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Abstract

With the continuous advancement of unmanned aerial vehicle (UAV) technology, UAV
delivery models are increasingly transforming shore-to-ship material transportation
and are expected to become a vital component of future maritime logistics systems. First,
a UAV task allocation model considering the customers' timeliness requirements and
various constraints was proposed, aiming to simultaneously optimize the two objectives
of customer dissatisfaction degree and flight distance. Second, an improved non-
dominated sorting genetic algorithm (NSGA-II) is employed to solve the model. By
integrating an adaptive crossover and mutation probability calculation method with a 3-
optlocal search strategy, the improved algorithm demonstrates enhanced performance.
Finally, simulation experiments based on randomly generated datasets were conducted.
The results demonstrate an 8.7% reduction in customer dissatisfaction and a 5.34%
decrease in total flight distance. Therefore, the proposed model can provide both
theoretical support and practical guidance for the real-world application of UAVs in
maritime material transport and distribution.
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1. Introduction

The UAV refers to aircraft operated without an onboard pilot. They are maneuvered through
radio remote-control devices and onboard program-controlled systems, with an integrated
computer system enabling autonomous regulation of flight stabilitylll. With the rapid
development of the global maritime industry and intelligent technologies, using UAVs
(Unmanned Aerial Vehicles) for maritime vessel logistics delivery will become one of the
research hot spots. The traditional method of vessel replenishment usually relies on the vessel
docking at the port or having dedicated personnel and vessels from the port to replenish
supplies. This method is not only time-consuming and costly, but also causes certain pollution
to the marine environment, and also puts pressure on the operational efficiency of the port.
Against this backdrop, using UAVs for maritime delivery is an efficient and flexible solution.
UAVs, with their advantages such as rapid response, easy operation and strong mobility,
demonstrate significant advantages in reducing logistics costs, minimizing vessel waiting times
and enhancing service efficiency. Furthermore, there are still numerous technical and
operational challenges in the process of UAV material deliveryl?], such as weight capacity
limitations, flight distance constraints, energy consumption management, and optimization of
delivery routes. Therefore, how to integrate the characteristics of UAVs with the logistics
demands of ships, establish an appropriate task assignment model, and enhance delivery
efficiency has become a core issue in current research.
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However, there are relatively few studies on the logistics model of UAVs delivering supplies
from the port distribution center to the ships at the anchorage. Therefore, this paper also draws
on the logistics models of UAVs from other fields to provide theoretical support and practical
guidance.

In the field of UAV delivery, some scholars have studied the collaborative logistics delivery
model involving vehicles and UAVs. Li et al. proposed a UAV collaborative delivery model, which
effectively reflects the timeliness requirements of UAVs[3l. The same year, Gu et al.and Moshref-
Javadi et al. the system distribution mode of vehicles and unmanned aircraft was studied, and
the superiority of this collaborative mode was verified[4 >l. Furthermore, Zang et al. studied the
optimization problem of joint delivery by UAVs and trucks, aiming to minimize costs through
collaborative delivery methods[¢l. Wang et al. proposed a method for collaborative delivery by
vehicles and UAVs. This collaborative delivery system can significantly enhance efficiency and
reduce costsl’l. Some scholars have also conducted research on the logistics distribution model
for UAV systems. Benarbia et al. found that using logistics UAVs for cargo transportation can
reduce distribution costs and delivery timel8l. Li et al. discovered that UAV freight
transportation can achieve excellent economic and social benefits®l. Bridgelall use of UAVs for
transporting hazardous materials not only reduces transportation risks, but also cuts costs and
alleviates traffic congestion on the ground[10l. Lee et al. conducted a study on using intelligent
logistics UAVs to replace delivery personnel for the delivery of small packages(1l. Zhou
conducted research on the low-altitude economic efficiency of UAV, proving that it can achieve
sustainable development of smart cities[12].

In the aspect of UAV mission allocation, Schwarzrock et al. conducted research indicating that
increasing the number of tasks that UAVs can perform can lead to more optimal task
allocation[3l. Zhao et al. solved the problem of rapid task allocation for heterogeneous UAVs
through reinforcement learning(14l. Wu et al. proposed an approach based on the improved
simulated annealing combined with genetic algorithm (ISAFGA) to solve the problem of UAV
task allocation[!>l. Zhu et al. proposed an improved semi-random Q-learning algorithm to
enhance the rationality of UAV task allocation and the success rate of task execution(1¢l. Hu et
al. proposed a pigeon-inspired fuzzy multi-objective optimization algorithm to solve the
problem of UAV task allocation for multiple ground tracking targets(l7l. Bai et al. reduced the
cost and service time of vehicle and UAV collaborative delivery by improving the heuristic
algorithm[18l. Zhang et al. proposed a distributed decision-making intelligent framework based
on evolutionary game theory to solve the task allocation problem of UAV swarm systems in
uncertain scenarios[!. Park et al. optimization model based on mixed integer linear
programming (MILP) enabled multiple heterogeneous UAVs to generate feasible and efficient
task allocation schemesl[291.

Based on the above literature analysis, the cargo delivery model in urban settings has evolved
from the traditional human and vehicle delivery to the UAV collaborative delivery, and finally
to the fully unmanned autonomous delivery mode. As an emerging model, UAV delivery, with
its flexibility and efficiency, not only improves the delivery time but also reduces the
environmental impact of traditional cargo delivery.

Based on this, the experience of delivering daily necessities to ships at offshore anchorages
through unmanned aircraft in maritime environments has been gained and supported. Yan et
al. proposed an improved particle swarm optimization combined with genetic algorithm (GA-
PS0), which enhanced the efficiency of UAV maritime task allocation[?ll. Wang et al. provided
in-depth guidance for the future development of UAV in the marine field[?2l. Pensado et al.
conducted a study on using UAVs equipped with a real-time trajectory optimizer for ship-to-
shore communication to deliver packages to offshore vessels[23]. Yang et al. developed a mixed
integer programming model and a branch-and-price-and-cut (BPC) algorithm to optimize UAV
shore-to-ship cargo scheduling[24l.
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Overall, with the continuous advancement of intelligent UAV technology and the logistics
industry, UAVs have broad application prospects as a means of transporting goods. At the same
time, as an emerging distribution model, they have gradually attracted attention from various
sectors of society and have achieved some success in different fields. However, several issues
still need to be resolved. Specifically, existing research mainly focuses on UAV transportation
in urban settings, while studies on UAV-based maritime goods transportation are relatively
scarce and have neglected the transport of goods between ports and ships.

Based on the above analysis, this study aims to expand the research on material transportation
between ports and anchorage areas. Considering the time sensitivity and distance constraints
of customers in the port anchorage area, we proposed a dual-objective optimization model and
solved it using the NSGA-II algorithm. The contributions of this study are as follows:

(1) This study investigates UAV operation allocation in a port anchorage scenario. The results
provide theoretical support and technical assistance for daily necessities distribution via a
marine UAV supply system.

(2) A UAV operation allocation model for port anchorages was constructed, with the dual
objectives of minimizing customer dissatisfaction and flight distance while considering
customer timeliness requirements under multiple constraints.

(3) An improved NSGA-II algorithm was developed, which incorporates a 3-opt local search
strategy and adaptive crossover and mutation probabilities. These enhancements strengthen
the local search capability and improve the solution quality.

The arrangement of this study is as follows. Section 2 presents a dual-objective model for UAV
task allocation considering customer timeliness requirements under multiple constraints;
Section 3 introduces a method based on the improved NAGA-II algorithm; Section 4 presents
the numerical calculation and analysis of the proposed dual-objective model; Section 5
summarizes the research.

2. Model

2.1. Problem Description and Symbol Explanation

The multi-UAV mission planning mainly consists of two parts: task allocation and path
optimizationl25]. These two are interrelated and distinct. The purpose of the task allocation is
to assign multiple tasks to each UAV and determine the execution sequence The goal of path
optimization is to plan a feasible path for the UAVs from the starting point to the target point.
The path must have obstacle avoidance and collision avoidance capabilities, and also meet the
flight ability requirements of the UAVs.

Suppose there are ships in need of replenishment in a certain anchorage, the port employs
multiple UAVs of the same performance to deliver emergency supplies. Each UAV departs from
the same port, completes its assigned tasks, and then returns. The UAVs plan their tasks in
advance based on the required supply weight and the location of each ship, and they will not
alter the original distribution plan during delivery.

Therefore, the objective of this research is to complete the delivery operation within specified
soft time windows while minimizing both customer dissatisfaction and the total UAV flight
distance. For convenience, the notations used in this paper are explained in Table 2.1.

Table 2.1 Model symbols and parameter Definitions

Parameters Definition
N Set of customer nodes N ={1,2,...,n}
N, UAV distribution center (port terminal) nodes N, = NU{0}
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The set of UAVs is K = {1,2,..., k}
Time window

Delivery time of materials

The total time from the arrival of the UAV £ at the current
customer location until completion

The maximum hovering service time of the UAV

T.. Maximum flight time of the UAV
Voo Minimum flight speed of the UAV
Vi Constant flight speed of the UAV
Table 2.1 Model symbols and parameter Definitions(continued)
Parameters Definition
Vinax Maximum flight speed of the UAV
d; Distance
D . Maximum flight distance of UAV
q; The cargo capacity required for the ship
Onax Maximum payload capacity of the UAV
s (tl-j ) The satisfaction level of the i -th customer
S Customer average satisfaction function
NS Customer dissatisfaction function
F UAV flight distance function
X Decision variable: When the UAV moves from ship i to ship J, its

value is 1; otherwise, its value is 0.

2.2. Assumptions

To better meet the emergency supply needs of ships in the anchorage area and facilitate
maritime UAV cargo delivery, the following assumptions are made:

(1) The UAV maintains a constant altitude during flight;

(2) The impact of adverse sea conditions is not considered;

(3) The UAV hovers when picking up goods at the distribution point;

(4) The time window for each customer is fixed;

(5) The demand at each customer point is less than the maximum payload capacity of the UAV;
(6) The distance between the distribution center and the ship is the straight-line distance;

(7) The flight speed of the UAV is constant.

Furthermore, to illustrate the maritime UAV cargo delivery process, a specific workflow is

presented in Figure 1-1.
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Figure 2-1 Flowchart of Unmanned Aerial Vehicle Operation Allocation

2.3. Optimization of the Model

The maritime UAV logistics distribution system primarily involves three stakeholders:
government authorities, customers, and port enterprises. Government authorities are
primarily concerned with the safety of UAV operations; customers prioritize the timeliness of
delivery; and port enterprises focus on the economic efficiency of the process. To address the
demands of all three parties, this study constructs a dual-objective UAV task allocation model
under multiple constraints, aiming to minimize both customer dissatisfaction and total flight
distance.

2.3.1. Customer Dissatisfaction Model

Customer dissatisfaction mainly depends on the delivery time of the supplies. To evaluate this
satisfaction, the degree of matching between the actual delivery time and the customer's
expected time window needs to be analyzed. Therefore, the UAV should deliver the supplies to
the corresponding vessel within the specified time as much as possible. Due to certain external
factors affecting the UAV during flight, a soft time window needs to be set to ensure that the
delivery can as closely as possible meet the customer's requirements. If the delivery time of
materials is before the ship's expected time window , the customer's satisfaction is 1; if the
delivery time of materials is within the ship's expected time window , the customer's
satisfaction will decrease as the arrival time increases; if the delivery time of materials is after
the ship's expected time window , the customer's satisfaction is 0. Therefore, in this paper, the
customer satisfaction is calculated using a linear function to represent it, as follows

1 < e
t.—e
s(1,) = 1—1-:_81 e <t <1 (1)
0 St > 1

The total delivery time is calculated based on three components: firstly, the flight time between
two points; secondly, the service time at the previous customer location; thirdly, the arrival
time at the previous customer location. The details are as follows

-1
t, =0 +d v+t (2)

As shown in Figure 2-2, the diagram illustrating the calculation of customer satisfaction.
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Figure 2-2 Diagram for Calculating Customer Satisfaction
As illustrated in Figure 2-2, the customer satisfaction level for each individual is first calculated.
The average of these values, denoted as 9, is then computed to quantify the performance of the

human-machine job allocation. The function for S is defined as follows

Zs(fa) (3)

Based on this, the paper further defines dissatisfaction as the opposite of satisfaction.

Specifically, the objective function VS represents the dissatisfaction with the delivery time
when a UAV departs from the distribution center. It is formulated as follows

n

Zs(tij)
NS=]_S=]_i " (4)
n

2.3.2. Flight Distance Model

In UAV material delivery, the total flight path length is a key metric for evaluating efficiency and
transportation costs. The objective is to design a flight route with the shortest total mileage
using an efficient heuristic algorithm. The optimization process involves intelligently
integrating delivery requirements by considering the geographical distribution of all delivery
points, the UAV's flight range, and its maximum payload capacity. By precisely calculating the
shortest feasible paths between points and optimizing the visit sequence and task allocation,
the system can significantly reduce total flight mileage while ensuring all customers are served.
This not only directly reduces the energy consumption of the UAV, extends the service life of
the equipment, but also improves the delivery efficiency and shortens the overall delivery time,
ultimately achieving the minimization of operating costs and the maximization of the response
speed of material delivery. The specific objective function is as follows

F=ZZnyk'dy~ (5)

ieN, jeN, keK

2.3.3 Dual-objective Programming Model under Multiple Constraints

Based on the above analysis, combined with the UAV task allocation model, this paper
constructs a dual-target task allocation model under multiple constraints, as follows
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(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Equations (6) and (7) represent the objective functions. Equation (6) indicates minimizing the
customer dissatisfaction during the material distribution process, while Equation (7) indicates
minimizing the flight distance of the UAV. Equation (8) represents that each delivery task can
only be executed by one UAV once; Equation (9) represents the maximum flight distance
constraint for the UAV; Equation (10) represents the maximum load constraint for the UAV;
Equation (11) represents the flight speed constraint for the UAV; Equation (12) represents the
flight altitude constraint for the UAV; Equation (13) represents the maximum flight time
constraint for the UAV; Equation (14) represents the number of UAV; Equation (15) indicates
that the UAV departs from the port material distribution center, completes the delivery task

and returns to the take-off point. (16) represents the decision variables.
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3. Algorithm Design

3.1. Design of NSGA-II Algorithm

Proposed by Srinivas and Deb in 2002, NSGA-II[2¢] is an advanced multi-objective optimization
algorithm. This algorithm introduces non-dominated sorting and crowding distance calculation
mechanism based on NSGA to find the Pareto optimal solution set. Taking into account the
characteristics of the customer's timeliness requirements in the unmanned aerial vehicle task
allocation scenario of the port berthing area, this paper constructs a dual-objective model with
multiple constraints, and solves it using the NSGA-II algorithm. To further enhance the
performance of the algorithm, this study introduces an adaptive dynamic adjustment
mechanism for crossover and mutation probabilities, which enables the algorithm to adjust
genetic operator rates in response to population diversity and evolutionary progress during
the search process. Additionally, a 3-opt local search strategy is incorporated to refine the
solutions by eliminating inefficient routes and exploring more promising neighborhoods within
the solution space. These improvements collectively contribute to obtaining higher-quality
solutions with accelerated convergence behavior, thereby strengthening both the search
capability and computational efficiency of the optimization process. Meanwhile. This research
provides a new technical idea and solution approach for the problem of UAV life support
material task allocation at sea.

3.2. Principle of NSGA-II Algorithm

The basic process of the NSGA-II algorithm involves initializing the population, performing non-
dominated sorting and calculating the crowding distance, and then generating a new
population through genetic operations (e.g., selection, crossover, and mutation). The key steps
are detailed below:

(1) Encoding and Decoding

This paper employs a real-number encoding strategy to generate the initial solution. Each
individual is represented by a vector of real numbers, with its length equal to the total number
of customers. Each element in the vector is a random number uniformly distributed in the range
[0, 1). Each gene value determines both the UAV assigned to the customer and the customer's
service sequence in that UAV's route.

The decoding process transforms the real-number encoded solution into practical UAV delivery
routes by first assigning customers to UAVs based on multiplied and rounded gene values, then
establishing service sequences through ascending gene value sorting for each UAV's customers,
followed by route construction that inserts customers from the distribution center (node 0)
while enforcing all operational constraints, and finally representing each validated route as a
node sequence that begins and ends at the distribution center, completing the cycle from
dispatch to return.

(2) Non-dominated Sorting

During non-dominated sorting, individuals are ranked based on their fitness values to evaluate
their dominance relationships within the population. Superior individuals are selected as the
parent population to create the next generation. Specifically, if all the objective function values
of individual a are less than or equal to those of individual b and at least one is strictly less than,
then a dominates b.

(3) Crowding distance calculation

The crowding distance metric serves as a crucial indicator for estimating the density of non-
dominated solutions in the vicinity of a particular point on the Pareto front. It quantifies the
sparsity of solutions by measuring the average distance between a given solution and its
adjacent neighbors along each objective dimension. Solutions with larger crowding distances
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are situated in less densely populated regions of the front, implying greater diversity
contribution. As a result, such solutions are assigned higher selection priority in the
evolutionary process to promote uniform Pareto front exploration and representation. The
formula for calculating crowding distance is as follows

_ Jux) - () i=2,....(I-1)

l

Dim - b=
S ) = S i)

(17)

In the formula, CD,, represents the crowding distance of the i-th individual in the m-th
objective function; f,, represents the m-th objective function; X,,, represents the maximum

value of all individuals in the m function; X,;, represents the minimum value of all individuals
in the m function. For ease of understanding, the crowding distance is shown in Figure 3-1.

> 4

.

fi
Figure 3-1 Diagram of Calculation for Crowded Distance

(4) Cross-operation

This paper selects the Simulated Binary Crossover[27] (SBX) method. This approach selects
parent individuals randomly as the crossover objects, and through steps such as initializing
parameters, generating random numbers, calculating crossover probabilities, and performing
crossover operations, it exchanges genes between parent individuals to generate new offspring
individuals. Compared with the traditional binary crossover, SBX can smoothly search within
the real number domain and is suitable for the real number encoding method of this model. The
specific crossover process is as follows:

First, two parent individuals are randomly selected from the population for crossover.

Second, for each parent individual, a crossover parameter ¢ is generated. This parameter is
calculated based on a random number 7, which 7 determines the degree of exchange of the
character's genetic information.

Then, two offspring individuals are generated by recombining the genes of the parents based
on a probability distribution that simulates single-point crossover. Specifically, the calculation
formulas for the offspring x; and X, derived from the parent generations P, and p, are as
follows

X =2 *[(1+C)*p+(1=)* ]

(18)

%=%HU—Q*A+O+Q*m]

Among them, ¢ s dynamically and randomly determined by the distribution factor 7
according to formula (19).
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(27’)E ,r<0.5
¢= (19)

1

(2(1 —r))_E ,r>0.5

Finally, a boundary constraint handling step is performed on the generated offspring to ensure
all variable values lie within the defined feasible range.
For ease of understanding, a simplified schematic of the crossover operation is provided in

Figure 3-2.
I

Parent 1 L{OJ1{0Y0({0]1 Child 1 L[O|T{0|1]0]]1

Paent2 |0 1O LVT]0(1 Child 1 0(1]0]1{0})0]1

|
Figure 3-2 Schematic Diagram of Cross-operation

(5) Mutation operation

This study employs polynomial mutation(28], a widely adopted operator for multi-objective
optimization problems, to maintain population diversity. The mutation form is

& =3 +¢(§u +§l),where

1

[2c+(1=2¢) (1=¢ )" [T =1, s%
¢= 11 (20)
1—{2(1—0)+2(c—%j(lﬂljz)%ﬂ}ﬂm+ ,c>%

In the formula, ¢ = (& —¢')/(&"-¢"), . =(£" =& )/ (£ ~£'), ¢ are random numbers within
the [0,1] range, 77,, distribution index, &, the previous generation population, &, the offspring
population after polynomial mutation, £*,&" represents the upper bound and the lower bound.

(6) Elite Retention Strategy

Through non-dominated sorting and crowding distance calculation, the Elite Retention Strategy
retains elite individuals to prevent the loss of high-quality solutions, thereby improving the
algorithm's convergence and efficiency.

(7) Termination Conditions

In this section, the termination condition is defined as the maximum number of iterations. If the
condition is met, the algorithm terminates; otherwise, the iteration continues.

According to the above steps, the algorithm flow of NSGA-II is shown in Figure 3-3.
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Figure 3-3 Basic Flowchart of NSGA-II Algorithm

3.3. Improving the NSGA-II Algorithm

This paper presents an enhanced NSGA-II algorithm that incorporates dynamically adaptive
crossover and mutation probabilities combined with a 3-opt local search strategy. These
modifications are introduced to strengthen the algorithm's ability to escape local optima and
enhance convergence toward high-quality Pareto fronts. The specific improvements are
detailed below:

(1) Adaptive adjustment method for crossover and mutation probabilities

In the traditional NSGA-II algorithm, crossover and mutation probabilities are typically set as
fixed values. This approach often limits the algorithm's capacity to balance global exploration
in the early stages and local exploitation in the later phases, particularly in solving complex
constrained optimization problems such as UAV delivery route planning. To address this
limitation, this paper introduces an adaptive parameter control strategy that dynamically
adjusts the crossover and mutation rates throughout the evolutionary process. Specifically,
higher probabilities are applied in the early evolutionary stage to enhance exploratory diversity
and generate new solutions, while these values are gradually reduced in later stages to facilitate
convergence and preserve high-quality solutions. The specific adjustment strategy is as follows:

iter

Cr =l + (Tl = Clyi ) X () (21)
iterations
iter
va = vamin + (Vamax - vamin ) X ( . . (22)
iterations

In the formula, ¢7,,, and ¢7;;, denote the maximum and minimum crossover probabilities,
respectively; iter and iferations denote the current and total iteration numbers, respectively.
va,.. and v4,;, denote the maximum and minimum mutation probabilities, respectively.

(2) 3-opt Local Search Strategy
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This paper employs the 3-opt local search strategy, which enables the algorithm to conduct
extensive local exploration, optimize high-quality solutions specifically, and flexibly adapt to
changes in path length, thereby significantly enhancing its performance in the unmanned aerial
vehicle task allocation problem.

Specifically, the local search operation of 3-opt is as follows:

Step 1: The offspring population generated through tournament selection, SBX and polynomial
mutation is merged with the parent population to form a new population.

Step 2: Remove duplicates from the combined population, retaining only the individuals with
unique fitness values. Subsequent to non-dominated sorting, the initial solution set for local
search is drawn from the first non-dominated layer, to which the 3-opt local search is applied.
For a solution with a size (number of customers) greater than or equal to 3, randomly select
three different positions and generate a series of candidate solutions through various structural
perturbation methods (such as fragment inversion, three-position rotation, etc.); if the
dimension is less than 3, perform a two-position exchange operation. Each search samples in
the neighborhood through structural perturbation and evaluates the performance of the
objective function.

Step 3: Merge the high-quality candidate solutions generated by local search into the original
population to form an expanded solution set.

Step 4: Using the elite retention strategy, the best individuals are selected from the new
population set to constitute the next generation population.

Specifically, after generating the candidate solutions, the algorithm will compare them with the
original solution. A new solution is accepted to replace the incumbent one only if it exhibits
Pareto dominance—that is, it demonstrates improvement in both the dissatisfaction function
and the total flight distance function. Conversely, if the new solution fails to dominate the
original, the latter remains unaltered. This replacement mechanism enables the 3-opt local
search strategy to not only strengthen the local exploitation capability of the NSGA-II algorithm,
but also synergize with the elite retention strategy. Such integration helps preserve high-
quality solutions throughout the evolutionary process, thereby sustaining the overall
excellence of the population

4. Numerical experiments

In order to verify the correctness of the model and the effectiveness of the improved NSGA-II
algorithm, this study conducted experiments using simulated data of the anchorage in Qingdao
Port. In this case, the coordinates of the ships in the anchorage were randomly obtained.
Additionally, to ensure the objectivity of the experimental results, this paper used Python 3.10
version for simulation experiment calculations (the experimental environment was Intel(R)
Core(TM) i7-14650HX (2.20 GHz)). To ensure the consistency and reliability of the
experimental data, all the simulation results below are based on the same environment and
parameter settings.

4.1. Introduction of Examples and Parameter Settings

Given the current lack of baseline data on the distribution of ship supplies between ports and
anchorage areas, this study selects Qingdao Port as the distribution center and its
corresponding anchorage area as the distribution region, with the Ship Information Network
serving as the primary data source. To simulate real-world operational scenarios, 25 fixed-
position supply ship points were randomly generated within the anchorage area, with their
spatial distribution illustrated in Figure 4-1. Since the locations of the port, anchorage area, and
ships are expressed in latitude and longitude, all geographic coordinates were converted into a
planar coordinate system with Qingdao Port as the origin to simplify subsequent computational
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procedures. The detailed coordinate data and corresponding conversion results are provided
in Tables 4.1 and 4.2. Furthermore, the mathematical models and algorithm parameters used

in this study are systematically summarized in Table 4.3.
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Figure 4-1 Distribution center, anchorage, ship schematic diagram

Table 4.1 Latitude and Longitude Coordinates and Planar Coordinates of Anchorage Areas
within Qingdao Port

Longitude Latitude

120°12'40"E 36°06'00"N

120°13'13"E 36°07'36"N

120°16'40"E 36°07'36"N

120°16'50"E 36°06'00"N

120°16'30"E 36°04'18"N

120°14'30"E 36°04'18"N

120°14'30"E 36°06'00"N

Table 4.2 Ship customer information
Number X Y Demand Number X Y Demand
0 0 0 0 13 -5.666 1.501 1.16
1 -5.291 4.262 1.49 14 -3.020 1.112 1.93
2 -4.393 4.262 1.52 15 -2.995 -0.587 2.56
3 -3.269 3.954 1.38 16 -3.295 -0.596 1.96
Table 4.2 Ship customer information(continued)

4 -4.717 3.768 1.46 17 -4.293 -1.298 7.83
5 -3.744 3.368 3.32 18 -4.868 -0.958 5.32
6 -4.468 3.245 3.96 19 -5.217 -0.185 1.16
7 -3.320 2.780 1.83 20 -5.217 0.371 1.89
8 -5.766 2.812 1.96 21 -4.443 0.371 5.89
9 -4.268 2.441 7.69 22 -3.695 0.68 3.14
10 -3.395 1.761 2.14 23 -4.443 -0.278 4.52
11 -5.217 1.638 9.36 24 -3.445 -1.205 6.78
12 -4.193 1.082 1.69 25 -5.841 -1.236 2.54
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Table 4.3 relevant parameter

Description Parameters Numerical Value

UAV service time (min) [ 10
Maximum payload capacity of the UAV (kg) O, ox 20
Maximum flight radius of the UAV (km) L. 20
Constant flight speed of the UAV (km/h) Vi 50
Maximum flight time of the UAV (min) T .« 60
[terations / 500

Population quantity / 200

Crossover probability cr 0.7

Mutation probability va 0.01

4.2. Results and Analysis Discussion

To verify the performance of the proposed dual-objective unmanned aerial vehicle task
allocation model and the improved NSGA-II algorithm, a case study was conducted using
simulated port-anchorage ship data. As all solutions on the Pareto front obtained by the
algorithm are non-dominated (meaning no single solution is optimal across all objectives), a
trade-off decision is required. This study selects two representative solutions from the Pareto
front for detailed comparison. The specific results are presented in Tables 4.4 and 4.5.
Furthermore, this section compares the convergence behavior of the the optimization
objectives and the Pareto frontier curves between the improved algorithm and the original
algorithm, as shown in Figure 4-1.
Table 4.4 Improving the UAV task allocation scheme and compromise solution of NSGA-II
Objective function
The number . . .
Case value Task allocation plan Compromise solution
. . of UAVs
Distance  Discontent

0-9-19-16-0
0-20-18-24-0
0-11-8-6-0
1 100.68 0.09 8 gfﬁg:;;:g Discontent  0.105
0-2-4-1-0
0-22-12-13-10-0
0-5-7-3-0
0-22-11-13-0
0-17-23-24-0
0-20-12-0
2 91.70 0.12 8 00_'21_15}:1_6:;?0 Distance 96.19
0-14-9-8-6-0
0-21-19-25-18-0
0-5-7-10-0

Table 4.5 The UAV task allocation scheme and compromise solution of NSGA-II
Objective function value  The number of

Case Distance Discontent UAVs Task allocation plan Compromise solution
0-14-11-13-24-0
1 105.67 0.10 8 0-5-9-17-0 Discontent 0.115

0-15-12-10-7-0
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0-16-21-25-0

0-3-4-6-0

0-18-8-1-0
0-23-19-20-0

0-2-22-0
0-11-13-24-0
0-5-3-9-10-0

0-18-17-0

0-15-16-0 ]

2 97.57 0.13 8 0-7-21-25-0 Distance 101.62
0-6-4-1-8-0
0-23-19-20-22-0

0-14-12-2-0

As shown in Tables 4.4 and 4.5, the improved NSGA-II algorithm yields superior results. In this
instance, it reduces total flight distance by 5.34% and customer dissatisfaction by 8.7%. This
demonstrates the enhanced capability of the improved algorithm to find a better trade-off
between these competing objectives, ultimately achieving a higher-quality solution.

—— NSGA-2 —— NSGA-2
0.14 1 — I-NSGA2 | — I-NSGA2

0.12

o 0.10
0.08
0.06
0 100 200 300 400 500 0 100 200 300 400 500
iter iter
(a) Iteration curve graph of customer (b) Iteration curve graph of flight
dissatisfaction target function distance objective function
1304 —e— NSGA-2
—e— |-NSGA2
120 -
1101
o~
- 100+
%0 |
80+

0 T T T T T T T T
0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
F1

( ¢ ) The Pareto curve diagrams of the improved NSGA-II algorithm and the
original algorithm
Figure 4-1 Iteration curves and Pareto curves of the improved NSGA-II algorithm and the
original algorithm for the objective functions
As shown in Figures 4-1(a) and 4-1(b), the improved NSGA-II algorithm (labeled as I-NSGA2)
demonstrated significant improvements during the optimization process. Specifically, [-NSGA2
achieved a greater reduction in the target value in the early iterations, which reflects its ability
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to quickly achieve initial convergence. Moreover, in the final iteration stage, the solutions
generated by the proposed algorithm had lower customer dissatisfaction and shorter total
flight distances compared to the original NSGA-II. Additionally, [-NSGA2 reached outstanding
performance earlier in the iteration process. These results confirm that the improved algorithm
has a higher convergence speed and optimization accuracy, and prove its effectiveness in
solving the bi-objective optimization model introduced in this study.

As evidenced in Figure 4-1(c), the enhanced NSGA-II algorithm exhibits notable superiority
across several key aspects. First, [-NSGAZ2 obtains a larger number of non-dominated solutions
with a broader spread along the Pareto front. Second, the solution set demonstrates improved
distribution uniformity, reflecting a more consistent and thorough exploration of the objective
space. Finally, the Pareto solutions derived from [-NSGAZ achieve superior convergence,
approaching closer to the true optimal front compared to the original algorithm. In conclusion,
the modified algorithm significantly outperforms the baseline in both the quality and diversity
of Pareto-optimal solutions.

5. Conclusion

This study addresses the problem of UAV material transportation and distribution within the
portanchorage area. A dual-objective optimization model considering multiple constraints was
proposed, with the focus on reducing customer dissatisfaction and total flight distance. The
effectiveness of the proposed model was verified through simulation experiments. The main
findings of this study are summarized as follows.

(1) This study constructed a dual-objective mathematical model, with the aim of reducing
customer dissatisfaction and minimizing the total flight distance of the UAVs. By incorporating
a soft time window mechanism and a linear satisfaction function, the model can effectively
reflect customers' demands for delivery timeliness, and its feasibility and effectiveness have
been verified through practical cases.

(2) The enhanced NSGA-II algorithm, which incorporates an adaptive crossover and mutation
probability adjustment mechanism along with a 3-opt local search strategy, demonstrates
superior performance over the conventional NSGA-II approach in convergence speed,
distribution uniformity of the solution set, and proximity to the true Pareto front. Experimental
results indicate a reduction in total flight distance by approximately 5.34% and a decrease in
customer dissatisfaction rate by 8.7%.

(3) This research provides specific task allocation and path planning methods for maritime UAV
logistics delivery. It has high practical value and broad application prospects especially in
emergency material distribution, reduction of vessel waiting time, and lowering of port
operation costs.

However, this study also has certain limitations. Further research can improve upon these
aspects.

(1) The current study only considers a single distribution center, while actual ports can have
multiple distribution centers. Future research can explore the collaborative scheduling model
for multiple distribution centers, optimize the task allocation for drones, and thereby enhance
transportation efficiency.

(2) The current study does not cover dynamic factors such as sea wind and waves, sudden tasks,
and UAV failures. In the future, more comprehensive factors can be considered, combined with
real-time monitoring technology, to construct a drone transportation model.
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