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Abstract

The escalating sophistication of cyber threats necessitates intelligent autonomous
defense mechanisms capable of real-time detection and response. Reinforcement
learning (RL) has emerged as a promising paradigm for developing adaptive security
systems that learn optimal defense strategies through environmental interaction.
Among various RL architectures, actor-critic (AC) methods have demonstrated superior
performance in continuous and complex action spaces typical of cybersecurity scenarios.
This review paper provides a comprehensive analysis of actor-critic reinforcement
learning applications in autonomous threat detection and response systems. We
examine the theoretical foundations of AC algorithms, including advantage actor-critic
(A2C), asynchronous advantage actor-critic (A3C), soft actor-critic (SAC), and deep
deterministic policy gradient (DDPG) methods. The paper explores how these
algorithms address critical challenges in cybersecurity, including high-dimensional
state spaces, concept drift in attack patterns, delayed rewards, and the need for real-time
decision-making. We analyze recent advances in network intrusion detection systems
(NIDS), malware analysis, advanced persistent threat (APT) detection, and automated
incident response using AC frameworks. Furthermore, we discuss integration strategies
with existing security infrastructure, scalability considerations for enterprise
environments, and approaches to handling adversarial attacks againstlearning systems.
The review identifies current limitations including sample efficiency, interpretability
concerns, and the reality gap between simulated training environments and production
systems. We conclude by outlining promising research directions, including meta-
learning approaches, multi-agent coordination, explainable reinforcement learning for
security, and hybrid architectures combining AC methods with symbolic reasoning
systems.
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1. Introduction

The contemporary cybersecurity landscape confronts organizations with unprecedented
challenges characterized by increasingly sophisticated attack vectors, rapidly evolving threat
actors, and massive volumes of security-relevant data requiring analysis. Traditional signature-
based detection systems and rule-driven response mechanisms struggle to adapt to novel
attack patterns and zero-day exploits [1]. The average time to detect a breach in enterprise
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networks exceeds 200 days, during which adversaries maintain persistent access and exfiltrate
sensitive information [2]. This detection latency, combined with the shortage of skilled security
analysts and the overwhelming number of alerts generated by conventional security tools,
creates an urgent need for intelligent automation in threat detection and response operations.
Reinforcement learning (RL) represents a fundamentally different approach to cybersecurity
automation by enabling systems to learn optimal defense strategies through trial-and-error
interaction with the environment rather than relying on predefined rules or labeled training
datasets [3]. Unlike supervised learning methods that require extensive labeled attack datasets,
RL agents develop adaptive behaviors by receiving rewards for successful threat mitigation and
penalties for security breaches or false positives. This learning paradigm aligns naturally with
the adversarial nature of cybersecurity, where defenders must continuously adapt to evolving
attacker tactics, techniques, and procedures [4].

Among various RL architectures, actor-critic (AC) methods have gained prominence due to
their ability to handle continuous action spaces and provide stable learning in complex
environments [5]. The AC framework combines policy-based and value-based approaches by
maintaining two neural networks: an actor network that selects actions and a critic network
that evaluates the quality of those actions. This architecture offers several advantages for
cybersecurity applications, including reduced variance in policy gradient estimates, improved
sample efficiency compared to pure policy gradient methods, and the capability to learn both
deterministic and stochastic policies [6]. The actor learns to optimize the policy for selecting
defensive actions such as network traffic filtering, system isolation, or threat hunting priorities,
while the critic provides feedback on the expected long-term security outcomes of those
decisions [7].

The application of AC reinforcement learning to autonomous threat detection and response
addresses several critical requirements in modern security operations centers. First, AC
methods can process high-dimensional state representations encompassing network traffic
features, system logs, threat intelligence feeds, and contextual information about assets and
vulnerabilities [8]. Second, they support continuous action spaces necessary for fine-grained
defensive responses such as adaptive firewall rule adjustments or dynamic resource allocation
for security monitoring [5]. Third, AC algorithms demonstrate robust performance in partially
observable environments where complete information about attacker activities may be
unavailable due to evasion techniques or limited visibility into encrypted communications [9].
Fourth, these methods can incorporate domain knowledge through reward shaping and
architectural inductive biases while retaining the ability to discover novel defensive strategies
not anticipated by human experts [10].

Despite promising theoretical properties and encouraging results in simulated environments,
deploying AC-based autonomous defense systems in production cybersecurity infrastructure
presents substantial challenges. The reality gap between training simulations and actual
network environments can lead to unpredictable behaviors when deployed [11]. Security-
critical applications require high reliability and interpretability, characteristics that deep RL
systems often lack [12]. Adversarial machine learning attacks can potentially manipulate the
learning process or exploit vulnerabilities in trained policies [13]. Sample efficiency remains a
concern, as gathering sufficient real-world cybersecurity experience for training while
maintaining security during the learning phase poses practical difficulties [14]. Integration with
existing security orchestration, automation, and response platforms requires careful
architectural design and validation [15].

This review paper provides a comprehensive examination of AC reinforcement learning
methods for autonomous threat detection and response systems. We systematically analyze the
theoretical foundations of AC algorithms, their specific adaptations for cybersecurity
applications, empirical results from recent research, and practical considerations for
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deployment. The paper synthesizes current knowledge to identify gaps, highlight successful
approaches, and outline promising directions for future research at the intersection of RL and
cybersecurity.

2. Literature Review

The intersection of RL and cybersecurity has evolved significantly over the past five years, with
AC methods emerging as a dominant paradigm for autonomous defense systems. Early
applications of RL to network security focused primarily on intrusion detection using Q-
learning and deep Q-networks, but these approaches faced limitations in handling continuous
action spaces and high-dimensional state representations characteristic of modern security
operations [3]. The shift toward AC architectures began as researchers recognized the need for
more sophisticated policy optimization techniques capable of learning nuanced defensive
strategies in complex adversarial environments.

Recent literature demonstrates that AC methods provide superior performance in NIDS
compared to traditional machine learning classifiers and earlier RL approaches. Research has
shown that A2C algorithms can achieve detection rates exceeding 95% on benchmark datasets
such as NSL-KDD and CICIDS2017 while maintaining false positive rates below 2% [16]. These
results represent significant improvements over conventional anomaly detection systems that
struggle to balance sensitivity and specificity in high-throughput network environments. The
AC framework enables dynamic adjustment of detection thresholds based on current threat
levels and organizational risk tolerance, adapting to changing operational contexts in real-time
[17].

APT detection represents another domain where AC reinforcement learning has demonstrated
considerable promise. APT campaigns involve multi-stage attacks that unfold over extended
periods, requiring security systems to identify subtle correlations across temporally dispersed
indicators of compromise [18]. Traditional detection methods rely on predetermined attack
patterns and struggle with the stealthy, adaptive nature of sophisticated threat actors.
Researchers have developed AC-based systems that learn to recognize APT behavior patterns
through sequential decision-making processes that account for long-term dependencies in
attacker actions [19]. These systems employ recurrent neural network architectures in both
actor and critic networks to maintain memory of historical observations, enabling detection of
coordinated attack sequences that span days or weeks [20].

The application of SAC algorithms to malware analysis and classification has garnered
substantial research attention due to the continuous evolution of malicious code and the
inadequacy of signature-based detection methods. SAC's entropy regularization mechanism
encourages exploration of diverse defensive strategies, preventing premature convergence to
suboptimal policies that might be exploited by adaptive malware [6]. Studies have
demonstrated that SAC-based malware detectors can identify polymorphic and metamorphic
malware variants by learning invariant behavioral patterns rather than relying on static code
signatures [21]. The stochastic policies learned by SAC provide robustness against adversarial
examples designed to evade detection, as the randomness in action selection makes it difficult
for attackers to craft reliably evasive malware [22].

Automated incident response systems leveraging AC reinforcement learning address the
critical challenge of reducing response times and minimizing human intervention in security
operations. Research has explored AC methods for selecting optimal remediation actions from
complex response playbooks, considering factors such as attack severity, asset criticality,
business impact, and available defensive resources [23]. These systems learn to orchestrate
multi-step response procedures including network isolation, forensic data collection, threat
intelligence enrichment, and stakeholder notification [24]. Experimental results indicate that
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AC-based response automation can reduce mean time to respond by over 60% compared to
manual processes while maintaining higher consistency in following security policies [25].
The integration of DDPG algorithms with network traffic analysis has enabled development of
adaptive firewall and intrusion prevention systems that dynamically optimize security policies.
DDPG's ability to learn deterministic policies in continuous action spaces allows for precise
control over traffic filtering rules, bandwidth allocation, and connection rate limiting [5].
Research demonstrates that DDPG-based network defense systems can learn to distinguish
between legitimate traffic spikes and distributed denial-of-service attacks, automatically
adjusting mitigation strategies to maintain service availability while blocking malicious flows
[26]. These systems outperform static rule-based firewalls in scenarios involving evolving
attack patterns and complex application-layer protocols [27].

Multi-agent AC approaches have been proposed to address distributed threat detection and
response in large-scale enterprise networks where centralized control becomes
computationally infeasible. Cooperative multi-agent RL frameworks enable multiple AC agents
deployed across different network segments to share threat intelligence and coordinate
defensive actions [28]. Studies show that decentralized AC agents can learn emergent
collaborative behaviors such as distributed attack tracing, coordinated traffic redirection, and
load balancing of security monitoring tasks [29]. The communication overhead and
coordination mechanisms required for effective multi-agent AC systems remain active research
topics, with recent work exploring attention mechanisms and graph neural networks for inter-
agent message passing [30].

Transfer learning and meta-learning approaches have been investigated to address the sample
efficiency challenges inherent in applying AC methods to cybersecurity domains where
gathering training experience may compromise security. Researchers have demonstrated that
AC policies trained in simulated cyber ranges can be fine-tuned for deployment in production
networks with significantly reduced training data requirements [31]. Meta-learning
frameworks that train AC agents to quickly adapt to new attack types show promise for
handling zero-day threats and rapidly evolving malware families [32]. Domain randomization
techniques applied during training improve the robustness and generalization of learned
policies when transitioning from simulation to real network environments [33].

Adversarial robustness of AC-based security systems has emerged as a critical concern, as
attackers may attempt to manipulate the learning process or exploit vulnerabilities in trained
policies. Research has examined adversarial attacks against the state observations provided to
AC agents, including perturbations to network traffic features and manipulated system logs
designed to cause misclassification [13]. Defense mechanisms including adversarial training,
certified robustness methods, and ensemble approaches have been proposed to harden AC-
based threat detection systems against such attacks [34]. Studies indicate that carefully
designed reward functions and architectural choices can improve resilience to adversarial
manipulation, though guaranteed robustness remains an open challenge [35].

Explainability and interpretability of AC-based security systems present ongoing challenges for
deployment in regulated industries and safety-critical applications. The black-box nature of
deep neural networks underlying actor and critic networks complicates security audit
requirements and makes it difficult for analysts to understand why specific defensive actions
were recommended [12]. Recent research has explored attention mechanisms, saliency maps,
and counterfactual explanation techniques to provide insights into AC decision-making
processes [36]. Some studies propose hybrid architectures that combine AC learning with
symbolic reasoning systems to generate human-readable justifications for automated security
decisions [37].

27



International Journal of Science Volume 12 Issue 10, 2025
ISSN: 1813-4890

Benchmark datasets and evaluation methodologies for AC-based cybersecurity systems have
received increased attention as the field matures. Researchers have identified limitations in
existing intrusion detection datasets that may lead to overly optimistic performance estimates
and poor generalization to real-world deployments [38]. Efforts to develop more realistic cyber
range environments for training and testing AC agents include the integration of sophisticated
attacker simulation, realistic background traffic generation, and diverse network topologies
representative of enterprise infrastructure [39]. Standardized evaluation protocols considering
not only detection accuracy but also response effectiveness, false positive costs, and
adaptability to evolving threats have been proposed to facilitate meaningful comparisons
across different AC approaches [40].

The computational requirements for training and deploying AC-based security systems in
operational environments represent practical considerations addressed in recent literature.
Studies have examined the trade-offs between model complexity, inference latency, and
detection performance, particularly for inline security applications where processing delays
directly impact network performance [41]. Techniques including model compression,
quantization, and hardware acceleration using GPUs or specialized Al chips have been
investigated to enable real-time AC-based threat detection at network line rates [42]. Edge
deployment of lightweight AC agents for distributed threat detection in [oT environments
presents additional constraints on model size and computational resources [43].

3. Actor-Critic Reinforcement Learning Fundamentals

The AC framework represents a hybrid approach in RL that combines the strengths of policy-
based and value-based methods to achieve efficient and stable learning in complex
environments. At its core, the AC architecture consists of two interconnected components: the
actor, which learns a policy mapping states to actions, and the critic, which estimates the value
function to evaluate the quality of the actor's decisions [3]. This dual-network structure
addresses fundamental challenges in pure policy gradient methods, specifically the high
variance of gradient estimates that can lead to unstable learning and slow convergence [7]. The
critic provides a baseline for evaluating actions, effectively reducing variance while maintaining
the bias properties necessary for convergent learning.

The theoretical foundation of AC methods builds upon the policy gradient theorem, which
provides a framework for directly optimizing parameterized policies through gradient ascent
on expected cumulative rewards. The policy gradient can be expressed in terms of the
advantage function, which measures how much better an action is compared to the average
action in a given state [44]. The actor updates its parameters in the direction of the policy
gradient, estimated using advantage values provided by the critic. The critic simultaneously
learns to approximate the value function through temporal difference learning, using observed
rewards and value estimates of subsequent states to generate training targets [45]. This
bootstrapping approach enables learning from incomplete episodes and supports continuous
online learning in environments without natural episode boundaries, characteristics
particularly relevant to cybersecurity applications where threats persist indefinitely.

The A2C algorithm implements this framework using separate neural networks for the actor
and critic, with both networks typically sharing lower-level feature extraction layers to improve
sample efficiency and enable transfer of learned representations [46]. The A2C algorithm
employs synchronous parallel actors that interact with multiple environment instances,
collecting experiences that are used to compute gradient estimates with reduced variance due
to averaging across parallel samples [5]. This synchronization provides more stable training
compared to purely asynchronous approaches while maintaining computational efficiency
through parallelization. In the context of threat detection, parallel actors can simultaneously
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monitor different network segments or analyze multiple data streams, aggregating their
experiences to learn a unified defensive policy.

The A3C extends the A2C framework by allowing multiple actors to update the shared policy
parameters asynchronously, eliminating the synchronization overhead and enabling more
efficient utilization of computational resources [5]. Each A3C worker independently interacts
with its environment copy, computes local gradient estimates, and applies them to the global
policy network without waiting for other workers to complete their updates. This
asynchronous approach can lead to more diverse exploration as different workers may be at
various stages of an episode simultaneously, potentially discovering different aspects of
optimal defensive strategies. However, the lack of synchronization can introduce some
instability in learning, particularly when gradient updates from different workers conflict due
to rapid policy changes [47].

SAC introduces an entropy regularization term to the standard RL objective, encouraging the
learned policy to maintain high entropy and thus explore a diverse range of actions even after
substantial training [6]. This maximum entropy framework provides several benefits for
cybersecurity applications, including improved robustness to model misspecification, better
exploration of the defensive action space, and more stable learning through automatic
temperature tuning that balances exploration and exploitation. The SAC algorithm employs a
stochastic policy parameterized by a neural network that outputs action distribution
parameters, typically mean and variance for continuous action spaces. The critic is
implemented as a pair of Q-function networks that provide ensemble estimates of action values,
with the minimum used for gradient computation to reduce overestimation bias [48]. This twin
critic architecture significantly improves learning stability and final policy performance
compared to single critic approaches.

DDPG represents an AC method specifically designed for continuous control problems,
employing a deterministic policy that directly outputs action values rather than probability
distributions [5]. DDPG combines insights from deterministic policy gradient theory with deep
Q-network techniques, including experience replay and target networks, to enable stable
learning with neural function approximators. The algorithm maintains four networks: an actor
network, a critic network, and corresponding target networks that provide stable training
targets by being updated slowly through soft updates [49]. Experience replay allows the agent
to learn from past experiences multiple times, improving sample efficiency, a critical
consideration for cybersecurity applications where gathering training data may be expensive
or risky. The deterministic nature of DDPG policies can be advantageous for security operations
requiring predictable and consistent responses to specific threat scenarios.

Value function approximation in AC methods typically employs temporal difference learning
with bootstrapping, where the critic learns to predict expected cumulative rewards from each
state by minimizing the squared temporal difference error [45]. The TD error represents the
difference between the current value estimate and the target value computed from the
observed reward plus the discounted value estimate of the next state. This bootstrapping
approach enables learning from incomplete trajectories and facilitates online learning, but
introduces bias when function approximation is employed, particularly with neural networks.
Advanced AC algorithms address this bias-variance tradeoff through techniques such as
generalized advantage estimation, which provides a spectrum of estimators interpolating
between high-bias low-variance and low-bias high-variance extremes [44].

Off-policy AC algorithms such as SAC and DDPG learn from experiences collected under
different behavior policies than the current policy being optimized, enabling the use of
experience replay buffers that store past transitions for repeated sampling [6]. This off-policy
capability significantly improves sample efficiency by reusing past experiences multiple times
and enables learning from demonstrations or offline datasets collected during previous
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security operations. However, off-policy learning introduces additional challenges related to
distribution shift between the behavior policy that generated the data and the target policy
being learned. Importance sampling and related techniques correct for this distribution
mismatch, though they can increase gradient variance and complexity [50].

The integration of recurrent architectures into AC methods enables processing of partially
observable environments where the current observation does not contain complete
information about the underlying state [20]. Recurrent AC algorithms employ LSTM or GRU
networks to maintain internal memory of past observations, enabling the agent to make
decisions based on historical context. This capability is essential for detecting sophisticated
attacks that manifest through temporal patterns across multiple observations, such as APT
campaigns involving reconnaissance followed by exploitation and lateral movement. The
recurrent critic can evaluate the quality of actions in the context of the historical trajectory,
providing more informative learning signals for the actor compared to critics operating only on
current observations.

Hierarchical AC architectures extend the basic framework to learn policies at multiple temporal
and spatial abstractions, enabling agents to reason about both high-level strategic objectives
and low-level tactical actions [51]. A high-level AC module selects abstract goals or subtasks,
while lower-level AC modules learn policies to achieve those goals. This hierarchical
decomposition can significantly improve learning efficiency in complex cybersecurity scenarios
involving multiple stages of threat detection, analysis, and response. For example, a high-level
actor might select between different defensive strategies such as active monitoring, threat
hunting, or system isolation, while low-level actors implement the specific actions required for
each strategy.

Figure 1: Actor-Critic Architecture for Autonomous Threat Detection
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Figure 1. Schematic diagram of the actor-critic reinforcement learning architecture for
autonomous threat detection and response. The system consists of two neural networks: the actor
network m(afs;0) that learns to select defensive actions, and the critic network V(s;) that
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evaluates state quality. The cybersecurity environment provides state observations (network
traffic features, system logs, threat intelligence) to both networks. The actor selects defensive
actions (traffic filtering, system isolation, IP blocking) which are executed in the environment. The
environment returns a reward signal based on threat mitigation effectiveness and operational
impact (false positives). The critic computes advantage values A(s,a) to guide actor policy updates,
reducing variance in gradient estimates and enabling stable learning of optimal defensive
strategies.

4. Applications in Threat Detection

AC reinforcement learning has been extensively applied to network intrusion detection, where
the agent learns to classify network traffic or system events as benign or malicious based on
observed features and patterns. The AC framework naturally accommodates the sequential
nature of network traffic analysis, where decisions about current packets or flows may depend
on historical context and where early detection of multi-stage attacks requires maintaining
awareness of prior suspicious activities [16]. The state representation typically includes
statistical features extracted from network packets such as packet size distributions, inter-
arrival times, protocol types, connection patterns, and payload characteristics. High-
dimensional raw packet data can be processed through convolutional neural network layers
that serve as feature extractors feeding into the actor and critic networks [8].

The action space for AC-based intrusion detection systems ranges from binary classification
decisions on individual packets to more complex responses involving confidence scores, threat
severity assessments, and recommended mitigation actions. Continuous action spaces enable
the agent to output probability distributions over potential threat categories, allowing security
analysts to prioritize investigations based on detection confidence levels [17]. Some AC
implementations learn multi-action policies that simultaneously predict attack types and select
appropriate response strategies, unifying detection and response into a single learning
framework. The reward function design critically influences learning effectiveness, typically
incorporating terms for correct threat identification, penalties for false positives that disrupt
legitimate operations, and bonuses for early detection that enables rapid response before
significant damage occurs [10].

Experimental evaluations on standard intrusion detection benchmarks demonstrate that AC
methods achieve competitive or superior performance compared to traditional machine
learning approaches and deep learning classifiers [16]. On the NSL-KDD dataset, AC-based
detectors have reported accuracy exceeding 96% with false positive rates below 3%,
representing improvements of several percentage points over random forest and support
vector machine baselines. More importantly, AC agents demonstrate better adaptability to
evolving attack patterns through continued learning, whereas static classifiers require
retraining on new labeled data to maintain detection performance against novel threats [17].
The ability to fine-tune policies based on operational feedback enables AC systems to customize
their behavior to specific network environments and organizational security policies.

Zero-day attack detection represents a particularly challenging application where AC methods
offer advantages over supervised learning approaches that rely on labeled examples of known
attacks. The RL paradigm enables agents to learn general principles of anomalous behavior
rather than memorizing signatures of specific attacks, potentially identifying novel threat
patterns that differ from training examples [1]. AC agents trained to maximize long-term
security objectives while minimizing disruption to normal operations can discover zero-day
attacks through anomaly detection based on deviations from learned models of legitimate
traffic patterns. Reward shaping techniques that penalize unrecognized behaviors encourage
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cautious policies that investigate suspicious activities even when they do not match known
attack signatures [52].

Phishing and social engineering attack detection has benefited from AC methods applied to
email content analysis and user behavior monitoring. The agent learns to identify linguistic
patterns, sender characteristics, and contextual features indicative of phishing attempts by
receiving rewards for correct identification and penalties for failing to block malicious
messages or incorrectly filtering legitimate communications [53]. Time-series analysis of user
email interactions enables the AC system to detect anomalous patterns such as unexpected
requests from trusted contacts whose accounts may have been compromised. The continuous
learning capability allows the system to adapt to evolving phishing tactics, including
personalized spear-phishing campaigns that target specific individuals with tailored social
engineering content.

Malware detection and classification using AC reinforcement learning focuses on behavioral
analysis rather than static code signatures, providing robustness against obfuscation
techniques and polymorphic malware [21]. The agent monitors program execution behaviors
including system calls, file system operations, network communications, and registry
modifications, learning to distinguish malicious activities from legitimate software behaviors.
The state representation encodes sequences of behavioral events, enabling the AC system to
detect malware through patterns of actions rather than individual suspicious operations that
might appear benign in isolation [22]. Dynamic analysis environments allow the AC agent to
observe malware execution in sandboxed systems, gathering behavioral data while minimizing
risk to production infrastructure.

APT detection leveraging AC methods addresses the challenge of identifying coordinated, multi-
stage attack campaigns that unfold over extended periods. The agent maintains long-term
memory of suspicious activities across the network, learning to correlate seemingly unrelated
events that collectively indicate APT presence [18]. Recurrent neural networks in the actor and
critic architectures enable processing of temporally extended sequences of indicators of
compromise, recognizing patterns such as initial reconnaissance, vulnerability exploitation,
privilege escalation, lateral movement, and data exfiltration [19]. The reward function
incorporates delayed rewards that provide feedback only after full attack chains are identified,
encouraging the agent to reason about long-term consequences of detection decisions rather
than optimizing for immediate classification accuracy [20].

Insider threat detection represents another domain where AC reinforcement learning provides
valuable capabilities for identifying malicious activities by authorized users with legitimate
access to systems and data. The agent learns normal behavior patterns for individual users and
roles, detecting deviations that may indicate compromised credentials or malicious insiders
[54]. The state representation includes features such as access patterns, data transfers,
authentication events, and working hour analysis. The AC framework supports fine-grained
anomaly detection that considers the specific context of user actions, distinguishing between
legitimate unusual behaviors and genuinely suspicious activities. Reward shaping balances the
need to detect insider threats against the risk of false accusations that could damage employee
morale and organizational culture.

Cloud environment security monitoring using AC methods addresses challenges specific to
virtualized infrastructure, including dynamic resource allocation, multi-tenancy concerns, and
limited visibility into underlying physical infrastructure [55]. The agent learns to detect cloud-
specific attack vectors such as VM escape attempts, side-channel attacks, and resource abuse.
The state representation captures cloud-specific metrics including virtual machine behavior,
API call patterns, and resource consumption. The AC system adapts to the elasticity of cloud
environments, learning to distinguish between legitimate scaling events and malicious
resource exhaustion attacks. Integration with cloud security posture management tools enables

32



International Journal of Science Volume 12 Issue 10, 2025
ISSN: 1813-4890

the AC agent to incorporate configuration compliance information into its threat detection
decisions [56].

[oT security applications of AC reinforcement learning focus on lightweight models suitable for
resource-constrained devices while maintaining effective threat detection capabilities [43]. The
agent monitors IoT device communications and behaviors, identifying compromised devices
participating in botnets or serving as entry points for network intrusions. The state
representation emphasizes communication patterns and protocol behaviors rather than
content analysis, reducing computational requirements. Federated learning approaches enable
multiple AC agents deployed across IoT devices to collaboratively learn threat detection
policies while preserving privacy and reducing communication overhead. The learned policies
must balance security with operational constraints such as battery life and bandwidth
limitations inherent to loT environments.

Table 1: Comparison of Actor-Critic Based Intrusion Detection Systems

Study (Year) Algorithm Dataset :\;]wmcy (F;)R ::::I"Q Key Innovation

Ferrag et al. (2020) [16] A2C NSL-KDD 96.2 28 3.5hrs Parallel experience collection with shared layers
Liu & Lang (2019) [17] A3C CICIDS2017 95.8 3.1 4.2 hrs Asynchronous updates for continuous learning
;:;ismdmescu etal. (2020) SAC g:i:sa: 971 19 6.5 hrs Entropy regularization for polymorphic malware
Anderson et al. (2020) [22] SAC CICIDS2017 96.8 24 5.1 hrs Stochastic policies for adversarial robustness
[th;;iguzzi-(‘,orin et al. (2020) e CICDD0S2018 953 24 39Hhrs aR;:ia;-l:isme DDo$S mitigation with continuous
Ghafir et al. (2020) [19] A3C+LSTM APT Dataset 924 29 8.3 hrs Temporal dependencies for multi-stage attacks
Han et al. (2021) [8] SAC UNSW-NB15 96.4 26 5.7 hrs Adversarial training for evasion attack defense

Table 1. Performance comparison of actor-critic based intrusion detection systems on standard
benchmark datasets. SAC-based approaches achieve highest accuracy (96.8-97.1%) and lowest
false positive rates (1.9-2.6%) due to entropy regularization. A3C methods excel in temporal
attack detection when combined with recurrent architectures. DDPG algorithms perform well in
continuous control scenarios. Training times range from 3.5 to 8.3 hours on NVIDIA Tesla V100
GPU. All AC-based systems outperform traditional machine learning baselines (random forest,
SVM) which typically achieve 85-92% accuracy with 5-8% FPR on same datasets.

5. Response Mechanisms and Automation

Automated incident response represents a critical application domain for AC reinforcement
learning, where agents learn to select and execute appropriate remediation actions in response
to detected threats. The AC framework enables learning of complex response policies that
consider multiple factors including attack severity, asset criticality, business impact, available
defensive resources, and potential collateral damage from aggressive countermeasures [23].
The state representation for response automation typically includes threat intelligence about
the detected attack, contextual information about affected systems, current network status, and
historical data about previous incident response outcomes. This comprehensive state enables
the AC agent to make informed decisions that balance security effectiveness against operational
continuity requirements.

The action space for automated response encompasses a wide range of defensive measures
organized hierarchically from passive monitoring to aggressive isolation. Low-severity actions
include increasing logging verbosity, enabling enhanced monitoring for affected systems, and
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alerting security analysts for manual investigation [24]. Medium-severity responses involve
targeted traffic filtering, rate limiting suspicious connections, and temporary account lockouts.
High-severity actions include complete network isolation of compromised systems, forced
termination of malicious processes, and initiation of forensic data collection procedures. The
AC agent learns a policy that selects appropriate response actions based on the specific threat
context, avoiding both under-response that leaves systems vulnerable and over-response that
disrupts legitimate business operations unnecessarily [25].

Reward function design for response automation must carefully balance competing objectives
to ensure the learned policy aligns with organizational security and operational goals. Positive
rewards accrue for successful threat mitigation, measured through metrics such as reduction
in attacker dwell time, prevention of data exfiltration, and containment of malware spread [23].
Negative rewards penalize false positives that disrupt legitimate operations, excessive
response actions that unnecessarily impact availability, and slow response times that allow
attacks to progress. The reward function often incorporates domain-specific cost models that
quantify the business impact of security incidents and response actions, enabling the AC agent
to learn policies that optimize security outcomes while considering economic constraints [10].
Multi-objective reward formulations allow balancing of security, availability, and performance
considerations through weighted combinations or Pareto optimization approaches.

Security orchestration integration enables AC-based response automation to interface with
existing security tools and infrastructure through standardized APIs and playbook frameworks
[15]. The actor network outputs abstract response strategies that are translated into concrete
actions by orchestration platforms such as SOAR systems. This layered architecture separates
high-level policy learning from low-level execution details, improving portability across
different security tool ecosystems. The AC agent learns to sequence complex multi-step
response procedures, coordinating actions across diverse security tools including firewalls,
endpoint detection and response systems, security information and event management
platforms, and threat intelligence feeds. Learned orchestration policies can adapt to dynamic
conditions such as tool failures or resource constraints, selecting alternative response paths to
achieve security objectives.

Dynamic defense strategies learned through AC reinforcement learning go beyond reactive
response to detected threats, incorporating proactive and deceptive elements that increase
attacker costs and gather intelligence about adversary tactics [4]. The agent learns when to
deploy honeypots or deception technologies that redirect attackers to monitored environments
where their tools and techniques can be studied safely. AC-based systems can dynamically
adjust network topology and service configurations to present attackers with a moving target,
invalidating reconnaissance information and disrupting automated attack tools. These adaptive
defense mechanisms learn to balance the operational overhead of frequent security posture
changes against the security benefits of reducing attacker success rates and extending dwell
time for detection [57].

Patch management and vulnerability remediation represent another application area where AC
methods enable intelligent automation of security maintenance tasks. The agent learns policies
for prioritizing patches based on vulnerability severity, exploit availability, asset criticality, and
organizational risk tolerance [58]. The state representation includes vulnerability scan results,
threat intelligence about active exploits, system configuration information, and maintenance
schedules. The AC system learns to balance security imperatives against operational
constraints such as maintenance windows, application compatibility requirements, and change
management processes. By learning from outcomes of previous patching decisions, the agent
improves its ability to predict which vulnerabilities pose the greatest risk in specific
organizational contexts and should receive immediate attention.
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Access control policy optimization using AC reinforcement learning enables dynamic
adjustment of permissions based on observed user behaviors and threat conditions. The agent
learns to tighten access controls in response to suspicious activities or elevated threat levels
while relaxing restrictions when appropriate to avoid impeding legitimate operations [54]. The
state representation captures current access policies, user access patterns, authentication
events, and contextual factors such as user location and device security posture. The AC system
learns policies that implement principles of least privilege and zero trust architecture through
continuous refinement of access permissions based on ongoing risk assessment. This dynamic
approach to access control contrasts with static role-based access control systems that cannot
adapt to changing risk conditions or user behavior patterns.

Network traffic management and filtering policies learned through AC methods enable adaptive
defense against distributed denial-of-service attacks and malicious traffic flows. The agent
learns to distinguish between legitimate traffic spikes caused by flash crowds or viral content
and DDoS attacks orchestrated by botnets [26]. The action space includes rate limiting
parameters, traffic redirection policies, and connection filtering rules that the AC system
dynamically optimizes based on current traffic patterns and attack indicators. Learned policies
balance the competing objectives of maintaining service availability for legitimate users while
blocking attack traffic, adapting mitigation strategies as attacks evolve in real-time [27]. The AC
framework enables learning of sophisticated traffic management strategies that consider
application-layer protocol behaviors and client interaction patterns beyond simple volumetric
filtering.

Automated threat hunting represents an emerging application where AC agents learn to
proactively search for indicators of compromise and undiscovered threats within enterprise
networks. The agent selects investigation targets, analysis techniques, and data sources to
examine based on threat intelligence, historical incident data, and patterns of suspicious
activities [59]. The reward function provides feedback based on the value of threats discovered
relative to the investigation effort expended, encouraging efficient allocation of limited security
analyst time and computational resources. AC-based threat hunting systems learn to recognize
subtle anomalies and correlations that may indicate sophisticated attacks missed by automated
detection systems. The learned hunting policies complement reactive detection mechanisms by
proactively seeking threats before they trigger alerts or cause damage.

Incident response playbook generation through AC reinforcement learning enables automated
discovery of effective response procedures tailored to specific organizational contexts and
threat scenarios. Rather than relying solely on generic industry best practice playbooks, the AC
agent learns response sequences that perform well in the specific technical and operational
environment of the deploying organization [15]. The agent explores different combinations and
orderings of response actions, learning through experience which procedures most effectively
mitigate various threat types while minimizing operational disruption. The learned playbooks
can be reviewed and validated by human security experts before deployment, combining the
exploratory power of RL with human domain expertise. Over time, the AC system continuously
refines response playbooks based on feedback from actual incident outcomes, improving
effectiveness as the threat landscape evolves.
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Figure 2: Automated Incident Response Process using Actor-Critic RL
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Figure 2. Flowchart depicting the automated incident response process using actor-critic
reinforcement learning. When a threat is detected, the system generates a state observation
including threat severity, asset criticality, and system status. The actor network selects
appropriate response actions based on learned policy m(als), ranging from low-severity
monitoring to critical system isolation. Actions are categorized by severity: low-severity responses
include enhanced monitoring and logging; medium-severity responses involve traffic filtering and
account suspension; high-severity responses include network isolation and process termination;
critical responses trigger full segment isolation and incident response team activation. Selected
actions are executed through security orchestration platforms (SOAR) that interface with
firewalls, endpoint detection and response (EDR) systems, and security information and event
management (SIEM) platforms. The environment state changes based on executed actions,
generating reward signals that reflect attack mitigation effectiveness and operational impact. The
critic network evaluates response quality, and both actor and critic update their parameters
through feedback loops, enabling continuous improvement of response policies.

6. Challenges and Future Directions

Sample efficiency remains a fundamental challenge for deploying AC reinforcement
learning in production cybersecurity environments, where gathering sufficient training
experience through trial-and-error experimentation poses unacceptable security risks. Unlike
simulation-based domains such as game playing or robotics where failures during training
carry minimal consequences, errors by learning security systems can result in successful
attacks, data breaches, or disruption of critical services [14]. The number of environment
interactions required to train effective AC policies often ranges from thousands to millions of
episodes, far exceeding what can be safely collected in live operational networks. Transfer
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learning approaches that train agents in simulated environments and fine-tune them with
limited real-world experience show promise but struggle with the reality gap between
simulations and production systems [31]. Offline RL methods that learn from historical security
logs and incident response records without requiring interactive exploration offer potential
solutions but must address distribution shift challenges and inability to discover novel
strategies not represented in historical data [50].

Interpretability and explainability of AC-based security systems present critical challenges for
deployment in regulated industries and safety-critical applications where human oversight and
audit trails are mandatory. The deep neural networks underlying actor and critic components
function as black boxes whose decision-making processes are opaque to security analysts and
compliance auditors [12]. Understanding why an AC agent recommended a specific response
action or assigned a particular threat severity score becomes difficult when the policy is
represented by millions of neural network parameters. This opacity complicates
troubleshooting of system failures, validation of correct behavior, and building trust with
security operations teams who must rely on automated decisions. Explainable RL techniques
including attention mechanisms, saliency analysis, and counterfactual reasoning provide
partial solutions but often sacrifice model performance or provide explanations that remain too
abstract for actionable operational insights [36].

Adversarial attacks against AC-based security systems represent an emerging threat vector
where sophisticated attackers exploit vulnerabilities in the learning process or trained policies
to evade detection or manipulate defensive responses. State observation poisoning attacks
inject crafted malicious traffic or false telemetry data designed to cause misclassification by
confusing the AC agent's perception of the environment [13]. Policy manipulation attacks
during training can subtly influence reward signals or state transitions to teach the agent
exploitable weaknesses. Adversarial examples that cause trained AC detectors to misclassify
obvious attacks have been demonstrated in research settings, raising concerns about
robustness against adaptive adversaries [34]. Defensive techniques including adversarial
training, certified robustness methods, and ensemble diversity provide some protection but
cannot eliminate all vulnerabilities, particularly against adaptive attackers with knowledge of
the defense mechanisms [35].

The reality gap between training environments and deployment contexts creates substantial
challenges for AC systems developed using simulation-based approaches. Simulated network
traffic, attack behaviors, and system dynamics inevitably fail to capture the full complexity and
variability of production environments [11]. AC agents trained in simplistic simulations may
learn brittle policies that exploit simulator artifacts rather than developing robust defensive
strategies that generalize to real-world conditions. Even sophisticated cyber range
environments struggle to replicate factors such as legitimate user behavior diversity,
application-specific protocols, organizational workflows, and subtle attack techniques
employed by skilled human adversaries [39]. Domain randomization techniques that expose
agents to diverse simulated conditions during training improve robustness but cannot
eliminate all aspects of the reality gap, particularly for rare but critical scenarios
underrepresented in training data [33].

Scalability challenges arise when deploying AC-based security systems in large enterprise
networks with heterogeneous devices, diverse applications, and massive data volumes
requiring analysis. Training centralized AC policies on aggregated data from thousands of
endpoints and network segments creates computational bottlenecks and privacy concerns [41].
Distributed training approaches using multiple parallel actors help but face challenges related
to communication overhead, synchronization delays, and ensuring consistent policy updates
across geographically dispersed infrastructure [28]. Federated learning architectures that train
local AC agents on individual network segments and aggregate their learned policies show
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promise for preserving privacy while enabling collaborative learning [29]. However, federated
approaches must address challenges including non-IID data distributions across sites, handling
of stragglers with slow computation or communication, and robustness against malicious
participants that could poison the aggregated policy.

Integration with human security analysts represents both a technical challenge and an
opportunity for AC-based automation systems. Fully autonomous security operations without
human oversight raise concerns about accountability, unintended consequences, and inability
to handle novel scenarios outside the agent's training distribution [12]. Human-in-the-loop
approaches that combine AC automation with human judgment leverage complementary
strengths: agents handle routine high-volume tasks while humans provide oversight for critical
decisions and handle complex edge cases. Designing effective human-agent teaming requires
careful consideration of factors including appropriate automation levels, transparency of agent
reasoning, mechanisms for human intervention and override, and workload management to
prevent alert fatigue [60]. Active learning frameworks where AC agents identify ambiguous
cases for human labeling can improve policy learning while minimizing analyst burden.

Multi-stage attack detection and response present challenges related to temporal credit
assignment, where the consequences of defensive actions taken early in an attack campaign
may not become apparent until much later. AC methods using temporal difference learning
bootstrap value estimates from subsequent states, but this bootstrapping can blur credit
assignment when rewards are sparse and delayed [45]. Sophisticated attacks that unfold over
weeks or months create extremely long time horizons that exacerbate credit assignment
difficulties [19]. Hierarchical RL approaches that decompose the problem into subgoals at
multiple temporal scales show promise for handling extended attack campaigns [51]. Options
frameworks and goal-conditioned policies that enable compositional learning of defensive
skills may improve sample efficiency and credit assignment for multi-stage threat scenarios.

Concept drift in attack patterns and normal behavior baselines creates challenges for
maintaining AC policy effectiveness over time as the operational environment evolves.
Networks undergo continuous changes including new applications, evolving user behaviors,
infrastructure upgrades, and shifting threat landscapes [1]. AC agents trained on historical data
may become less effective as their training distribution diverges from current operating
conditions. Online continual learning approaches that enable policies to adapt to new
conditions while avoiding catastrophic forgetting of previously learned defensive strategies
represent an active research area [46]. Detecting when AC policies have become stale and
require retraining or updating involves monitoring performance metrics and statistical
properties of observed data distributions, but determining appropriate thresholds and
retraining triggers remains challenging.

Reward function specification and alignment represent fundamental challenges in applying AC
methods to complex cybersecurity objectives that resist precise mathematical formulation.
Security goals such as protecting sensitive data, maintaining operational resilience, and
preserving organizational reputation involve subjective value judgments that cannot be fully
captured in simple reward functions [10]. Misspecified rewards lead to reward hacking
behaviors where agents discover loopholes that maximize the stated objective while violating
the intended security properties. Inverse RL approaches that infer reward functions from
expert demonstrations of security analyst decision-making show promise but require
substantial high-quality demonstration data [52]. Multi-objective RL formulations that
explicitly model trade-offs between competing goals such as security and usability enable more
nuanced policy learning but complicate the training process and policy evaluation.

Coordination challenges in multi-agent AC systems deployed across distributed security
infrastructure include communication complexity, emergent behaviors, and handling of
conflicting objectives between agents. Decentralized AC agents operating on different network
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segments must share information about threats and coordinate defensive responses without
overwhelming communication channels or creating exploitable coordination protocols [28].
Emergent phenomena in multi-agent systems can lead to unstable oscillations, deadlocks, or
other unintended collective behaviors that compromise security [30]. Game-theoretic
frameworks that model interactions between defensive agents and adversaries as competitive
games provide theoretical grounding for multi-agent security systems but often require
simplifying assumptions about opponent capabilities and rationality that may not hold for
sophisticated attackers.

Future research directions include the development of meta-learning approaches that enable
AC agents to rapidly adapt to novel attack types with minimal additional training data. Meta-RL
methods train agents to learn efficiently by exposing them to diverse tasks during meta-training,
developing learning algorithms rather than fixed policies [32]. Applied to cybersecurity, meta-
learning could enable rapid adaptation to zero-day exploits and emerging threat categories
through few-shot learning from limited examples. Model-agnostic meta-learning and other
gradient-based meta-learning approaches show promise for this application but require
substantial computational resources and careful design of meta-training task distributions.

Causal reasoning and counterfactual analysis integrated with AC architectures represent
promising directions for improving robustness and interpretability of security automation
systems. Causal models that explicitly represent relationships between attacker actions,
defensive responses, and security outcomes enable agents to reason about intervention effects
rather than relying solely on correlational patterns [37]. Counterfactual explanations that
describe how alternative actions would have changed outcomes provide more actionable
insights for security analysts compared to standard attribution methods [36]. Structural causal
model integration with deep RL remains an active research area with potential to improve
generalization and enable reasoning under distribution shift.

Hybrid neuro-symbolic approaches that combine AC learning with logical reasoning systems
may address interpretability challenges while retaining the learning efficiency of neural
network function approximators. Symbolic components can encode security policies,
compliance requirements, and domain knowledge in human-readable logical rules, while
neural components handle high-dimensional perception and pattern recognition [37]. Recent
work on differentiable logic and neural theorem proving enables end-to-end learning of hybrid
systems that combine symbolic and subsymbolic reasoning. Applied to cybersecurity, such
hybrid architectures could learn to detect attacks while providing formal verification of policy
compliance and interpretable explanations grounded in symbolic security rules.

7. Conclusion

AC reinforcement learning has emerged as a powerful paradigm for developing autonomous
threat detection and response systems that can adapt to evolving cybersecurity challenges
through continuous learning from experience. The AC framework addresses fundamental
limitations of traditional security approaches by enabling agents to discover optimal defensive
strategies without exhaustive labeled datasets or predefined rules, learning instead through
interaction with the operational environment and feedback from security outcomes. The dual-
network architecture combining policy learning and value function approximation provides
stable and efficient training for complex sequential decision-making tasks characteristic of
modern security operations. Advanced AC variants including A2C, A3C, SAC, and DDPG
demonstrate strong performance across diverse cybersecurity applications ranging from
network intrusion detection to automated incident response, achieving detection accuracies
exceeding conventional methods while providing adaptability to novel threats.
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The application of AC methods to threat detection has yielded systems capable of identifying
sophisticated attack patterns including APT campaigns, zero-day exploits, and polymorphic
malware through behavioral analysis and temporal reasoning. These systems process high-
dimensional security telemetry encompassing network traffic, system logs, and threat
intelligence feeds, learning to distinguish malicious activities from benign operations while
minimizing false positive rates that plague traditional detection tools. Recurrent architectures
enable AC agents to maintain awareness of historical context, recognizing coordinated multi-
stage attacks that unfold over extended periods. The continuous learning capability allows
deployed systems to refine detection policies based on operational feedback, adapting to
changing threat landscapes and organizational environments without requiring complete
retraining.

Automated response mechanisms powered by AC algorithms demonstrate the potential for
intelligent orchestration of defensive actions that balance security effectiveness against
operational constraints. Learned response policies consider multiple factors including threat
severity, asset criticality, and business impact when selecting mitigation actions, achieving
faster and more consistent incident response compared to manual procedures. Dynamic
defense strategies incorporating deception, moving target defense, and adaptive access control
leverage the sequential decision-making capabilities of AC methods to implement sophisticated
defensive maneuvers that increase attacker costs and improve security postures. Integration
with security orchestration platforms enables AC agents to coordinate actions across diverse
security tools, translating high-level strategic decisions into concrete defensive measures.

Despite promising advances, significant challenges remain before AC-based security systems
achieve widespread production deployment. Sample efficiency constraints require
development of training methodologies that learn effective policies without exposing
production systems to unacceptable risks during exploration. The reality gap between
simulated training environments and operational networks necessitates robust transfer
learning approaches and sim-to-real techniques that preserve policy effectiveness across
domain shifts. Adversarial robustness against attackers who may attempt to manipulate
learning processes or exploit policy vulnerabilities demands careful design of defensive
mechanisms and continuous monitoring for adversarial perturbations. Interpretability
limitations complicate building trust with security analysts and meeting regulatory
requirements for explainable automated decisions in safety-critical contexts.

Scalability considerations for deploying AC systems in large enterprise environments with
heterogeneous infrastructure and massive data volumes require distributed architectures that
balance computational efficiency with learning effectiveness. Coordination between multiple
AC agents operating across different network segments presents challenges related to
communication overhead, emergent behaviors, and alignment of local and global security
objectives. Integration of human analysts into the automation loop requires thoughtful
interface design that enables effective collaboration between human expertise and agent
capabilities while avoiding alert fatigue and maintaining appropriate oversight. Long-term
deployment challenges including concept drift, reward misspecification, and maintaining policy
effectiveness as environments evolve necessitate ongoing research into continual learning and
adaptive systems.

Future development of AC-based security automation will likely focus on meta-learning
approaches enabling rapid adaptation to novel threats, hybrid neuro-symbolic architectures
combining learning efficiency with interpretability, and multi-agent coordination frameworks
for distributed defense. Advances in offline and batch RL may enable learning from historical
security data without requiring risky online exploration, while improved simulation fidelity
through high-fidelity cyber ranges could narrow the reality gap. Causal reasoning capabilities
integrated with AC methods may enhance robustness and enable counterfactual analysis
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supporting better security decisions. As these research directions mature and practical
deployment challenges are addressed through engineering innovation, AC reinforcement
learning will increasingly realize its potential to transform cybersecurity operations through
intelligent automation that complements and augments human security expertise.
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