Ye Avenue, a PSO-LSSVM surface settlement prediction model is established, 
with the expectation of providing theoretical support and technical reference for surface 
settlement prediction of similar shield tunnels. 

2. Machine Learning Algorithms 

This work introduces four widely used artificial intelligence algorithms: Random Forest (RF), 
Support Vector Machine (SVM), Support Vector Regression (SVR), and Backpropagation Neural 
Network (BPNN). Additionally, the Particle Swarm Optimization (PSO) algorithm is integrated 
into the BP neural network and the least squares–enhanced SVM model to optimize their 
hyperparameters. 

2.1. Least Squares Support Vector Machine Algorithm 

The Least Squares Support Vector Machine (LSSVM) modifies the traditional Support Vector 
Machine (SVM) by replacing the inequality constraints with equality constraints and employing 
the sum of squared errors as the loss function for the training dataset. This transformation 
converts the quadratic programming problem into solving a set of linear equations, thereby 
enhancing the computational speed and convergence accuracy. As an improved SVM based on 
statistical learning theory, LSSVM possesses a robust theoretical framework that simplifies the 
solution of quadratic optimization problems into solving linear equations. Consequently, it has 
been successfully applied in various fields, including data regression, pattern recognition, and 
time series forecasting. 
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Given the training data {(xi,yi)}i=1N, where xi∈Rd is the d-dimensional input vector, yi∈R is the 
corresponding output, and N is the total number of training samples, the input space is mapped 
to the feature space using a nonlinear function ϕ(xi). The form of the nonlinear function 
estimation model is as follows: 

                                                                                                 (1) 

Based on the principle of structural risk minimization, the evaluation problem is formulated as 
an optimization problem: 

                                                                        (2) 

where b is the bias term; w is the weight vector of the hyperplane; J represents the cumulative 
sum of the error and regularization parameters; C is the penalty coefficient; e is the error vector; 
and ei denotes the error quantity for the i-th sample. 

2.2. PSO-LSSVM Algorithm 

The key steps of the PSO-LSSVM algorithm include the initialization of the particle swarm, 
calculation of the fitness function, updating of particle positions and velocities, and updating of 
the global optimal solution. During the initialization phase, a set of particles is randomly 
generated, and each particle is assigned an initial position and velocity. The fitness function is 
employed to evaluate the quality of the solution for each particle, typically using indicators such 
as cross-validation error or classification accuracy. The updating of particle positions and 
velocities is adjusted based on their current positions and velocities as well as the global 
optimal solution. The flowchart of the algorithm is shown in Fig. 1. 

 
Fig.1 PSO-LSSVM flow chart 

( ) ( )T

if x x b = +

2

, ,
1

1 1
min ( , )

2 2

N
T

i
b e

i

J e c e


  
=

= + 



International Journal of Science Volume 12 Issue 10, 2025 

ISSN: 1813-4890  
 

20 

2.3. Hyperparameter selection 

The hyperparameter settings for the four machine learning models are presented in the 
following Table 2. 

Table 2 Hyperparameter selection 
Algorithmic models Hyperparameter settings Valid values 

SVM c 
gamma 

1 
1 

BP learning_rate 
hidden_dim 

loss 

0.03 
20 

0.001 
PSO-BP learning_rate 

learning_rate 
loss 

0.025 
20 

0.001 
PSO-LSSVM c 

gamma 
maxiter 

4.483 
0.101 
2000 

3. Engineering Case Analysis 

The construction of Liu Ye Avenue adopted the manufacturing process of “oblique intersection, 
oblique construction, and perpendicular jacking.” The frame bridge was constructed using a 
working pit, a back wall, a sliding plate, and an on-site erected shield support frame. The frame 
bridge intersects with the Changzhang Expressway at an angle of 63.881°, with a cover soil 
thickness ranging from approximately 2.000 to 2.683 m above the bridge. During the 
construction process, normal traffic on the expressway could not be interrupted. However, 
jacking operations would inevitably cause ground disturbances and induce settlements. 
Excessive settlement could compromise traffic safety. Therefore, it was essential to arrange 
monitoring points on the road surface. To ensure that the frame bridge met the required 
standards during construction and to guarantee construction safety, monitoring points were 
strategically placed at key locations on the frame bridge and the steel shield. 

4. Database Construction 

To predict ground settlement for rectangular pipe jacking tunnels, this study proposes an 
intelligent analysis framework based on Python, which includes Support Vector Machine (SVM), 
Backpropagation Neural Network (BPNN), and Particle Swarm Optimization (PSO) algorithms. 
The framework, as illustrated in Fig. 2, consists of three stages: data acquisition and 
preprocessing, model establishment, and error analysis. 

 
Fig. 2 General Frame Diagram 
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4.1. Input Parameter Selection 

Currently, although scholars have proposed single-pipe jacking settlement formulas based on 
Mindlin solutions and random media theory to predict surface settlement for multiple pipe 
jacking operations[11], few studies have focused on utilizing machine learning algorithms to 
analyze and predict surface settlement. The data for this study were obtained from the 
monitoring data of the construction site of Liu Ye Avenue in Changde City, Hunan Province, 
where the tunnel was constructed using the pipe jacking method. The database for this study 
comprises two jacking variables and one grouting variable, totaling 26 sets of data. Each set of 
data is updated in real-time by the jacking equipment and covers the parameter range for each 
variable. In this study, the first 80% (i.e., the first 20 sets) are planned to be used as the training 
set, while the remaining 20% (i.e., the last six sets) are used as the prediction set for forecasting. 
The specific dataset is shown in Table 3. 

Table 3 Data set 

Variable Parameter 
type 

Data  

Min. Max. Ave. S.D. 

Jacking force/KN Input 15601.47 48504.561 34586.2 9814.75 
Excavating velocity/(m/d) Input 0.825 1.985 1.64 0.223 
Grouting pressure/MPa Input 0.063 0.416 0.27 0.079 
Settlement value/mm Output -4 2 -0.23 1.245 

4.2. Data Preprocessing 

Given the relatively small number of data sets but the large size of individual data points, 
normalization is essential. This process involves scaling the data to a specific range using a 
linear equation. Normalization enhances training efficiency and overall model accuracy by 
mitigating the impact of varying data scales. It also preserves data integrity, reduces the 
likelihood of data corruption, and prevents gradient explosion caused by excessively large 
numerical values. In this study, we continued the traditional machine learning approach of 
using gradient descent to compute the minimum fitness value. Through iterative updates of the 
gradient information in real-time, this method enables more accurate and efficient 
identification of the optimal parameter solutions. 

5. Model Evaluation 

The error metrics of the models are illustrated in Table 4 Among them, the PSO-LSSVM model 
exhibited a mean squared error (MSE) of 0.367, a mean absolute error (MAE) of 0.424, and a 
coefficient of determination (R²) of 0.941. As shown in Table 4, the PSO-LSSVM model 
outperformed the PSO-BP model in terms of prediction accuracy. The lower MAE value of the 
PSO-LSSVM model compared to other models indicates its superior fitting capability and strong 
generalization ability. Similarly, among the three traditional models, the BP neural network 
model demonstrated superior predictive performance but required longer computation time 
and exhibited some degree of overfitting. Overall, the PSO-LSSVM model was found to be 
significantly better than other models in terms of both accuracy and stability. 

Generally, the complex interaction mechanisms between the pipe jacking machine and the 
strata, which give rise to nonlinear problems, can be effectively addressed using machine 
learning methods. These methods hold potential for application in predicting ground 
settlement and play an important role in improving construction efficiency, ensuring 
construction safety, and reducing construction costs. 
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Table 4 Error analysis data 

Algorithmic 
models 

MSE MAE R2 Time/s 

PSO-LSSVM 0.367 0.424 0.941 2.97 
PSO-BP 1.023 0.437 0.904 3.67 
BP 0.867 0.605 0.977 74.42 
SVM 1.976 0.933 0.622 2.46 

 

 
Fig. 3 Comparison chart of settlement predictions 

6. Conclusion 

In this study, data normalization was employed to mitigate the disparities between features, 
thereby preventing certain features from disproportionately influencing the model. This 
process also enhanced the convergence speed and accuracy of the model. Additionally, a 
comparative analysis was conducted between models with optimized hyperparameters and 
those without optimization. The results indicated that the optimal model, within a relatively 
short timeframe, outperformed other models in all metrics except for the coefficient of 
determination (R²), which was 0.03 lower than that of the BP neural network. The optimized 
model demonstrated superior performance in predicting ground settlement. The SVM 
algorithm improved with particle swarm optimization (PSO) showed a 51% increase in 
accuracy and a decrease in error rate, along with enhanced generalization ability. The complex 
interaction mechanisms between the pipe jacking machine and the strata can be effectively 
addressed by intelligent models, which can handle the highly nonlinear nature of construction 
parameters and provide references for safe and efficient pipe jacking construction. Future work 
will focus on thoroughly investigating the interaction mechanisms between the pipe and the 
soil, and leveraging more engineering data to explore the application of artificial intelligence 
technologies in the field of tunnel settlement prediction. 
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