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Abstract

As the core area rich in coalbed methane resources in China, the Ordos Basin has
geological characteristics of low porosity, low permeability, and strong heterogeneity,
which makes it difficult to predict productivity. It is difficult for traditional methods to
accurately capture the nonlinear relationship between geological factors and
productivity. Taking the D] block of the basin as the research object, 100 sets of core
porosity, well logging and drainage data were integrated, and 10 main productivity
control factors such as permeability and gas saturation were selected through gray
correlation analysis. Three machine learning prediction models, namely BP neural
network, gradient boosting tree (GBDT) and random forest (RF), were constructed, and
the four indicators of MAE, MAPE, RMSE and R? were used to compare model
performance. The results show that the gradient boosting tree model has the best
prediction accuracy, with a test set MAPE of 1.14% and an R? of 0.8827, which is
significantly better than the BP neural network (MAPE=1.10%, R?=0.8621) and random
forest (MAPE=1.26%, R?=0.8498);This model can effectively adapt to the basin's small
sample and strong noise data characteristics, and can provide technical support for
coalbed methane development well location deployment and drainage plan
optimization.
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1. Introduction

Coalbed methane, as a clean and low-carbon unconventional natural gas resource, is an
important support for China's energy structure transformation. The Upper Paleozoic coalbed
methane resources in the Ordos Basin exceed 10 trillion m?, accounting for more than 30% of
the national total. However, its geological conditions are complex—it has experienced gas
formation in shallow peat burials, deep burial pyrolysis, and uplift and escape. And reburial
supplemented the four-stage accumulation evolution, resulting in an average reservoir porosity
of only 7.8% and an average permeability of 1.18x103um?, showing the characteristics of “low
porosity, low permeability, and strong heterogeneity”.As a core link in coalbed methane
development, production capacity prediction directly determines the rationality of well
location selection and the formulation of drainage systems. Traditional methods based on
physical simulation or statistical regression are difficult to depict the complex non-linear
relationship between multiple geological factors and production capacity. The prediction error
often exceeds 15%, which cannot meet the needs of efficient development [1]
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My country's coal resource reserves are large and widely distributed, and the coal bed methane
resource reserves that coexist with it are also considerable. Achieving efficient development of
coalbed methane will help alleviate the supply pressure of conventional energy in my
country.Prediction of coalbed methane well productivity is the basis for scientific evaluation of
coal reservoir gas production capacity and discharge technology effects. It is also an important
basis for measuring exploration results and planning production capacity layout. Accurate
production capacity forecasting can provide support for formulating a reasonable production
discharge system and has important guiding value for actual production.

At present, commonly used coalbed methane production capacity prediction methods include
volume calculation method, material balance method and numerical simulation method. The
volume calculation method is suitable for estimating resources at different levels, and its
accuracy depends on geological understanding and parameter accuracy.This method is simple
and easy to use, but it is sensitive to unknown parameters or subjective judgments, and the
error may be large; the material balance method uses dynamic data to infer reservoir
characteristics. The longer the production history and the richer the data, the more reliable the
prediction results are; the numerical simulation method relies on core experiments, drilling
and well test data to generate productivity curves through historical matching, which is suitable
for full life cycle prediction.

However, the above methods have certain limitations in predicting daily gas production, such
as weak regional adaptability, many parameter requirements, high data accuracy requirements,
complex calculations, limited simulation capabilities for complex production mechanisms such
as multi-phase seepage, and difficulty in clearly revealing the changes in gas production over
time. The reliability and timeliness of prediction results still need to be improved.With the
development of artificial intelligence technology, machine learning algorithms have shown
significant advantages in the field of oil and gas resource prediction by virtue of their data-
driven nonlinear fitting capabilities. Yao Huifang et al. found in their study of the D] block in the
Ordos Basin that the gradient boosting tree algorithm can classify coal-measure tight sandstone
gas reservoirs with an accuracy of 92% [2];Chen Jiahao's research on the Linxing block shows
that from four aspects: data enhancement, feature optimization, algorithm tuning and
performance analysis, an efficient work plan for intelligent classification of tight gas well
logging productivity has been established, that is, using the pipeline pipeline framework to
combine ADASYN adaptive oversampling and ClusterCentroids clustering center
undersampling. Sample algorithms were connected to enhance the original productivity data;
the random forest algorithm was used to numerically evaluate the feature importance, and the
key parameters were comprehensively selected based on the reservoir characteristic cross plot
method. The CatBoost algorithm was used to build an accurate tight gas productivity
classification model and deployed it on the CNOOC artificial intelligence application research
platform [3].However, existing research mostly focuses on reservoir classification or single
parameter prediction, and the construction of productivity prediction models under all
geological conditions of the basin is still insufficient. Therefore, this study selects the optimal
productivity prediction model suitable for the Ordos Basin through multi-model comparison,
which has important engineering significance for improving coalbed methane development
efficiency and reducing development risks.

The core goal of this research is to construct a high-precision and highly adaptable coalbed
methane production capacity prediction model in the Ordos Basin. The specific contents
include: (1) identifying the main geological factors that affect production capacity based on gray
correlation analysis; (2) constructing three machine learning models of BP neural network,
gradient boosting tree (GBDT), and random forest (RF); (3) verifying model performance
through multi-index comparison to determine the optimal prediction model; (4) analyzing the
engineering application value of the optimal model.
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2. Geological overview

2.1. Overview of the study area

The Ordos Basin is the second largest sedimentary basin on land in my country and an
important energy base. It is rich in mineral resources. The current basin starts from the Yinshan
Mountains in the north, to the Qinling Mountains in the south, to the Liupan Mountains in the
west, and to the Luliang Mountains in the east. It spans the five provinces of Shaanxi, Gansu,
Shanxi, Ningxia, and Inner Mongolia. The main area of the basin is about 25x104km?2. During
the sedimentation period of the Benxi Formation in the Late Carboniferous, the Ordos Basin
was in an environment of alternating sea and land phases [4].

The D] area of the study area is located in the southern section of the Shanxi flexural fold belt
on the eastern edge of the basin. Its overall structural shape is a monocline that dips gently to
the northwest. However, wide and gentle folds and faults with NE and NNE trends are
developed in the central and southeastern edges, which complicates the structure. Accordingly,
it can be divided into three structural units: the basin edge fault fold belt, the slope depression
and uplift belt, and the western gentle slope belt;This structural pattern directly affects the
preservation and seepage capacity of coalbed methane. In particular, fracture development
zones (such as near Wucheng and Xueguan) provide favorable seepage channels for high
coalbed methane production [5].In terms of stratigraphy, the main coal-bearing seams are the
Shanxi Formation of the Upper Paleozoic Permian and the Benxi Formation of the
Carboniferous, which were formed in the lagoon-tidal flat depositional system. The mud flat
microfacies is rich in organic shale, and the barrier sand bar microfacies is a tight sandstone
reservoir, which together form a coal measure gas symbiosis system.The physical properties of
the reservoir are characterized by ultra-low porosity and ultra-low permeability, but the Shanxi
Formation coal seams have high organic matter content (TOC average 3.93%), high thermal
evolution degree (Ro 2.02%~2.61%), high hydrocarbon generation potential, and microscopic
pores are mainly organic pores and intergranular pores, providing space for gas occurrence.Key
geological parameters that affect productivity include coal seam thickness (H), permeability (K),
gas saturation (Sg), porosity (¢) and reservoir pressure (P). These parameters are jointly
controlled by sedimentary microphases and structural fractures: for example, high
permeability zones are often distributed in fracture-intensive areas, while thick coal seams and
high gas content (Q_g) areas provide the material basis for high production.Therefore, when
predicting coalbed methane productivity in this area, it is necessary to comprehensively
consider the improved seepage conditions of structural fractures, the storage-controlling
characteristics of sedimentary facies, and the nonlinear coupling relationship of reservoir
physical parameters (such as K, ¢, Sg), thereby providing a geological basis for the production
model (such as Q) and guiding the optimization of fracturing sections and development
strategies
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Figure 1 Map of the Ordos Basin

2.2. Geological factors

2.2.1. Penetration

Permeability is a key parameter that measures the ability of gas to flow in coal seams. The
permeability in the study area ranges from 0.1 to 5.0x10~3um?, which is significantly positively
correlated with daily gas production. The higher the permeability, the smoother the gas
permeation channel and the easier it is for the desorbed gas to be extracted, thereby increasing
production capacity.

2.2.2. Gas saturation

Gas saturation reflects the proportion of gas occupying pores in the coal seam. Sg in the study
area ranges from 60% to 92%, which is positively correlated with production capacity. The
higher the Sg, the greater the gas content per unit volume of the coal seam, which can provide

a more sufficient gas source basis for drainage.

2.2.3. Reservoir pressure gradient

Reservoir pressure gradient is the main driving force for gas seepage. P_grad in the study area
is 0.15 to 0.35MPa/100m, which is positively related to production capacity. A higher pressure
gradient helps promote gas migration toward the wellbore and improves gas recovery

efficiency.
2.2.4. Coal seam thickness
Coal seam thickness has an important impact on coalbed methane enrichment and reservoir

scale. The thickness of the coal seam in the study area ranges from 1.2 to 8.5m, and has a
significant positive correlation with the average daily gas production. The greater the thickness
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of the coal seam, the greater the adsorption/desorption space provided by the coal reservoir,
and the increased gas storage capacity. At the same time, the distance for gas migration to the
top and floor is lengthened, and the diffusion resistance increases, which is beneficial to the
preservation and enrichment of coalbed methane, thus increasing single well productivity.

2.2.5. Porosity

Porosity refers to the proportion of pore volume in the coal seam to the total volume. ¢ in the
study area ranges from 3.5% to 12.0%, which is positively related to production capacity. The
higher the porosity, the larger the gas storage space and the greater the amount of adsorbed
gas, which is beneficial to improving the ultimate recovery rate.

2.2.6. Gas content

Gas content represents the volume of gas contained in unit mass of coal. Q_g in the study area
is 1.0 to 8.0m3/t, which is significantly positively related to production capacity. Gas content
directly determines the upper limit of theoretical gas production of a single well and is a direct
reflection of resource abundance.

2.2.7. Burial depth

Burial depth affects ground pressure and gas content. The burial depth in the study area is 800
to 2500m, which is positively related to production capacity. As the burial depth increases, the
formation pressure increases and the sealing property increases, which is beneficial to gas
preservation and pressure accumulation.

2.2.8. Formation pressure
Formation pressure is the original driving force for gas production. P in the study area is 10.0

to 35.0MPa, which is positively related to production capacity. High formation pressure can
enhance gas desorption efficiency and seepage capacity.

2.2.9. Rock density
Rock density reflects the compactness of coal rock. p in the study area is 1.3 to 1.8g/cm?, which

is negatively related to production capacity. The lower the density, the looser the coal rock and
the better the pore development, which is conducive to gas adsorption and migration.

2.2.10 Temperature gradient

Temperature gradient affects gas adsorption-desorption equilibrium. T_grad in the study area
is 1.8 to 3.2°C/100m, which has a complex relationship with production capacity. Moderate
temperature rise is conducive to desorption, but too high a temperature may reduce the
adsorption capacity, which requires a comprehensive judgment based on burial depth and
pressure.

The relationship between geological factors and daily gas production is shown in the figure
below:
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The data of this study are derived from on-site exploration and production practices in the
study area. A total of 100 sets of effective samples were collected, and 10 input features
(permeability K, gas saturation Sg, reservoir pressure gradient P_grad, etc.) and 1 target
variable (daily gas production Q) were finally extracted. The data range is in line with the actual
geological background of the study area, as shown in the table below.

Table 1 Input features and target variable parameter range

Parameter name Symbol Unit Data Physical meaning
range
Penetration K x10-3um?2 0.1-5.0 Gas flow capacity
Gas saturation Sg % 60-92 Reservoir gas proportion
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Reservoir pressure 0.15- :
gradient P_grad MPa/100m 0.35 Gas seepage dynamics
Coal seam thickness H m 1.2-8.5 Storage space size
Porosity [0 % 3.5-12.0 Reservoir pore proportion
Gas content Qg m3/t 1.0-8.0 Gas potential per unit coal
. 800-
Burial depth D m 2500 Affects pressure and gas content
. 10.0- . o
Formation pressure P MPa 3t Original driving pressure
Rock density p g/cm3 1.3-1.8 Coal rock density
Temperature o . e
gradient T_grad C/100m 1.8-3.2  Affect gas adsorption equilibrium
Dailv eas production Q m3/d 500- Actual production capacity of
ygasp 3000 coalbed methane wells

In order to improve the robustness of the model, a three-step preprocessing process is adopted:
(1) Outlier elimination: Based on the 3o criterion, samples that deviate 3 times the standard
deviation from the mean in each parameter are eliminated, and 100 sets of valid data are finally
retained; (2) Data standardization: The mapminmax function is used to normalize the data to
the [0,1] interval to eliminate dimensional differences. The formula is:

— X—Xmin (1)

Xnorm % o
Among them, x is the original data, xmin and xmax are the minimum and maximum values of
the parameters respectively; (3) Data set division: randomly divide the training set (70 groups)
and the test set (30 groups) according to the ratio of 7:3, and fix the random seed (rng=2024)

to ensure that the results are reproducible.

4. Research methods

Through gray correlation analysis, 10 main production capacity control factors such as
permeability and gas saturation were selected; three machine learning prediction models of BP
neural network, gradient boosting tree (GBDT) and random forest (RF) were constructed, and
four indicators of MAE, MAPE, RMSE and R* were used to compare the model performance. The
results show that the model can effectively adapt to the basin's small sample and strong noise
data characteristics, and can provide technical support for coalbed methane development well
location deployment and drainage plan optimization [6,7].

4.1. Selection of main control factors: gray correlation analysis

Gray correlation analysis is suitable for factor correlation calculation in small samples and poor
information systems. By comparing the similarity between the reference sequence (capacity Q)
and the comparison sequence (geological parameters), the main controlling factors can be
determined. The specific steps are as follows:

96



International Journal of Science Volume 12 Issue 10, 2025
ISSN: 1813-4890

Determine the sequence: reference sequence X, = (X¢(1),%(2),...Xo(n)) (Daily gas
production), compare sequences X; = (x;(1),x;(2),...x;(n)) (10 geological parameters),
n=100 is the number of samples;

Dimensionless: Use the averaging method to process the sequence to eliminate the impact of
magnitude;

Calculate the correlation coefficient:

minjminyg|xq(k)—x;(K)|+pmax;maxy|xq(k)—x;(K)|

YG(R), X (K)) = T 09 F+pmaxsmandxg (9 —x (0] (2)
Among them, p=0.5 is the resolution coefficient, k=1,2,...n is the sample serial number;
Calculate the correlation degree:
1
Vi =~ k=1 Y(Xo(K), x1(K)) (3)

Correlation 20.8 is regarded as the main control factor.

The calculation results show that the correlations of the 10 parameters are all 20.75. Among
them, permeability, gas saturation, and reservoir pressure gradient have the highest
correlation, which are the core main controlling factors and are consistent with geological
understanding - permeability determines gas flow efficiency, gas saturation reflects resource
potential, and pressure gradient provides seepage power.

4.2. Machine learning prediction model building
4.2.1. BP neural network

BP neural network is a multi-layer feedforward network that adjusts weights through error
backpropagation and is suitable for nonlinear mapping. Model structure design: 10 nodes in
the input layer (corresponding to 10 main control factors), 21 nodes in the hidden layer
(empirical formula: 2xinput dimension + 1), 1 node in the output layer (daily gas production);
activation function: tansig (hyperbolic tangent) is used in the hidden layer, and purelin (linear)
is used in the output layer; training parameters: maximum number of iterations 200, learning
rate 0.01, training function trainlm (Levenberg-Marquardt algorithm), target error 1e-5.

4.2.2. Gradient Boosted Tree (GBDT)

GBDT is an ensemble learning algorithm that constructs weak decision trees through iteration
and weighted fusion. It has strong anti-noise ability and is suitable for small sample data.
Parameter settings: The number of weak learners is 100, the learning rate is 0.1 (to control the
contribution of a single tree), the minimum number of samples for leaf nodes is 3 (to avoid
overfitting), the loss function uses mean square error (MSE), and the integration method is least
squares lifting.

4.2.3. Random Forest (RF)

RF reduces the risk of over-fitting by building multiple decision trees and voting for output.
Parameter settings: The number of decision trees is 100, the node splitting criterion is the mean
square error, the number of random feature selections is 3 (rounded to 10), and the minimum
number of samples of leaf nodes is 2.

4.3. Model evaluation index

After the model is successfully established, four common indicators are used to quantify the
model performance:

(1) Mean absolute error (MAE): reflects the mean absolute value of the prediction deviation.
The smaller the value, the better:

1 N
MAE:; jnzll |Yj'y]'| (4)

(2) Average relative error (MAPE): reflects the relative deviation, the industry allowable
threshold is 10%:
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¥i'y

1 A.
MAPE=— i1 | yj’|><100% (5)
(3) Root mean square error (RMSE): amplifies extreme errors and reflects stability:
1 o
RMSE= [Z¥ (v-9)° (6)

(4) Coefficient of determination (R?): reflects the explanatory power of the model. R* > 0.8 is
considered excellent:

I ;9
R2=1_ ) 1) 7
Zjnqu (y]")_’j)z ( )
Among them, m=30 is the number of test set samples, yj is the actual production capacity, y&::j

is the predicted production capacity, and y(0)j is the average actual production capacity.

5. Experimental results and analysis

5.1. Model performance comparison

The performance indicators of the three models on the training set and test set are shown in

Table 2. On the training set, all three models performed excellently, with R? > 0.93, indicating

that the models fully fit the training data;On the test set, the GBDT model has the best

performance, MAPE=1.14%. R*=0.8827, Compared with BP neural network(MAPE=1.10%,
R*=0.8621), the value of MAPE BP is slightly lower than GBDT, but the difference is only 0.04%,

which is negligible, while R®BP is 2.06% lower than GBDT. and RF (MAPE=1.26%, R*=0.8498)

are reduced by 0.12% and 3.29% respectively, and the RMSE is the smallest (27.27m3/d) ,

indicating that its generalization ability and stability are better [8-9-10].

Table 2 Comparison of performance indicators of three models

Model Dataset MAE(m3/d) MAPE(%) RMSE(m3/d) R2
BP neural network Triigti“g 13.39 0.63 16.03 0.8784
Test set 22.63 1.10 28.34 0.8621
Gr‘}(r“eee“(t(}%"];’%ed Tr""si;‘ti“g 3.36 0.16 11.16 0.8692
Test set 21.85 1.14 27.27 0.8827
Random Forest (RF) Trasi;‘ti“g 10.07 0.52 14.97 0.8186
Test set 23.98 1.26 32.18 0.8498

5.2. Visual result analysis

Based on the analysis of the above research results, Figure 12 visually displays the mean
absolute percentage error (MAPE) of the three models on the test set. It can be seen from the
chartthat their values are relatively BP1.10% — GBDT1.14% — RF1.26%. The height difference
between the three columns is only 0.04% to 0.16%, which is almost the same to the naked
eye.BP narrowly wins in the "average percentage error”, but it is only 0.04% lower than GBDT,
and the advantage is so weak that it can be ignored; GBDT comes second, and RF is slightly
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higher. The lower the MAPE value, the higher the prediction accuracy. However, the values of
these three models are not very obvious and need to be combined with other parameters.

Figure 13 shows the coefficient of determination (R?) of the three models. As can be seen from
the chart, GBDT0.8827—BP0.8621—-RF0.8498, the R? of all models exceeds 0.8, indicating that
these three machine learning methods can effectively predict coalbed methane production
capacity in the Ordos Basin.GBDT is 0.0206 higher than BP and 0.0329 higher than RF; its
difference can be perceived by the naked eye in the regression evaluation. The closer the R?
value is to 1, the stronger the model's ability to explain variable variation. Therefore, GBDT has
the strongest "explanatory power" for test samples; BP is almost tied; RF is obviously lagging
behind.

Figure 14 is a GBDT prediction vs. actual scatter plot. This scatter plot shows the relationship
between the predicted value and the actual value of the GBDT model. The data points are closely
distributed near the 45-degree diagonal, and there is no systematic deviation in the high and
low production areas at both ends, indicating that the model can maintain good prediction
performance in different production capacity ranges.The high R*=0.8827 value indicates that
the predicted value is highly correlated with the actual value, indicating that GBDT maintains
high linearity throughout the entire production range, with no obvious
overestimation/underestimation platform. This consistency indicates that the model has good
generalization ability for predicting coalbed methane production capacity in the Ordos Basin.

Figure 15 is a comparison of the prediction curves ofthe three models. This line chart compares
the prediction results of the three models with the actual values. Overall, the three prediction
lines are close to the actual black point, but when zoomed in, BP and RF have a slight downward
bias in the high productivity section (>2400m?/d); GBDT is still close to the actual value.In the
low productivity section (<1600m?>/d), RF has the largest dispersion, followed by BP, and GBDT
is the most stable. Although the prediction trends of the three models are basically the same,
the GBDT model shows the best fitting effect in each production capacity range, so GBDT has
the best "shape-preserving" ability for extreme production capacities; BP is slightly better than
RF.
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Figure 12 Test set MAPE comparison Figure 13 Test set R comparison
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Figure 15 Comparison of prediction results of three models

Figure 16 shows the importance of GBDT features, showing the importance of each feature to
GBDT model prediction. It can be seen from the figure that permeability (K) is the most
important feature and contributes the most to productivity prediction (33.8%). The
permeability leads by a cliff, which is completely consistent with the on-site understanding of
"low permeability reservoirs, permeability control production”;Gas saturation and reservoir
pressure gradient are ranked second and third, with importance ranging from 150 to 200. They
belong to the second echelon and are extremely interpretable. The feature importance analysis
results are consistent with geological understanding. Permeability, gas saturation and pressure
gradient are the main controlling factors of productivity. The importance of other parameters
is relatively low, the parameters are all lower than 100, and their contribution to production
capacity is relatively limited.Therefore, the GBDT model clearly points out that the main
controlling factor of coalbed methane production capacity in the Ordos Basin is permeability,
and its importance is significantly higher than other geological parameters. This result verifies
the physical meaning of the model and enhances the credibility of the prediction results. The
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model not only has excellent numerical values, but also has strong geological interpretability,
which is conducive to subsequent optimization of well locations and fracturing plans.
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Figure 16 GBDT model feature importance

Combined with the above analysis, it can be concluded that the GBDT model can effectively
handle the data characteristics of "low porosity, low permeability, small samples, and strong
noise" in the Ordos Basin. The model prediction accuracy is much higher than that of traditional
methods, and can provide a scientific basis for well location optimization and the formulation
of drainage systems.

6. Conclusion and recommendations

Through gray correlation analysis, it was determined that permeability, gas saturation, and
reservoir pressure gradient are the core main controlling factors of coalbed methane
productivity in the Ordos Basin, providing geological basis for model input feature selection.
Among the three machine learning models constructed, BP neural network, GBDT, and RF,
gradient boosting tree (GBDT) has the best performance, with test set MAPE=1.14% and
R?=0.8827, which can meet engineering accuracy requirements.

The GBDT model is adapted to the data characteristics of "low porosity, low permeability, small
samples, and strong noise" in the Ordos Basin, and its prediction results can provide scientific
support for the selection of coalbed methane development well locations and the formulation
of drainage systems. The GBDT model not only has high prediction accuracy, but also provides
feature importance ranking, which enhances the geological interpretability of the results and
provides technical support for efficient development of coalbed methane.
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