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Abstract 

As the core area rich in coalbed methane resources in China, the Ordos Basin has 
geological characteristics of low porosity, low permeability, and strong heterogeneity, 
which makes it difficult to predict productivity. It is difficult for traditional methods to 
accurately capture the nonlinear relationship between geological factors and 
productivity. Taking the DJ block of the basin as the research object, 100 sets of core 
porosity, well logging and drainage data were integrated, and 10 main productivity 
control factors such as permeability and gas saturation were selected through gray 
correlation analysis. Three machine learning prediction models, namely BP neural 
network, gradient boosting tree (GBDT) and random forest (RF), were constructed, and 
the four indicators of MAE, MAPE, RMSE and R² were used to compare model 
performance. The results show that the gradient boosting tree model has the best 
prediction accuracy, with a test set MAPE of 1.14% and an R² of 0.8827, which is 
significantly better than the BP neural network (MAPE=1.10%, R²=0.8621) and random 
forest (MAPE=1.26%, R²=0.8498);This model can effectively adapt to the basin's small 
sample and strong noise data characteristics, and can provide technical support for 
coalbed methane development well location deployment and drainage plan 
optimization. 
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1. Introduction 

Coalbed methane, as a clean and low-carbon unconventional natural gas resource, is an 
important support for China's energy structure transformation. The Upper Paleozoic coalbed 
methane resources in the Ordos Basin exceed 10 trillion m³, accounting for more than 30% of 
the national total. However, its geological conditions are complex—it has experienced gas 
formation in shallow peat burials, deep burial pyrolysis, and uplift and escape. And reburial 
supplemented the four-stage accumulation evolution, resulting in an average reservoir porosity 
of only 7.8% and an average permeability of 1.18×10⁻³μm², showing the characteristics of “low 
porosity, low permeability, and strong heterogeneity”.As a core link in coalbed methane 
development, production capacity prediction directly determines the rationality of well 
location selection and the formulation of drainage systems. Traditional methods based on 
physical simulation or statistical regression are difficult to depict the complex non-linear 
relationship between multiple geological factors and production capacity. The prediction error 
often exceeds 15%, which cannot meet the needs of efficient development [1] 
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My country's coal resource reserves are large and widely distributed, and the coal bed methane 
resource reserves that coexist with it are also considerable. Achieving efficient development of 
coalbed methane will help alleviate the supply pressure of conventional energy in my 
country.Prediction of coalbed methane well productivity is the basis for scientific evaluation of 
coal reservoir gas production capacity and discharge technology effects. It is also an important 
basis for measuring exploration results and planning production capacity layout. Accurate 
production capacity forecasting can provide support for formulating a reasonable production 
discharge system and has important guiding value for actual production. 

At present, commonly used coalbed methane production capacity prediction methods include 
volume calculation method, material balance method and numerical simulation method. The 
volume calculation method is suitable for estimating resources at different levels, and its 
accuracy depends on geological understanding and parameter accuracy.This method is simple 
and easy to use, but it is sensitive to unknown parameters or subjective judgments, and the 
error may be large; the material balance method uses dynamic data to infer reservoir 
characteristics. The longer the production history and the richer the data, the more reliable the 
prediction results are; the numerical simulation method relies on core experiments, drilling 
and well test data to generate productivity curves through historical matching, which is suitable 
for full life cycle prediction. 

However, the above methods have certain limitations in predicting daily gas production, such 
as weak regional adaptability, many parameter requirements, high data accuracy requirements, 
complex calculations, limited simulation capabilities for complex production mechanisms such 
as multi-phase seepage, and difficulty in clearly revealing the changes in gas production over 
time. The reliability and timeliness of prediction results still need to be improved.With the 
development of artificial intelligence technology, machine learning algorithms have shown 
significant advantages in the field of oil and gas resource prediction by virtue of their data-
driven nonlinear fitting capabilities. Yao Huifang et al. found in their study of the DJ block in the 
Ordos Basin that the gradient boosting tree algorithm can classify coal-measure tight sandstone 
gas reservoirs with an accuracy of 92% [2];Chen Jiahao's research on the Linxing block shows 
that from four aspects: data enhancement, feature optimization, algorithm tuning and 
performance analysis, an efficient work plan for intelligent classification of tight gas well 
logging productivity has been established, that is, using the pipeline pipeline framework to 
combine ADASYN adaptive oversampling and ClusterCentroids clustering center 
undersampling. Sample algorithms were connected to enhance the original productivity data; 
the random forest algorithm was used to numerically evaluate the feature importance, and the 
key parameters were comprehensively selected based on the reservoir characteristic cross plot 
method. The CatBoost algorithm was used to build an accurate tight gas productivity 
classification model and deployed it on the CNOOC artificial intelligence application research 
platform [3].However, existing research mostly focuses on reservoir classification or single 
parameter prediction, and the construction of productivity prediction models under all 
geological conditions of the basin is still insufficient. Therefore, this study selects the optimal 
productivity prediction model suitable for the Ordos Basin through multi-model comparison, 
which has important engineering significance for improving coalbed methane development 
efficiency and reducing development risks. 

The core goal of this research is to construct a high-precision and highly adaptable coalbed 
methane production capacity prediction model in the Ordos Basin. The specific contents 
include: (1) identifying the main geological factors that affect production capacity based on gray 
correlation analysis; (2) constructing three machine learning models of BP neural network, 
gradient boosting tree (GBDT), and random forest (RF); (3) verifying model performance 
through multi-index comparison to determine the optimal prediction model; (4) analyzing the 
engineering application value of the optimal model. 
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2. Geological overview 

2.1. Overview of the study area 

The Ordos Basin is the second largest sedimentary basin on land in my country and an 
important energy base. It is rich in mineral resources. The current basin starts from the Yinshan 
Mountains in the north, to the Qinling Mountains in the south, to the Liupan Mountains in the 
west, and to the Luliang Mountains in the east. It spans the five provinces of Shaanxi, Gansu, 
Shanxi, Ningxia, and Inner Mongolia. The main area of the basin is about 25×104km2. During 
the sedimentation period of the Benxi Formation in the Late Carboniferous, the Ordos Basin 
was in an environment of alternating sea and land phases [4]. 

The DJ area of the study area is located in the southern section of the Shanxi flexural fold belt 
on the eastern edge of the basin. Its overall structural shape is a monocline that dips gently to 
the northwest. However, wide and gentle folds and faults with NE and NNE trends are 
developed in the central and southeastern edges, which complicates the structure. Accordingly, 
it can be divided into three structural units: the basin edge fault fold belt, the slope depression 
and uplift belt, and the western gentle slope belt;This structural pattern directly affects the 
preservation and seepage capacity of coalbed methane. In particular, fracture development 
zones (such as near Wucheng and Xueguan) provide favorable seepage channels for high 
coalbed methane production [5].In terms of stratigraphy, the main coal-bearing seams are the 
Shanxi Formation of the Upper Paleozoic Permian and the Benxi Formation of the 
Carboniferous, which were formed in the lagoon-tidal flat depositional system. The mud flat 
microfacies is rich in organic shale, and the barrier sand bar microfacies is a tight sandstone 
reservoir, which together form a coal measure gas symbiosis system.The physical properties of 
the reservoir are characterized by ultra-low porosity and ultra-low permeability, but the Shanxi 
Formation coal seams have high organic matter content (TOC average 3.93%), high thermal 
evolution degree (Ro 2.02%~2.61%), high hydrocarbon generation potential, and microscopic 
pores are mainly organic pores and intergranular pores, providing space for gas occurrence.Key 
geological parameters that affect productivity include coal seam thickness (H), permeability (K), 
gas saturation (Sg), porosity (φ) and reservoir pressure (P). These parameters are jointly 
controlled by sedimentary microphases and structural fractures: for example, high 
permeability zones are often distributed in fracture-intensive areas, while thick coal seams and 
high gas content (Q_g) areas provide the material basis for high production.Therefore, when 
predicting coalbed methane productivity in this area, it is necessary to comprehensively 
consider the improved seepage conditions of structural fractures, the storage-controlling 
characteristics of sedimentary facies, and the nonlinear coupling relationship of reservoir 
physical parameters (such as K, φ, Sg), thereby providing a geological basis for the production 
model (such as Q) and guiding the optimization of fracturing sections and development 
strategies 



International Journal of Science Volume 12 Issue 10, 2025 

ISSN: 1813-4890  
 

92 

 
Figure 1 Map of the Ordos Basin 

2.2. Geological factors 

2.2.1. Penetration 

Permeability is a key parameter that measures the ability of gas to flow in coal seams. The 
permeability in the study area ranges from 0.1 to 5.0×10⁻³μm², which is significantly positively 
correlated with daily gas production. The higher the permeability, the smoother the gas 
permeation channel and the easier it is for the desorbed gas to be extracted, thereby increasing 
production capacity. 

2.2.2. Gas saturation 

Gas saturation reflects the proportion of gas occupying pores in the coal seam. Sg in the study 
area ranges from 60% to 92%, which is positively correlated with production capacity. The 
higher the Sg, the greater the gas content per unit volume of the coal seam, which can provide 
a more sufficient gas source basis for drainage. 

2.2.3. Reservoir pressure gradient 

Reservoir pressure gradient is the main driving force for gas seepage. P_grad in the study area 
is 0.15 to 0.35MPa/100m, which is positively related to production capacity. A higher pressure 
gradient helps promote gas migration toward the wellbore and improves gas recovery 
efficiency. 

2.2.4. Coal seam thickness 

Coal seam thickness has an important impact on coalbed methane enrichment and reservoir 
scale. The thickness of the coal seam in the study area ranges from 1.2 to 8.5m, and has a 
significant positive correlation with the average daily gas production. The greater the thickness 
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of the coal seam, the greater the adsorption/desorption space provided by the coal reservoir, 
and the increased gas storage capacity. At the same time, the distance for gas migration to the 
top and floor is lengthened, and the diffusion resistance increases, which is beneficial to the 
preservation and enrichment of coalbed methane, thus increasing single well productivity. 

2.2.5. Porosity 

Porosity refers to the proportion of pore volume in the coal seam to the total volume. φ in the 
study area ranges from 3.5% to 12.0%, which is positively related to production capacity. The 
higher the porosity, the larger the gas storage space and the greater the amount of adsorbed 
gas, which is beneficial to improving the ultimate recovery rate. 

2.2.6. Gas content 

Gas content represents the volume of gas contained in unit mass of coal. Q_g in the study area 
is 1.0 to 8.0m3/t, which is significantly positively related to production capacity. Gas content 
directly determines the upper limit of theoretical gas production of a single well and is a direct 
reflection of resource abundance. 

2.2.7. Burial depth 

Burial depth affects ground pressure and gas content. The burial depth in the study area is 800 
to 2500m, which is positively related to production capacity. As the burial depth increases, the 
formation pressure increases and the sealing property increases, which is beneficial to gas 
preservation and pressure accumulation. 

2.2.8. Formation pressure 

Formation pressure is the original driving force for gas production. P in the study area is 10.0 
to 35.0MPa, which is positively related to production capacity. High formation pressure can 
enhance gas desorption efficiency and seepage capacity. 

2.2.9. Rock density 

Rock density reflects the compactness of coal rock. ρ in the study area is 1.3 to 1.8g/cm³, which 
is negatively related to production capacity. The lower the density, the looser the coal rock and 
the better the pore development, which is conducive to gas adsorption and migration. 

2.2.10 Temperature gradient 

Temperature gradient affects gas adsorption-desorption equilibrium. T_grad in the study area 
is 1.8 to 3.2℃/100m, which has a complex relationship with production capacity. Moderate 
temperature rise is conducive to desorption, but too high a temperature may reduce the 
adsorption capacity, which requires a comprehensive judgment based on burial depth and 
pressure. 

The relationship between geological factors and daily gas production is shown in the figure 
below: 
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Figure 2 Cross diagram of permeability and daily 

gas production 
Figure 3 Cross diagram of gas saturation and 

daily gas production 

  

Figure 4 Cross diagram of reservoir pressure 
gradient and daily gas production 

Figure 5 Cross diagram of coal seam thickness 
and daily gas production 

  
Figure 6 Cross plot of porosity and daily gas 

production 
Figure 7 Cross diagram of gas content and daily 

gas production 
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Figure 8 Cross diagram of burial depth and daily 

gas production 
Figure 9 Cross diagram of formation pressure 

and daily gas production 

  
Figure 10 Cross diagram of rock density and 

daily gas production 
Figure 11 Intersection diagram of temperature 

gradient and daily gas production 

 

3. Data source 

The data of this study are derived from on-site exploration and production practices in the 
study area. A total of 100 sets of effective samples were collected, and 10 input features 
(permeability K, gas saturation Sg, reservoir pressure gradient P_grad, etc.) and 1 target 
variable (daily gas production Q) were finally extracted. The data range is in line with the actual 
geological background of the study area, as shown in the table below. 

Table 1 Input features and target variable parameter range 

Parameter name Symbol Unit 
Data 

range 
Physical meaning 

Penetration K ×10-3μm2 0.1-5.0 Gas flow capacity 

Gas saturation Sg % 60-92 Reservoir gas proportion 
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Reservoir pressure 
gradient 

P_grad MPa/100m 
0.15-
0.35 

Gas seepage dynamics 

Coal seam thickness H m 1.2-8.5 Storage space size 

Porosity φ % 3.5-12.0 Reservoir pore proportion 

Gas content Q_g m3/t 1.0-8.0 Gas potential per unit coal 

Burial depth D m 
800-
2500 

Affects pressure and gas content 

Formation pressure P MPa 
10.0-
35.0 

Original driving pressure 

Rock density ρ ɡ/cm3 1.3-1.8 Coal rock density 

Temperature 
gradient 

T_grad ℃/100m 1.8-3.2 Affect gas adsorption equilibrium 

Daily gas production Q m3/d 
500-
3000 

Actual production capacity of 
coalbed methane wells 

In order to improve the robustness of the model, a three-step preprocessing process is adopted: 
(1) Outlier elimination: Based on the 3σ criterion, samples that deviate 3 times the standard 
deviation from the mean in each parameter are eliminated, and 100 sets of valid data are finally 
retained; (2) Data standardization: The mapminmax function is used to normalize the data to 
the [0,1] interval to eliminate dimensional differences. The formula is: 

                                   xnorm =
x−xmin

xmax−xmin
                                                              (1) 

Among them, x is the original data, xmin and xmax are the minimum and maximum values of 
the parameters respectively; (3) Data set division: randomly divide the training set (70 groups) 
and the test set (30 groups) according to the ratio of 7:3, and fix the random seed (rng=2024) 
to ensure that the results are reproducible. 

4. Research methods 

Through gray correlation analysis, 10 main production capacity control factors such as 
permeability and gas saturation were selected; three machine learning prediction models of BP 
neural network, gradient boosting tree (GBDT) and random forest (RF) were constructed, and 
four indicators of MAE, MAPE, RMSE and R² were used to compare the model performance. The 
results show that the model can effectively adapt to the basin's small sample and strong noise 
data characteristics, and can provide technical support for coalbed methane development well 
location deployment and drainage plan optimization [6,7]. 

4.1. Selection of main control factors: gray correlation analysis 

Gray correlation analysis is suitable for factor correlation calculation in small samples and poor 
information systems. By comparing the similarity between the reference sequence (capacity Q) 
and the comparison sequence (geological parameters), the main controlling factors can be 
determined. The specific steps are as follows: 
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Determine the sequence: reference sequence X0 = (x0(1), x0(2), . . . x0(n))  (Daily gas 
production), compare sequences Xi = (xi(1), xi(2), . . . xi(n))  (10 geological parameters), 
n=100 is the number of samples; 

Dimensionless: Use the averaging method to process the sequence to eliminate the impact of 
magnitude; 

Calculate the correlation coefficient: 

                 γ(xi(k), xi(k)) =
minimink|x0(k)−xi(k)|+ρmaximaxk|x0(k)−xi(k)|

|x0(k)−xi(k)|+ρmaximaxk|x0(k)−xi(k)|
                   (2) 

Among them, ρ=0.5 is the resolution coefficient, k=1,2,...,n is the sample serial number;  

Calculate the correlation degree: 

                            γi =
1

n
∑ γ(x0(k), xi(k))n

k=1                                                              (3) 

Correlation ≥0.8 is regarded as the main control factor.  

The calculation results show that the correlations of the 10 parameters are all ≥0.75. Among 
them, permeability, gas saturation, and reservoir pressure gradient have the highest 
correlation, which are the core main controlling factors and are consistent with geological 
understanding - permeability determines gas flow efficiency, gas saturation reflects resource 
potential, and pressure gradient provides seepage power. 

4.2. Machine learning prediction model building 

4.2.1. BP neural network 

BP neural network is a multi-layer feedforward network that adjusts weights through error 
backpropagation and is suitable for nonlinear mapping. Model structure design: 10 nodes in 
the input layer (corresponding to 10 main control factors), 21 nodes in the hidden layer 
(empirical formula: 2×input dimension + 1), 1 node in the output layer (daily gas production); 
activation function: tansig (hyperbolic tangent) is used in the hidden layer, and purelin (linear) 
is used in the output layer; training parameters: maximum number of iterations 200, learning 
rate 0.01, training function trainlm (Levenberg-Marquardt algorithm), target error 1e-5. 

4.2.2. Gradient Boosted Tree (GBDT) 

GBDT is an ensemble learning algorithm that constructs weak decision trees through iteration 
and weighted fusion. It has strong anti-noise ability and is suitable for small sample data. 
Parameter settings: The number of weak learners is 100, the learning rate is 0.1 (to control the 
contribution of a single tree), the minimum number of samples for leaf nodes is 3 (to avoid 
overfitting), the loss function uses mean square error (MSE), and the integration method is least 
squares lifting. 

4.2.3. Random Forest (RF) 

RF reduces the risk of over-fitting by building multiple decision trees and voting for output. 
Parameter settings: The number of decision trees is 100, the node splitting criterion is the mean 
square error, the number of random feature selections is 3 (rounded to 10), and the minimum 
number of samples of leaf nodes is 2. 

4.3. Model evaluation index 

After the model is successfully established, four common indicators are used to quantify the 
model performance: 

(1) Mean absolute error (MAE): reflects the mean absolute value of the prediction deviation. 
The smaller the value, the better: 

MAE=
1

m
∑ |yj-ŷj|

m
j=1                                                                (4) 

(2) Average relative error (MAPE): reflects the relative deviation, the industry allowable 
threshold is 10%: 
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MAPE=
1

m
∑ |

yj-ŷj

yj

|×100%m
j=1                                                   (5) 

(3) Root mean square error (RMSE): amplifies extreme errors and reflects stability: 

RMSE=√
1

m
∑ (y

j
-ŷ

j
)2m

j=1                                                        (6) 

(4) Coefficient of determination (R²): reflects the explanatory power of the model. R² ≥ 0.8 is 
considered excellent: 

R2=1-
∑ (yj-ŷj)

2m
j=1

∑ (yj-y̅j)
2m

j=1

                                                          (7) 

Among them, m=30 is the number of test set samples, yj is the actual production capacity, yො  j 

is the predicted production capacity, and yതj is the average actual production capacity. 

5. Experimental results and analysis 

5.1. Model performance comparison 

The performance indicators of the three models on the training set and test set are shown in 
Table 2. On the training set, all three models performed excellently, with R² ≥ 0.93, indicating 
that the models fully fit the training data;On the test set, the GBDT model has the best 
performance, MAPE=1.14%、R²=0.8827，Compared with BP neural network(MAPE=1.10%，
R²=0.8621), the value of MAPE BP is slightly lower than GBDT, but the difference is only 0.04%, 
which is negligible, while R²BP is 2.06% lower than GBDT. and RF (MAPE=1.26%，R²=0.8498) 

are reduced by 0.12% and 3.29% respectively, and the RMSE is the smallest (27.27m3/d）, 
indicating that its generalization ability and stability are better [8-9-10]. 

Table 2 Comparison of performance indicators of three models 

Model Dataset MAE(m3/d) MAPE(%) RMSE(m3/d) R2 

BP neural network 
Training 

set 
13.39 0.63 16.03 0.8784 

 Test set 22.63 1.10 28.34 0.8621 

Gradient Boosted 
Tree (GBDT) 

Training 
set 

3.36 0.16 11.16 0.8692 

 Test set 21.85 1.14 27.27 0.8827 

Random Forest (RF) 
Training 

set 
10.07 0.52 14.97 0.8186 

 Test set 23.98 1.26 32.18 0.8498 

5.2. Visual result analysis 

Based on the analysis of the above research results, Figure 12 visually displays the mean 
absolute percentage error (MAPE) of the three models on the test set. It can be seen from the 
chart that their values are relatively BP1.10% → GBDT1.14% → RF1.26%. The height difference 
between the three columns is only 0.04% to 0.16%, which is almost the same to the naked 
eye.BP narrowly wins in the "average percentage error", but it is only 0.04% lower than GBDT, 
and the advantage is so weak that it can be ignored; GBDT comes second, and RF is slightly 
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higher. The lower the MAPE value, the higher the prediction accuracy. However, the values of 
these three models are not very obvious and need to be combined with other parameters. 

Figure 13 shows the coefficient of determination (R²) of the three models. As can be seen from 
the chart, GBDT0.8827→BP0.8621→RF0.8498, the R² of all models exceeds 0.8, indicating that 
these three machine learning methods can effectively predict coalbed methane production 
capacity in the Ordos Basin.GBDT is 0.0206 higher than BP and 0.0329 higher than RF; its 
difference can be perceived by the naked eye in the regression evaluation. The closer the R² 
value is to 1, the stronger the model's ability to explain variable variation. Therefore, GBDT has 
the strongest "explanatory power" for test samples; BP is almost tied; RF is obviously lagging 
behind. 

Figure 14 is a GBDT prediction vs. actual scatter plot. This scatter plot shows the relationship 
between the predicted value and the actual value of the GBDT model. The data points are closely 
distributed near the 45-degree diagonal, and there is no systematic deviation in the high and 
low production areas at both ends, indicating that the model can maintain good prediction 
performance in different production capacity ranges.The high R²=0.8827 value indicates that 
the predicted value is highly correlated with the actual value, indicating that GBDT maintains 
high linearity throughout the entire production range, with no obvious 
overestimation/underestimation platform. This consistency indicates that the model has good 
generalization ability for predicting coalbed methane production capacity in the Ordos Basin. 

Figure 15 is a comparison of the prediction curves of the three models. This line chart compares 
the prediction results of the three models with the actual values. Overall, the three prediction 
lines are close to the actual black point, but when zoomed in, BP and RF have a slight downward 
bias in the high productivity section (>2400m³/d); GBDT is still close to the actual value.In the 
low productivity section (<1600m³/d), RF has the largest dispersion, followed by BP, and GBDT 
is the most stable. Although the prediction trends of the three models are basically the same, 
the GBDT model shows the best fitting effect in each production capacity range, so GBDT has 
the best "shape-preserving" ability for extreme production capacities; BP is slightly better than 
RF. 

 

 
 

Figure 12 Test set MAPE comparison Figure 13 Test set R² comparison 
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Figure 14 GBDT model prediction vs actual value 

 

 
Figure 15 Comparison of prediction results of three models 

 

Figure 16 shows the importance of GBDT features, showing the importance of each feature to 
GBDT model prediction. It can be seen from the figure that permeability (K) is the most 
important feature and contributes the most to productivity prediction (33.8%). The 
permeability leads by a cliff, which is completely consistent with the on-site understanding of 
"low permeability reservoirs, permeability control production";Gas saturation and reservoir 
pressure gradient are ranked second and third, with importance ranging from 150 to 200. They 
belong to the second echelon and are extremely interpretable. The feature importance analysis 
results are consistent with geological understanding. Permeability, gas saturation and pressure 
gradient are the main controlling factors of productivity. The importance of other parameters 
is relatively low, the parameters are all lower than 100, and their contribution to production 
capacity is relatively limited.Therefore, the GBDT model clearly points out that the main 
controlling factor of coalbed methane production capacity in the Ordos Basin is permeability, 
and its importance is significantly higher than other geological parameters. This result verifies 
the physical meaning of the model and enhances the credibility of the prediction results. The 
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model not only has excellent numerical values, but also has strong geological interpretability, 
which is conducive to subsequent optimization of well locations and fracturing plans. 

 

 
Figure 16 GBDT model feature importance 

 

Combined with the above analysis, it can be concluded that the GBDT model can effectively 
handle the data characteristics of "low porosity, low permeability, small samples, and strong 
noise" in the Ordos Basin. The model prediction accuracy is much higher than that of traditional 
methods, and can provide a scientific basis for well location optimization and the formulation 
of drainage systems. 

6. Conclusion and recommendations 

Through gray correlation analysis, it was determined that permeability, gas saturation, and 
reservoir pressure gradient are the core main controlling factors of coalbed methane 
productivity in the Ordos Basin, providing geological basis for model input feature selection. 

Among the three machine learning models constructed, BP neural network, GBDT, and RF, 
gradient boosting tree (GBDT) has the best performance, with test set MAPE=1.14% and 
R²=0.8827, which can meet engineering accuracy requirements. 

The GBDT model is adapted to the data characteristics of "low porosity, low permeability, small 
samples, and strong noise" in the Ordos Basin, and its prediction results can provide scientific 
support for the selection of coalbed methane development well locations and the formulation 
of drainage systems. The GBDT model not only has high prediction accuracy, but also provides 
feature importance ranking, which enhances the geological interpretability of the results and 
provides technical support for efficient development of coalbed methane. 
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