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Abstract 

With the continuous advancement of unmanned aerial vehicle (UAV) technology, UAV 
delivery models are increasingly transforming shore-to-ship material transportation 
and are expected to become a vital component of future maritime logistics systems. First, 
a UAV task allocation model considering the customers' timeliness requirements and 
various constraints was proposed, aiming to simultaneously optimize the two objectives 
of customer dissatisfaction degree and flight distance. Second, an improved non-
dominated sorting genetic algorithm (NSGA-II) is employed to solve the model. By 
integrating an adaptive crossover and mutation probability calculation method with a 3-
opt local search strategy, the improved algorithm demonstrates enhanced performance. 
Finally, simulation experiments based on randomly generated datasets were conducted. 
The results demonstrate an 8.7% reduction in customer dissatisfaction and a 5.34% 
decrease in total flight distance. Therefore, the proposed model can provide both 
theoretical support and practical guidance for the real-world application of UAVs in 
maritime material transport and distribution. 

Keywords 

Unmanned Aerial Vehicle, Customers' Timeliness Requirements, Task Allocation, Time 
Windows, NSGA-II. 

1. Introduction 

The UAV refers to aircraft operated without an onboard pilot. They are maneuvered through 
radio remote-control devices and onboard program-controlled systems, with an integrated 
computer system enabling autonomous regulation of flight stability[1]. With the rapid 
development of the global maritime industry and intelligent technologies, using UAVs 
(Unmanned Aerial Vehicles) for maritime vessel logistics delivery will become one of the 
research hot spots. The traditional method of vessel replenishment usually relies on the vessel 
docking at the port or having dedicated personnel and vessels from the port to replenish 
supplies. This method is not only time-consuming and costly, but also causes certain pollution 
to the marine environment, and also puts pressure on the operational efficiency of the port. 
Against this backdrop, using UAVs for maritime delivery is an efficient and flexible solution. 
UAVs, with their advantages such as rapid response, easy operation and strong mobility, 
demonstrate significant advantages in reducing logistics costs, minimizing vessel waiting times 
and enhancing service efficiency. Furthermore, there are still numerous technical and 
operational challenges in the process of UAV material delivery[2], such as weight capacity 
limitations, flight distance constraints, energy consumption management, and optimization of 
delivery routes. Therefore, how to integrate the characteristics of UAVs with the logistics 
demands of ships, establish an appropriate task assignment model, and enhance delivery 
efficiency has become a core issue in current research. 
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However, there are relatively few studies on the logistics model of UAVs delivering supplies 
from the port distribution center to the ships at the anchorage. Therefore, this paper also draws 
on the logistics models of UAVs from other fields to provide theoretical support and practical 
guidance. 

In the field of UAV delivery, some scholars have studied the collaborative logistics delivery 
model involving vehicles and UAVs. Li et al. proposed a UAV collaborative delivery model, which 
effectively reflects the timeliness requirements of UAVs[3]. The same year, Gu et al.and Moshref-
Javadi et al. the system distribution mode of vehicles and unmanned aircraft was studied, and 
the superiority of this collaborative mode was verified[4, 5]. Furthermore, Zang et al. studied the 
optimization problem of joint delivery by UAVs and trucks, aiming to minimize costs through 
collaborative delivery methods[6]. Wang et al. proposed a method for collaborative delivery by 
vehicles and UAVs. This collaborative delivery system can significantly enhance efficiency and 
reduce costs[7]. Some scholars have also conducted research on the logistics distribution model 
for UAV systems. Benarbia et al. found that using logistics UAVs for cargo transportation can 
reduce distribution costs and delivery time[8]. Li et al. discovered that UAV freight 
transportation can achieve excellent economic and social benefits[9]. Bridgelall use of UAVs for 
transporting hazardous materials not only reduces transportation risks, but also cuts costs and 
alleviates traffic congestion on the ground[10]. Lee et al. conducted a study on using intelligent 
logistics UAVs to replace delivery personnel for the delivery of small packages[11]. Zhou 
conducted research on the low-altitude economic efficiency of UAV, proving that it can achieve 
sustainable development of smart cities[12]. 

In the aspect of UAV mission allocation, Schwarzrock et al. conducted research indicating that 
increasing the number of tasks that UAVs can perform can lead to more optimal task 
allocation[13]. Zhao et al. solved the problem of rapid task allocation for heterogeneous UAVs 
through reinforcement learning[14]. Wu et al. proposed an approach based on the improved 
simulated annealing combined with genetic algorithm (ISAFGA) to solve the problem of UAV 
task allocation[15]. Zhu et al. proposed an improved semi-random Q-learning algorithm to 
enhance the rationality of UAV task allocation and the success rate of task execution[16]. Hu et 
al. proposed a pigeon-inspired fuzzy multi-objective optimization algorithm to solve the 
problem of UAV task allocation for multiple ground tracking targets[17]. Bai et al. reduced the 
cost and service time of vehicle and UAV collaborative delivery by improving the heuristic 
algorithm[18]. Zhang et al. proposed a distributed decision-making intelligent framework based 
on evolutionary game theory to solve the task allocation problem of UAV swarm systems in 
uncertain scenarios[19]. Park et al. optimization model based on mixed integer linear 
programming (MILP) enabled multiple heterogeneous UAVs to generate feasible and efficient 
task allocation schemes[20]. 

Based on the above literature analysis, the cargo delivery model in urban settings has evolved 
from the traditional human and vehicle delivery to the UAV collaborative delivery, and finally 
to the fully unmanned autonomous delivery mode. As an emerging model, UAV delivery, with 
its flexibility and efficiency, not only improves the delivery time but also reduces the 
environmental impact of traditional cargo delivery.  

Based on this, the experience of delivering daily necessities to ships at offshore anchorages 
through unmanned aircraft in maritime environments has been gained and supported. Yan et 
al. proposed an improved particle swarm optimization combined with genetic algorithm (GA-
PSO), which enhanced the efficiency of UAV maritime task allocation[21]. Wang et al. provided 
in-depth guidance for the future development of UAV in the marine field[22]. Pensado et al. 
conducted a study on using UAVs equipped with a real-time trajectory optimizer for ship-to-
shore communication to deliver packages to offshore vessels[23]. Yang et al. developed a mixed 
integer programming model and a branch-and-price-and-cut (BPC) algorithm to optimize UAV 
shore-to-ship cargo scheduling[24]. 
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Overall, with the continuous advancement of intelligent UAV technology and the logistics 
industry, UAVs have broad application prospects as a means of transporting goods. At the same 
time, as an emerging distribution model, they have gradually attracted attention from various 
sectors of society and have achieved some success in different fields. However, several issues 
still need to be resolved. Specifically, existing research mainly focuses on UAV transportation 
in urban settings, while studies on UAV-based maritime goods transportation are relatively 
scarce and have neglected the transport of goods between ports and ships. 

Based on the above analysis, this study aims to expand the research on material transportation 
between ports and anchorage areas. Considering the time sensitivity and distance constraints 
of customers in the port anchorage area, we proposed a dual-objective optimization model and 
solved it using the NSGA-II algorithm. The contributions of this study are as follows: 

(1) This study investigates UAV operation allocation in a port anchorage scenario. The results 
provide theoretical support and technical assistance for daily necessities distribution via a 
marine UAV supply system. 

(2) A UAV operation allocation model for port anchorages was constructed, with the dual 
objectives of minimizing customer dissatisfaction and flight distance while considering 
customer timeliness requirements under multiple constraints. 

(3) An improved NSGA-II algorithm was developed, which incorporates a 3-opt local search 
strategy and adaptive crossover and mutation probabilities. These enhancements strengthen 
the local search capability and improve the solution quality. 

The arrangement of this study is as follows. Section 2 presents a dual-objective model for UAV 
task allocation considering customer timeliness requirements under multiple constraints; 
Section 3 introduces a method based on the improved NAGA-II algorithm; Section 4 presents 
the numerical calculation and analysis of the proposed dual-objective model; Section 5 
summarizes the research.  

2. Model 

2.1. Problem Description and Symbol Explanation 

The multi-UAV mission planning mainly consists of two parts: task allocation and path 
optimization[25]. These two are interrelated and distinct. The purpose of the task allocation is 
to assign multiple tasks to each UAV and determine the execution sequence The goal of path 
optimization is to plan a feasible path for the UAVs from the starting point to the target point. 
The path must have obstacle avoidance and collision avoidance capabilities, and also meet the 
flight ability requirements of the UAVs. 

Suppose there are ships in need of replenishment in a certain anchorage, the port employs 
multiple UAVs of the same performance to deliver emergency supplies. Each UAV departs from 
the same port, completes its assigned tasks, and then returns. The UAVs plan their tasks in 
advance based on the required supply weight and the location of each ship, and they will not 
alter the original distribution plan during delivery. 

Therefore, the objective of this research is to complete the delivery operation within specified 
soft time windows while minimizing both customer dissatisfaction and the total UAV flight 
distance. For convenience, the notations used in this paper are explained in Table 2.1. 

 
Table 2.1 Model symbols and parameter Definitions 

Parameters Definition 

N  Set of customer nodes  1,2,...,N n=  

0N  UAV distribution center (port terminal) nodes  0 0N N= ∪  
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K  The set of UAVs is  12 ...K k= , , ,  

 ,  i ie l  Time window 

ijt  Delivery time of materials 

1

ijt
−

 
The total time from the arrival of the UAV k  at the current 

customer location until completion 

st  The maximum hovering service time of the UAV 

maxT  Maximum flight time of the UAV 

minv  Minimum flight speed of the UAV 

kv  Constant flight speed of the UAV 

 
Table 2.1 Model symbols and parameter Definitions(continued) 

Parameters Definition 

maxv  Maximum flight speed of the UAV 

ijd  Distance 

maxD  Maximum flight distance of UAV 

iq  The cargo capacity required for the ship 

maxQ  Maximum payload capacity of the UAV 

( )ijs t  The satisfaction level of the i -th customer 

S  Customer average satisfaction function 

NS  Customer dissatisfaction function 

F  UAV flight distance function 

ijkx  
Decision variable: When the UAV moves from ship i  to ship j , its 

value is 1; otherwise, its value is 0. 

2.2. Assumptions 

To better meet the emergency supply needs of ships in the anchorage area and facilitate 
maritime UAV cargo delivery, the following assumptions are made: 

(1) The UAV maintains a constant altitude during flight; 

(2) The impact of adverse sea conditions is not considered; 

(3) The UAV hovers when picking up goods at the distribution point; 

(4) The time window for each customer is fixed; 

(5) The demand at each customer point is less than the maximum payload capacity of the UAV; 

(6) The distance between the distribution center and the ship is the straight-line distance; 

(7) The flight speed of the UAV is constant. 

Furthermore, to illustrate the maritime UAV cargo delivery process, a specific workflow is 
presented in Figure 1-1.  
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Figure 2-1 Flowchart of Unmanned Aerial Vehicle Operation Allocation 

2.3. Optimization of the Model 

The maritime UAV logistics distribution system primarily involves three stakeholders: 
government authorities, customers, and port enterprises. Government authorities are 
primarily concerned with the safety of UAV operations; customers prioritize the timeliness of 
delivery; and port enterprises focus on the economic efficiency of the process. To address the 
demands of all three parties, this study constructs a dual-objective UAV task allocation model 
under multiple constraints, aiming to minimize both customer dissatisfaction and total flight 
distance. 

2.3.1. Customer Dissatisfaction Model 

Customer dissatisfaction mainly depends on the delivery time of the supplies. To evaluate this 
satisfaction, the degree of matching between the actual delivery time and the customer's 
expected time window needs to be analyzed. Therefore, the UAV should deliver the supplies to 
the corresponding vessel within the specified time as much as possible. Due to certain external 
factors affecting the UAV during flight, a soft time window needs to be set to ensure that the 
delivery can as closely as possible meet the customer's requirements. If the delivery time of 
materials is before the ship's expected time window , the customer's satisfaction is 1; if the 
delivery time of materials is within the ship's expected time window , the customer's 
satisfaction will decrease as the arrival time increases; if the delivery time of materials is after 
the ship's expected time window , the customer's satisfaction is 0. Therefore, in this paper, the 
customer satisfaction is calculated using a linear function  to represent it, as follows 

( )

1                       ,   <     

  1    ,      

0                      ,   >        

ij i

ij i

ij i ij i

i i

ij i

t e

t e
s t e t l

l e

t l




−
= −  

−



                                           (1) 

 

The total delivery time is calculated based on three components: firstly, the flight time between 
two points; secondly, the service time at the previous customer location; thirdly, the arrival 
time at the previous customer location. The details are as follows 

1 /ij ij ij k st t d v t−= + +                                                       (2) 

 

As shown in Figure 2-2, the diagram illustrating the calculation of customer satisfaction. 
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tij

s(tij）

ei li

1

0
 

Figure 2-2 Diagram for Calculating Customer Satisfaction 

As illustrated in Figure 2-2, the customer satisfaction level for each individual is first calculated. 

The average of these values, denoted as S , is then computed to quantify the performance of the 

human-machine job allocation. The function for S  is defined as follows 

( )
1

n

ij

i

s t

S
n

==
                                                                               (3) 

 

Based on this, the paper further defines dissatisfaction as the opposite of satisfaction. 

Specifically, the objective function NS  represents the dissatisfaction with the delivery time 
when a UAV departs from the distribution center. It is formulated as follows 

( )
11 1

n

ij

i

s t

NS S
n

== − = −
                                                         (4) 

 

2.3.2. Flight Distance Model 

In UAV material delivery, the total flight path length is a key metric for evaluating efficiency and 
transportation costs. The objective is to design a flight route with the shortest total mileage 
using an efficient heuristic algorithm. The optimization process involves intelligently 
integrating delivery requirements by considering the geographical distribution of all delivery 
points, the UAV's flight range, and its maximum payload capacity. By precisely calculating the 
shortest feasible paths between points and optimizing the visit sequence and task allocation, 
the system can significantly reduce total flight mileage while ensuring all customers are served. 
This not only directly reduces the energy consumption of the UAV, extends the service life of 
the equipment, but also improves the delivery efficiency and shortens the overall delivery time, 
ultimately achieving the minimization of operating costs and the maximization of the response 
speed of material delivery. The specific objective function is as follows 

0 0

ijk ij

i N j N k K

F x d
  

=                                                                 (5) 

 

2.3.3 Dual-objective Programming Model under Multiple Constraints 

Based on the above analysis, combined with the UAV task allocation model, this paper 
constructs a dual-target task allocation model under multiple constraints, as follows 
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( )
1min 1

n

ij

i

s t

NS
n

== −
                                                               (6) 

 

0 0

min ijk ij

i N j N k K

F x d
  

=                                                         (7) 

 

Subject to 

0

0

,

1, ,ijk

k K i j N

x i j N
 

=                                                           (8) 

 
0

max

1

N

ijk ij

i

x d D
=

                                                                           (9) 

 

0 0

maxijk i

i N j N

x q Q
 

                                                                   (10) 

 

min maxkv v v                                                                           (11) 

 

min maxH h H                                                                        (12) 

 

0 0

maxij

i N j N k K

t T
  

                                                                   (13) 

 

1

max

n

i

i

q

k
Q

=


                                                                                 (14) 

 

0 0 1,jk i k

j N i N

x x k K
 

= =                                                   (15) 

 

  00,1 , , , ,ijkx i j N k K i j                                      (16) 

 

Equations (6) and (7) represent the objective functions. Equation (6) indicates minimizing the 
customer dissatisfaction during the material distribution process, while Equation (7) indicates 
minimizing the flight distance of the UAV. Equation (8) represents that each delivery task can 
only be executed by one UAV once; Equation (9) represents the maximum flight distance 
constraint for the UAV; Equation (10) represents the maximum load constraint for the UAV; 
Equation (11) represents the flight speed constraint for the UAV; Equation (12) represents the 
flight altitude constraint for the UAV; Equation (13) represents the maximum flight time 
constraint for the UAV; Equation (14) represents the number of UAV; Equation (15) indicates 
that the UAV departs from the port material distribution center, completes the delivery task 
and returns to the take-off point. (16) represents the decision variables. 
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3. Algorithm Design 

3.1. Design of NSGA-II Algorithm 

Proposed by Srinivas and Deb in 2002, NSGA-II[26] is an advanced multi-objective optimization 
algorithm. This algorithm introduces non-dominated sorting and crowding distance calculation 
mechanism based on NSGA to find the Pareto optimal solution set. Taking into account the 
characteristics of the customer's timeliness requirements in the unmanned aerial vehicle task 
allocation scenario of the port berthing area, this paper constructs a dual-objective model with 
multiple constraints, and solves it using the NSGA-II algorithm. To further enhance the 
performance of the algorithm, this study introduces an adaptive dynamic adjustment 
mechanism for crossover and mutation probabilities, which enables the algorithm to adjust 
genetic operator rates in response to population diversity and evolutionary progress during 
the search process. Additionally, a 3-opt local search strategy is incorporated to refine the 
solutions by eliminating inefficient routes and exploring more promising neighborhoods within 
the solution space. These improvements collectively contribute to obtaining higher-quality 
solutions with accelerated convergence behavior, thereby strengthening both the search 
capability and computational efficiency of the optimization process. Meanwhile. This research 
provides a new technical idea and solution approach for the problem of UAV life support 
material task allocation at sea. 

3.2. Principle of NSGA-II Algorithm 

The basic process of the NSGA-II algorithm involves initializing the population, performing non-
dominated sorting and calculating the crowding distance, and then generating a new 
population through genetic operations (e.g., selection, crossover, and mutation). The key steps 
are detailed below: 

(1) Encoding and Decoding 

This paper employs a real-number encoding strategy to generate the initial solution. Each 
individual is represented by a vector of real numbers, with its length equal to the total number 
of customers. Each element in the vector is a random number uniformly distributed in the range 
[0, 1). Each gene value determines both the UAV assigned to the customer and the customer's 
service sequence in that UAV's route. 

The decoding process transforms the real-number encoded solution into practical UAV delivery 
routes by first assigning customers to UAVs based on multiplied and rounded gene values, then 
establishing service sequences through ascending gene value sorting for each UAV's customers, 
followed by route construction that inserts customers from the distribution center (node 0) 
while enforcing all operational constraints, and finally representing each validated route as a 
node sequence that begins and ends at the distribution center, completing the cycle from 
dispatch to return. 

(2) Non-dominated Sorting 

During non-dominated sorting, individuals are ranked based on their fitness values to evaluate 
their dominance relationships within the population. Superior individuals are selected as the 
parent population to create the next generation. Specifically, if all the objective function values 
of individual a are less than or equal to those of individual b and at least one is strictly less than, 
then a dominates b. 

(3) Crowding distance calculation 

The crowding distance metric serves as a crucial indicator for estimating the density of non-
dominated solutions in the vicinity of a particular point on the Pareto front. It quantifies the 
sparsity of solutions by measuring the average distance between a given solution and its 
adjacent neighbors along each objective dimension. Solutions with larger crowding distances 
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are situated in less densely populated regions of the front, implying greater diversity 
contribution. As a result, such solutions are assigned higher selection priority in the 
evolutionary process to promote uniform Pareto front exploration and representation. The 
formula for calculating crowding distance is as follows 

1 1

max min

( ) ( )
, 2, , ( 1)

( ) ( )

m i m i
im

m m

f x f x
CD i l

f x f x

+ −−
= = −

−
                                    (17) 

 

In the formula, imCD  represents the crowding distance of the i-th individual in the m-th 

objective function; mf  represents the m-th objective function; maxx  represents the maximum 

value of all individuals in the m function; minx  represents the minimum value of all individuals 

in the m function. For ease of understanding, the crowding distance is shown in Figure 3-1. 

i+1

i-1
i

f1

f2

 
Figure 3-1 Diagram of Calculation for Crowded Distance 

(4) Cross-operation 

This paper selects the Simulated Binary Crossover[27] (SBX) method. This approach selects 
parent individuals randomly as the crossover objects, and through steps such as initializing 
parameters, generating random numbers, calculating crossover probabilities, and performing 
crossover operations, it exchanges genes between parent individuals to generate new offspring 
individuals. Compared with the traditional binary crossover, SBX can smoothly search within 
the real number domain and is suitable for the real number encoding method of this model. The 
specific crossover process is as follows: 

First, two parent individuals are randomly selected from the population for crossover. 

Second, for each parent individual, a crossover parameter   is generated. This parameter is 

calculated based on a random number r , which r  determines the degree of exchange of the 
character's genetic information. 

Then, two offspring individuals are generated by recombining the genes of the parents based 
on a probability distribution that simulates single-point crossover. Specifically, the calculation 

formulas for the offspring 1x  and 2x  derived from the parent generations 1p  and 2p  are as 

follows 

1 1 2

2 1 2

1
[(1 ) (1 ) ]

2

1
[(1 ) (1 ) ]

2

x p p

x p p

 

 


=  +  + − 




 =  −  + + 


                                       (18) 

 

Among them,   is dynamically and randomly determined by the distribution factor   
according to formula (19). 
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( )

( )( )

1

1

1

1

2 , 0.5

2 1 , 0.5

r r

r r







+

−
+





= 

 − 

                                                 (19) 

 

Finally, a boundary constraint handling step is performed on the generated offspring to ensure 
all variable values lie within the defined feasible range. 

For ease of understanding, a simplified schematic of the crossover operation is provided in 
Figure 3-2. 

1 0 1 0 0 0

0 1 0 1 1 0

1 0

0

01 1 0

10 1 0 0

Parent 1

Parent 2 Child 1

Child 11

1 1

1

 
Figure 3-2 Schematic Diagram of Cross-operation 

(5) Mutation operation 

This study employs polynomial mutation[28], a widely adopted operator for multi-objective 
optimization problems, to maintain population diversity. The mutation form is 

( )' u l

k k    = + + , where 

 

( )( )

( ) ( )

1
1 1

1

1

11

2

1
2 1 2 1 1,

2

1 1
1 2 1 2 1 ,

2 2

m m

m
m

c c c

c c c

 









+ +

++


 + − − −   


= 

   
− − + − −   

  

                            (20) 

 

In the formula, ( ) ( )1 /l u l

k    = − − , ( ) ( )2 /u u l

k    = − − , c  are random numbers within 

the [0,1] range, m  distribution index, k  the previous generation population, 
'

k  the offspring 

population after polynomial mutation, ,u l   represents the upper bound and the lower bound. 

(6) Elite Retention Strategy 

Through non-dominated sorting and crowding distance calculation, the Elite Retention Strategy 
retains elite individuals to prevent the loss of high-quality solutions, thereby improving the 
algorithm's convergence and efficiency. 

(7) Termination Conditions 

In this section, the termination condition is defined as the maximum number of iterations. If the 
condition is met, the algorithm terminates; otherwise, the iteration continues. 

According to the above steps, the algorithm flow of NSGA-II is shown in Figure 3-3. 
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Figure 3-3 Basic Flowchart of NSGA-II Algorithm 

3.3. Improving the NSGA-II Algorithm 

This paper presents an enhanced NSGA-II algorithm that incorporates dynamically adaptive 
crossover and mutation probabilities combined with a 3-opt local search strategy. These 
modifications are introduced to strengthen the algorithm's ability to escape local optima and 
enhance convergence toward high-quality Pareto fronts. The specific improvements are 
detailed below: 

(1) Adaptive adjustment method for crossover and mutation probabilities 

In the traditional NSGA-II algorithm, crossover and mutation probabilities are typically set as 
fixed values. This approach often limits the algorithm's capacity to balance global exploration 
in the early stages and local exploitation in the later phases, particularly in solving complex 
constrained optimization problems such as UAV delivery route planning. To address this 
limitation, this paper introduces an adaptive parameter control strategy that dynamically 
adjusts the crossover and mutation rates throughout the evolutionary process. Specifically, 
higher probabilities are applied in the early evolutionary stage to enhance exploratory diversity 
and generate new solutions, while these values are gradually reduced in later stages to facilitate 
convergence and preserve high-quality solutions. The specific adjustment strategy is as follows: 

min max min( ) ( )
 

iter
c r

i
r

te
r

r
c c cr

ations
= + −                                           (21) 

 

min max min( ) ( )
 

iter
v a

i
a

te
a

r
v v va

ations
= + −                                       (22) 

 

In the formula, maxcr  and mincr  denote the maximum and minimum crossover probabilities, 

respectively; iter  and iterations  denote the current and total iteration numbers, respectively. 

maxva  and minva  denote the maximum and minimum mutation probabilities, respectively. 

(2) 3-opt Local Search Strategy 
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This paper employs the 3-opt local search strategy, which enables the algorithm to conduct 
extensive local exploration, optimize high-quality solutions specifically, and flexibly adapt to 
changes in path length, thereby significantly enhancing its performance in the unmanned aerial 
vehicle task allocation problem. 

Specifically, the local search operation of 3-opt is as follows: 

Step 1: The offspring population generated through tournament selection, SBX and polynomial 
mutation is merged with the parent population to form a new population. 

Step 2: Remove duplicates from the combined population, retaining only the individuals with 
unique fitness values. Subsequent to non-dominated sorting, the initial solution set for local 
search is drawn from the first non-dominated layer, to which the 3-opt local search is applied. 
For a solution with a size (number of customers) greater than or equal to 3, randomly select 
three different positions and generate a series of candidate solutions through various structural 
perturbation methods (such as fragment inversion, three-position rotation, etc.); if the 
dimension is less than 3, perform a two-position exchange operation. Each search samples in 
the neighborhood through structural perturbation and evaluates the performance of the 
objective function. 

Step 3: Merge the high-quality candidate solutions generated by local search into the original 
population to form an expanded solution set. 

Step 4: Using the elite retention strategy, the best individuals are selected from the new 
population set to constitute the next generation population. 

Specifically, after generating the candidate solutions, the algorithm will compare them with the 
original solution. A new solution is accepted to replace the incumbent one only if it exhibits 
Pareto dominance—that is, it demonstrates improvement in both the dissatisfaction function 
and the total flight distance function. Conversely, if the new solution fails to dominate the 
original, the latter remains unaltered. This replacement mechanism enables the 3-opt local 
search strategy to not only strengthen the local exploitation capability of the NSGA-II algorithm, 
but also synergize with the elite retention strategy. Such integration helps preserve high-
quality solutions throughout the evolutionary process, thereby sustaining the overall 
excellence of the population 

4. Numerical experiments 

In order to verify the correctness of the model and the effectiveness of the improved NSGA-II 
algorithm, this study conducted experiments using simulated data of the anchorage in Qingdao 
Port. In this case, the coordinates of the ships in the anchorage were randomly obtained. 
Additionally, to ensure the objectivity of the experimental results, this paper used Python 3.10 
version for simulation experiment calculations (the experimental environment was Intel(R) 
Core(TM) i7-14650HX (2.20 GHz)). To ensure the consistency and reliability of the 
experimental data, all the simulation results below are based on the same environment and 
parameter settings. 

4.1. Introduction of Examples and Parameter Settings 

Given the current lack of baseline data on the distribution of ship supplies between ports and 
anchorage areas, this study selects Qingdao Port as the distribution center and its 
corresponding anchorage area as the distribution region, with the Ship Information Network 
serving as the primary data source. To simulate real-world operational scenarios, 25 fixed-
position supply ship points were randomly generated within the anchorage area, with their 
spatial distribution illustrated in Figure 4-1. Since the locations of the port, anchorage area, and 
ships are expressed in latitude and longitude, all geographic coordinates were converted into a 
planar coordinate system with Qingdao Port as the origin to simplify subsequent computational 
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procedures. The detailed coordinate data and corresponding conversion results are provided 
in Tables 4.1 and 4.2. Furthermore, the mathematical models and algorithm parameters used 
in this study are systematically summarized in Table 4.3. 

 
Figure 4-1 Distribution center, anchorage, ship schematic diagram 

 
Table 4.1 Latitude and Longitude Coordinates and Planar Coordinates of Anchorage Areas 

within Qingdao Port 

Longitude Latitude 
120°12′40″E 36°06′00″N 
120°13′13″E 36°07′36″N 
120°16′40″E 36°07′36″N 
120°16′50″E 36°06′00″N 
120°16′30″E 36°04′18″N 
120°14′30″E 36°04′18″N 
120°14′30″E 36°06′00″N 

 
Table 4.2 Ship customer information 

Number X Y Demand Number X Y Demand 
0 0 0 0 13 -5.666 1.501 1.16 
1 -5.291 4.262 1.49 14 -3.020 1.112 1.93 
2 -4.393 4.262 1.52 15 -2.995 -0.587 2.56 
3 -3.269 3.954 1.38 16 -3.295 -0.596 1.96 

 
Table 4.2 Ship customer information(continued) 

4 -4.717 3.768 1.46 17 -4.293 -1.298 7.83 
5 -3.744 3.368 3.32 18 -4.868 -0.958 5.32 
6 -4.468 3.245 3.96 19 -5.217 -0.185 1.16 
7 -3.320 2.780 1.83 20 -5.217 0.371 1.89 
8 -5.766 2.812 1.96 21 -4.443 0.371 5.89 
9 -4.268 2.441 7.69 22 -3.695 0.68 3.14 

10 -3.395 1.761 2.14 23 -4.443 -0.278 4.52 
11 -5.217 1.638 9.36 24 -3.445 -1.205 6.78 
12 -4.193 1.082 1.69 25 -5.841 -1.236 2.54 
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Table 4.3 relevant parameter 

Description Parameters Numerical Value 

UAV service time (min) st  10 

Maximum payload capacity of the UAV (kg) maxQ  20 

Maximum flight radius of the UAV (km) maxL  20 

Constant flight speed of the UAV (km/h) kv  50 

Maximum flight time of the UAV (min) maxT  60 

Iterations / 500 

Population quantity / 200 

Crossover probability cr  0.7 

Mutation probability va  0.01 

4.2. Results and Analysis Discussion 

To verify the performance of the proposed dual-objective unmanned aerial vehicle task 
allocation model and the improved NSGA-II algorithm, a case study was conducted using 
simulated port-anchorage ship data. As all solutions on the Pareto front obtained by the 
algorithm are non-dominated (meaning no single solution is optimal across all objectives), a 
trade-off decision is required. This study selects two representative solutions from the Pareto 
front for detailed comparison. The specific results are presented in Tables 4.4 and 4.5. 
Furthermore, this section compares the convergence behavior of the the optimization 
objectives and the Pareto frontier curves between the improved algorithm and the original 
algorithm, as shown in Figure 4-1. 

Table 4.4 Improving the UAV task allocation scheme and compromise solution of NSGA-II 

Case 
Objective function 

value 
The number 

of UAVs 
Task allocation plan Compromise solution 

Distance Discontent 

1 100.68 0.09 8 

0-9-19-16-0 

Discontent 0.105 

0-20-18-24-0 
0-11-8-6-0 

0-21-23-17-0 
0-14-15-25-0 

0-2-4-1-0 
0-22-12-13-10-0 

0-5-7-3-0 

2 91.70 0.12 8 

0-22-11-13-0 

Distance 96.19 

0-17-23-24-0 

0-20-12-0 

0-15-16-0 

0-2-4-1-3-0 

0-14-9-8-6-0 

0-21-19-25-18-0 

0-5-7-10-0 

 
Table 4.5 The UAV task allocation scheme and compromise solution of NSGA-II 

Case 
Objective function value The number of 

UAVs 
Task allocation plan Compromise solution 

Distance Discontent 

1 105.67 0.10 8 

0-14-11-13-24-0 

Discontent 0.115 0-5-9-17-0 

0-15-12-10-7-0 
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0-16-21-25-0 

0-3-4-6-0 

0-18-8-1-0 

0-23-19-20-0 

0-2-22-0 

2 97.57 0.13 8 

0-11-13-24-0 

Distance 101.62 

0-5-3-9-10-0 

0-18-17-0 

0-15-16-0 

0-7-21-25-0 

0-6-4-1-8-0 

0-23-19-20-22-0 

0-14-12-2-0 

 

As shown in Tables 4.4 and 4.5, the improved NSGA-II algorithm yields superior results. In this 
instance, it reduces total flight distance by 5.34% and customer dissatisfaction by 8.7%. This 
demonstrates the enhanced capability of the improved algorithm to find a better trade-off 
between these competing objectives, ultimately achieving a higher-quality solution. 

 

  
(a) Iteration curve graph of customer 

dissatisfaction target function 
(b) Iteration curve graph of flight 

distance objective function 

 
( c ) The Pareto curve diagrams of the improved NSGA-II algorithm and the 

original algorithm 
Figure 4-1 Iteration curves and Pareto curves of the improved NSGA-II algorithm and the 

original algorithm for the objective functions 

As shown in Figures 4-1(a) and 4-1(b), the improved NSGA-II algorithm (labeled as I-NSGA2) 
demonstrated significant improvements during the optimization process. Specifically, I-NSGA2 
achieved a greater reduction in the target value in the early iterations, which reflects its ability 
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to quickly achieve initial convergence. Moreover, in the final iteration stage, the solutions 
generated by the proposed algorithm had lower customer dissatisfaction and shorter total 
flight distances compared to the original NSGA-II. Additionally, I-NSGA2 reached outstanding 
performance earlier in the iteration process. These results confirm that the improved algorithm 
has a higher convergence speed and optimization accuracy, and prove its effectiveness in 
solving the bi-objective optimization model introduced in this study. 

As evidenced in Figure 4-1(c), the enhanced NSGA-II algorithm exhibits notable superiority 
across several key aspects. First, I-NSGA2 obtains a larger number of non-dominated solutions 
with a broader spread along the Pareto front. Second, the solution set demonstrates improved 
distribution uniformity, reflecting a more consistent and thorough exploration of the objective 
space. Finally, the Pareto solutions derived from I-NSGA2 achieve superior convergence, 
approaching closer to the true optimal front compared to the original algorithm. In conclusion, 
the modified algorithm significantly outperforms the baseline in both the quality and diversity 
of Pareto-optimal solutions. 

5. Conclusion 

This study addresses the problem of UAV material transportation and distribution within the 
port anchorage area. A dual-objective optimization model considering multiple constraints was 
proposed, with the focus on reducing customer dissatisfaction and total flight distance. The 
effectiveness of the proposed model was verified through simulation experiments. The main 
findings of this study are summarized as follows. 

(1) This study constructed a dual-objective mathematical model, with the aim of reducing 
customer dissatisfaction and minimizing the total flight distance of the UAVs. By incorporating 
a soft time window mechanism and a linear satisfaction function, the model can effectively 
reflect customers' demands for delivery timeliness, and its feasibility and effectiveness have 
been verified through practical cases. 

(2) The enhanced NSGA-II algorithm, which incorporates an adaptive crossover and mutation 
probability adjustment mechanism along with a 3-opt local search strategy, demonstrates 
superior performance over the conventional NSGA-II approach in convergence speed, 
distribution uniformity of the solution set, and proximity to the true Pareto front. Experimental 
results indicate a reduction in total flight distance by approximately 5.34% and a decrease in 
customer dissatisfaction rate by 8.7%. 

(3) This research provides specific task allocation and path planning methods for maritime UAV 
logistics delivery. It has high practical value and broad application prospects especially in 
emergency material distribution, reduction of vessel waiting time, and lowering of port 
operation costs. 

However, this study also has certain limitations. Further research can improve upon these 
aspects. 

(1) The current study only considers a single distribution center, while actual ports can have 
multiple distribution centers. Future research can explore the collaborative scheduling model 
for multiple distribution centers, optimize the task allocation for drones, and thereby enhance 
transportation efficiency. 

(2) The current study does not cover dynamic factors such as sea wind and waves, sudden tasks, 
and UAV failures. In the future, more comprehensive factors can be considered, combined with 
real-time monitoring technology, to construct a drone transportation model. 
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