
International Journal of Science Volume 12 Issue 11, 2025 

ISSN: 1813-4890  
 

102 

An ECG Signal Classification Method Based on Encoded Feature 
Reduction and Machine Learning 

Xishuo Wang, Ru Pang 

Hubei University, Wuhan 430000, China 

Abstract 

The electrocardiogram (ECG) signal generated during the heart's beating cycle is a weak, 
low-frequency biosignal resulting from the potential difference across the cell 
membranes of cardiac cells. The electrocardiogram (ECG), which displays the heart's 
activity over time and variations detected by external electrodes, is an effective tool for 
identifying cardiac abnormalities, as different waveforms correspond to distinct heart 
activities. The wavelet packet transform has been utilized to classify ECG signals, and the 
misclassification rate can be significantly reduced through data reduction and the 
extraction of classification features. The application of machine learning in medical 
diagnosis, especially ECG signal classification, represents a novel, popular, and effective 
approach to assist physicians in diagnosing cardiac diseases. The objective of this paper 
is to provide a reliable diagnostic tool for the early detection and differentiation of 
arrhythmias, congestive heart failure, and normal sinus rhythm, thereby enhancing the 
prevention and differentiation of heart diseases. Experimental results indicate that the 
machine learning classification method based on wavelet packet transform can 
substantially improve classification accuracy and offer an effective solution for the 
automated analysis of ECG signals. 
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1. Introduction 

Every day, countless signals are generated to transmit information among individuals, taking 
various forms such as images and sounds. In medicine, signals emitted by the body are often 
utilized to diagnose critical diseases. One such signal is the electrocardiogram (ECG), which 
reflects the heart's activity as it pumps blood through the blood vessels, nourishing all tissues 
with each heartbeat. The heart's rhythm is initiated by the pacemaker cells, with the atria and 
ventricles responding in succession, accompanied by bioelectrical changes that form the ECG 
signal. This signal is a weak, low-frequency biosignal, representing the potential difference 
generated by the cell membranes of human heart cells, with a frequency range of 0.05 Hz to 100 
Hz. The specific process involves the atrial and ventricular muscles being in a "polarized state" 
due to the significant difference in the concentration of extracellular ions (including potassium, 
sodium, calcium, and others) in the space between the atrial and ventricular muscles at rest. 
This polarized state is temporarily disrupted by excitation from the pacemaker cells, a 
phenomenon referred to as "depolarization" in medical terminology. This depolarization 
generates the electrical activity of the heart. The ECG is a well-established technique for the 
diagnosis of heart-related diseases. It not only obtains images of the heart over time, but also 
includes changes in the external electrodes attached to the skin, and can be used to detect 
various abnormalities of the heart, such as arrhythmia and heart failure, etc. The depolarization 
of the atrial myocardium is shown as a P-wave and that of the ventricular myocardium as a 
cluster of QRS-waves in the ECG signal, and the T-wave represents the potential change of the 
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ventricular repolarization process with low amplitude, and U-wave is located in the wake of the 
T-wave, representing the posterior ventricle. The wave is located after the T-wave and 
represents the subsequent potential of the ventricle, and its amplitude is lower than that of the 
T wave and sometimes not obvious. The U-wave is located after the T-wave and represents the 
subsequent potential of the ventricle. As shown in 0 Classic One Cardiac Cycle Waveforms 
Classic One Cardiac Cycle Waveforms, after a depolarization, the myocardium returns to its 
original polarization state, a process known as repolarization. Inpatients with abnormal 
heartbeats, the waveforms in the ECG signals are clearly abnormal. Various computerized 
methods have been developed to analyze ECG signals. Among these, wavelet packet transform 
(WPT)-based signal processing techniques have been employed to classify ECG signals. As the 
number of wavelet decomposition levels increases, the resolution in the frequency domain 
improves. At each level of signal decomposition, both high-frequency and low-frequency sub-
bands are further decomposed. A cost function is minimized, and an optimal decomposition 
path is computed to analyze the original signal. The versatile application of wavelet bases not 
only facilitates signal classification but also demonstrates significant effectiveness in biological 
signal denoising and data compression[5]. Therefore, selecting the appropriate decomposition 
function during the signal classification process is crucial for recognizing subtle neural activity 
patterns, which is essential for the diagnosis and prevention of diseases. 

With the advancement of human society and the fields of science and technology, the innovative 
application of machine learning in medical diagnosis has emerged as a promising approach to 
assist physicians in diagnosing heart-related diseases. This innovative and effective method 
aids physicians in diagnosing heart-related diseases, particularly in the analysis and processing 
of ECG signals. Previous studies have indicated that 90% of cardiac diseases can be detected 
early with some degree of intervention. This capability is highly beneficial for disease 
prevention. The wavelet packet transform, a widely used technique for feature extraction in 
machine learning, is an emerging method for processing nonstationary signals. It serves as an 
ideal tool for analyzing signals in both the time and frequency domains. Utilizing both domains 
to analyze ECG signals can effectively identify anomalies, thereby facilitating the early detection 
of cardiovascular diseases in humans. Additionally, classifiers trained through machine 
learning not only demonstrate high classification speed but also achieve remarkable accuracy, 
making this approach highly regarded in the field. 

In this paper, we aim to present a method for classifying Arrhythmia (ARR), Congestive Heart 
Failure (CHF), and Normal Sinus Rhythm (NSR) within a dataset. The paper is organized into 
four main sections. The second section focuses on feature extraction and transformation of the 
signals. The third section describes a machine learning classification method used to classify 
the decomposed signals, while the fourth section addresses the accuracy of the classification 
and draws conclusions. 

 
Fig.1  Classic One Cardiac Cycle Waveforms Organization of the Text 

2. Feature Extraction Based on improved Wavelet Packet 

To date, auxiliary medical tools like ECG electrocardiograms cannot directly detect cardiac 
abnormalities. In actual medical diagnosis, ECG serves only as an adjunct and cannot directly 
confirm conditions such as heart failure; the final interpretation still requires a cardiologist's 
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diagnosis. Nevertheless, the integration of ECG technology with emerging machine learning 
techniques can enhance diagnostic efficiency and significantly reduce the burden on physicians, 
while remaining crucial for identifying other cardiac abnormalities. 

The ECGdata dataset used in the classification experiments of this paper originates from 
PhysioNet, an open-access online resource platform in the United States. Users can freely access 
raw data and analysis tools from PhysioBank and PhysioToolkit, providing significant 
convenience for researchers studying ECG signals. Specifically, ECGdata comprises 162 
electrocardiogram recordings sourced from three PhysioNet databases: the MIT-BIH 
Arrhythmia Database, the BIDMC Congestive Heart Failure Database, and the MIT-BIH Normal 
Sinus Rhythm Database. This comprises 96 records from patients with arrhythmias, 30 records 
from patients with congestive heart failure, and 36 records from patients with normal sinus 
rhythm. The entire experiment was conducted using the commercial mathematical software 
MATLAB 2012b. Data in MAT format is directly usable within MATLAB, the software employed 
in this study. ECGdata is a structure array containing two fields: data and labels. The data field 
is a 162×65536 matrix, where each row represents an ECG recording sampled at 128 Hz. while 
‘labels’ is a 162×1 diagnostic label vector containing one of three values: ARR, CHF, or NSR. After 
loading the data, a helper function ‘helperRandomSplit’ designed in MATLAB randomly splits 
the dataset into two groups in a 7:3 ratio for training and testing, respectively, with 
corresponding label splits. During this process, 70% of the data in each class is randomly 
assigned to the training set, while the remaining 30% is allocated to the test set. Each row in 
both the training and test sets corresponds to an ECG signal, and each element in the training 
and test labels contains the class label for the corresponding row. At this point, the training and 
test sets are finalized. The training set contains 113 records, and the test set contains 49 records. 
After splitting, the training data accounts for 69.75% (113/162) of the total data. Now, 
reviewing our previous operations: the ARR class accounts for 59.26% (96/162) of the total 
data, CHF accounted for 18.52% (30/162), and NSR accounted for 22.22% (36/162). After 
verification, the percentage distribution of each class in both the training and test sets matches 
the overall class distribution in the dataset. 

After completing data processing, we will begin feature extraction operations on these data, 
enabling classification based on these features. First, the helper function helper Plot Random 
Records plots the first few thousand samples from four randomly selected records in ECGdata, 
as shown in 0, accepting ECGdata and a random seed as inputs. The initial seed is set to 14 to 
ensure at least one record from each category is plotted. Here, ECGdata serves as the sole input 
parameter. By repeatedly executing helperPlotRandomRecords, we gain a clearer and more 
comprehensive understanding of the various ECG signal waveforms associated with each 
category, as illustrated in 0. When extracting features for classification from each signal, we 
first divide the signal into eight segments before performing extraction, with each segment 
lasting approximately one minute. The extracted features primarily comprise three types: 
fourth-order autoregressive (AR) model coefficients, Shannon entropy values (SE) from fourth-
order maximum overlap discrete wavelet packet transform (MODWPT), and multifractal 
wavelet waveguide estimation of fractal estimates and singular spectra. 
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Fig.2 ECG Signal Category Representation Diagram 

We should note that when processing electrocardiogram signals, the principle of simplicity 
should be followed to avoid excessive parameters causing unnecessary interference. The 
wavelet transform is a later-developed mathematical tool derived from the short-time Fourier 
transform. It decomposes signals into components of different frequencies based on varying 
wavelet basis functions, enabling multi-scale observation of signals—a form of multi-scale 
analysis. Common wavelet basis functions include Haar wavelets, dbN wavelets, and symN 
wavelets, where N denotes the wavelet order. Given the db2 wavelet basis function's superior 
symmetry, compact support, and minimal phase distortion, this paper employs the db2 wavelet 
basis function to decompose signals into multiple scales. 

Furthermore, when extracting wavelet variance estimates at different scales for each signal 
across its entire length, unbiased wavelet variance estimation is required, ensuring at least one 
wavelet coefficient remains unaffected by boundary conditions. For a signal length of 2¹⁶ 
(65,536) time units using the db2 wavelet basis function, this operation results in the signal 
being decomposed into 14 levels. 

The features extracted above were selected based on published research demonstrating their 
effectiveness in ECG waveform classification. However, this does not imply that only these three 
features are significant in the waveform, nor does it indicate that other features are ineffective 
for classification. 

We should note that when processing electrocardiogram signals, the principle of simplicity 
should be followed to avoid excessive parameters causing unnecessary interference. The 
wavelet transform is a later-developed mathematical tool derived from the short-time Fourier 
transform [21]. It decomposes signals into components of different frequencies based on 
varying wavelet basis functions, enabling multi-scale observation of signals—a form of multi-
scale analysis. Common wavelet basis functions include Haar wavelets, dbN wavelets, and symN 
wavelets, where N denotes the wavelet order. Given the db2 wavelet basis function's superior 
symmetry, compact support, and minimal phase distortion, this paper employs the db2 wavelet 
basis function to decompose signals into multiple scales. 

Furthermore, when extracting wavelet variance estimates at different scales for each signal 
across its entire length, unbiased wavelet variance estimation is required, ensuring at least one 
wavelet coefficient remains unaffected by boundary conditions. For a signal length of 2¹⁶ 
(65,536) time units using the db2 wavelet basis function, this operation results in the signal 
being decomposed into 14 levels. 



International Journal of Science Volume 12 Issue 11, 2025 

ISSN: 1813-4890  
 

106 

The features extracted above were selected based on published research demonstrating their 
effectiveness in ECG waveform classification. However, this does not imply that only these three 
features are significant in the waveform, nor does it indicate that other features are ineffective 
for classification. 

Following the above processing, the AR coefficients for each window are estimated using the 
Burg method. The Burg method enhances model accuracy and stability—particularly with 
limited or small datasets—by simultaneously accounting for both forward and backward 
prediction errors. In, the authors employed model order selection to determine the AR model 
that provided the optimal fit for ECG waveforms in similar classification problems. 

Random forest is an ensemble learning method based on decision trees in machine learning. Its 
fundamental principle involves constructing multiple decision trees trained on different 
subsets of the data to derive the final prediction result. 

In the literature, Shannon entropy—an information-theoretic metric—was computed at the 
terminal nodes of wavelet packet trees. This paper combines Shannon entropy with a random 
forest classifier. Here, we employ MODWPT up to the fourth level. 

Shannon entropy serves to measure the uncertainty of a random variable. Selecting features 
with low Shannon entropy for constructing the random forest classifier reduces the impact of 
irrelevant or redundant features on the model, thereby enhancing its performance and 
efficiency. From an information-theoretic perspective, Shannon entropy aids in explaining the 
decision-making process of the random forest model, revealing how it classifies by reducing 
uncertainty. 

From a machine learning perspective, feature selection based on Shannon entropy aids in 
constructing more compact and efficient random forest models. By selecting only features 
highly correlated with the target variable—i.e., the classification feature vector—it reduces the 
risk of model overfitting and enhances our understanding of its internal mechanisms. 

The Shannon entropy definition based on the non-sampling wavelet packet transform (UWPT) 
is shown in Equation (1): 

𝑆𝐸𝑗 = − ∑ 𝑝𝑗,𝑘
𝑁
𝑘=1   ∗ log 𝑝𝑗,𝑘                                                 (1) 

 

where N represents the number of corresponding coefficients in node j, and also denotes the 
normalized square of the wavelet packet coefficient in the jth terminal node. 

Additionally, we employ two fractal measures estimated via wavelet decomposition (i.e., high-
frequency and low-frequency subbands) .as features, a common approach in signal processing. 
We utilize the singular spectral width obtained from DWTleader as a metric for the multifractal 
properties of ECG signals. We also employed the second cumulants of the scaling exponents. 
Scaling exponents describe power-law distributions within signals at different resolutions 
based on scaling. The second cumulants roughly indicate deviations of scaling exponents from 
linearity. We can use modwtvar to obtain the wavelet variance across the entire signal. Wavelet 
variance serves to measure signal variability proportionally, or equivalently, to measure 
variability within frequency intervals of the octave band. 

 

𝑉𝑗 =
1

𝑁𝑗
∑𝑘=1

𝑁𝑗  (𝑑𝑗,𝑘 − 𝑑𝑗̅)
2

                                             （2） 

Here, 𝑑𝑗,𝑘  denotes the kth wavelet coefficient at the jth scale, 𝑑𝑗̅  represents the mean of the 

wavelet coefficients at the jth scale, and 𝑁𝑗  indicates the number of wavelet coefficients at the 

jth scale. The wavelet variance is estimated through calculation. 

After obtaining these features, our designed helper function helperExtractFeatures calculates 
them and concatenates them into feature vectors for each signal. Since the dataset is split into 
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training and test sets at a 7:3 ratio, the features are similarly divided into trainFeatures and 
testFeatures, forming matrices of dimensions 113×190 and 49×190 respectively. Each row of 
these matrices represents the feature vector for the corresponding ECG data in trainData and 
testData. 

The Holder index range map reflects the smoothness or singularity of a signal—particularly 
non-stationary signals—around a specific point. Different cardiac conditions may alter the 
Holder index range in ECG data. For instance, ARR may cause changes in the Holder index of P 
waves or T waves. By calculating and analyzing Holder index range plots of ECG data across 
different time periods or leads, and extracting relevant features, valuable insights can be 
provided for early diagnosis, condition assessment, and classification of cardiac diseases. This 
assists physicians in making more accurate clinical judgments. 

The Holder index range correlation diagram for the three signal types is shown in Fig.3. 

 
Fig.3 Box-and-Whisker Plots of Holder Index Ranges for Three Types of ECG Signals 

When creating classification feature vectors, these data points are reduced from 2¹⁶ samples to 
190-element vectors. This significant reduction in data volume is not an end in itself, but rather 
aims to condense the data into a smaller set of features that capture differences between 
categories. This enables the classifier to accurately separate signals. The feature indices 
constituting both trainFeatures and testFeatures are contained within the structure array 
features. We can certainly use these indices to explore features by group. For example, we can 
examine the range of the Holder index in the singular spectrum during the first time window to 
plot ECG signal images across the entire dataset. 

We can also perform a one-way ANOVA on a specific feature to confirm what is shown in the 
block diagram: the ranges for the ARR and NSR groups are significantly larger than those for 
the CHF group, and the between-group variation is clearly greater than the within-group 
variation, as shown in Table 1. In the ANOVA in table 1, SS, df, and MS represent the sum of 
squares, degrees of freedom, and mean square, respectively. 

Table 1.  Analysis of Variance Table 

Source SS Df MS F p-value 

Group 0.55664 2 0.27832 7.14 0.0011 

Error 6.20009 159 0.3899   

Total 6.75673 161    

For example, consider the variance differences across three groups in the second-lowest 
frequency (second-largest scale) wavelet subband. If we perform variance analysis on this 
feature, we find that the NSR group exhibits significantly lower variance in this subband 
compared to the ARR and CHF groups, indicating more concentrated data and reduced 
fluctuations. The CHF group exhibits the highest median wavelet variance and the most outliers, 
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indicating greater data variability. The ARR group's data variability falls between these two 
extremes, as shown in Fig.4. 

 
Fig.4 Box-and-Whisker Plots of Wavelet Variance Data for Three Types of ECG Signals 

The above explanation describes how a single feature is used to separate classes, but relying on 
just one feature is far from sufficient. Our goal is to obtain a sufficiently representative set of 
classification feature vectors from the feature vectors and train a classifier capable of 
distinguishing the three classes: ARR, NSR, and CHF. 

After these numerous steps, the data has been refined into classification feature vectors 
corresponding to each signal. The next step is to classify the ECG signals using these feature 
vectors. We can use the Classification Learner application to rapidly evaluate a large number of 
classifiers. In this experiment, we employed a multi-class Support Vector Machine (SVM) with 
a quadratic kernel to perform two analyses. 

Cross-validation is a commonly used model evaluation method in machine learning and data 
analysis. Five-fold cross-validation enables more thorough utilization of data. This is because, 
during each iteration, while the majority of data is used for model training, every sample has an 
opportunity to serve as validation data for better model assessment. Therefore, we ultimately 
chose to use five-fold cross-validation across the entire dataset to estimate the misclassification 
rate and confusion matrix. 

The confusion matrix summarizes prediction results for classification problems. Its core 
technique involves aggregating counts of correct and incorrect predictions, segmented by 
category, to reveal where the classification model experiences confusion during prediction. 
Final estimation yielded a five-fold classification error rate of 8.02% (corresponding to an 
accuracy rate of 91.98%). The confusion matrix (confmatCV) reveals which data points were 
misclassified, while the grouporder function provides the group sequence. Results indicate that 
in the test set: - 2 cases in the ARR group were misclassified as CHF - 8 cases in the CHF group 
were misclassified as ARR, with 1 case misclassified as NSR - 2 cases in the NSR group were 
misclassified as ARR. 

3. Experimental Results 

In the classification task of this paper, precision is calculated by dividing the number of correct 
positive results by the total number of positive results. Recall is defined as the number of 
correctly labeled instances divided by the total number of instances in a given class. Accuracy 
reflects our desire for strong performance in both precision and recall. For example, suppose 
we have a classifier that labels every record as ARR. In this case, the recall for the ARR class 
would be 1 (100%). This would result in all records belonging to the ARR class being labeled as 
ARR, leading to very low precision. 

This occurs because our classifier labels all records as ARR. Thus, for a precision of 96/162 
(0.5926), there would be 66 false positives. The F1 score is the harmonic mean of precision and 
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recall, providing a single metric that reflects the classifier's performance in both recall and 
precision. 

Additionally, we employ the helper function helperPrecisionCall to compute precision, recall, 
and F1 scores for the three classes. By examining the code in the helper function section, we 
can observe how this function calculates precision, recall, and F1 scores based on the confusion 
matrix. As shown in Table 2, we observe that both the ARR and NSR classes exhibit excellent 
precision and recall rates, while the CHF class demonstrates a notably lower recall rate. 

Table 2.  Original Classification Evaluation Indicator Table 

 Precision Recall F1_Score 

ARR 90.385 97.917 94 

CHF 91.304 70 79.245 

NSR 97.143 94.444 95.775 

In the subsequent steps, we will only fit the multi-class quadratic SVM to the training dataset 
and then use this model to predict the test dataset. The test set contains 49 data records. 

To obtain the confusion matrix, we first determine the number of correctly predicted cases. The 
classification accuracy for the test dataset is approximately 98%. The confusion matrix 
indicates that one CHF record was misclassified as NSR in the predictions. The subsequent steps, 
similar to those performed in the cross-validation analysis, aim to obtain the precision, recall, 
and F1 score for the test set (the table requires a title), as shown in Table 3. 

Table 3.  Classification Evaluation Metrics Table After SVM Fitting Only 

 Precision Recall F1_Score 

ARR 100 100 100 

CHF 100 88.889 94.118 

NSR 91.667 100 95.652 

Based on the preceding analysis, two questions naturally arise. They are: Is feature extraction 
necessary to achieve good classification results? Is a classifier required? Can these features 
separate the three categories without a classifier? To address the first question, we need to 
repeat the cross-validation process on the original time series data. We should note that 
applying SVM to a matrix of dimensions 162 × 65536 (2^16) incurs significant computational 
cost. After completing the calculations, the results are presented in Table 4. 
Table 4 Classification Evaluation Metrics Table Following Repeated Cross-Validation Processes 

 Precision Recall F1_Score 

ARR 64 100 78.049 

CHF 100 13.333 23.529 

NSR 100 22.222 36.364 

The results indicate that the misclassification rate of the original time series data is 33.3%. We 
recalculated their precision, recall, and F1 scores. Based on the data analysis, we observe that 
the F1 scores for both the CHF group (23.52) and the NSR group (36.36) are notably 
low.Additionally, we need to obtain the Discrete Fourier Transform (DFT) coefficients for each 
signal to perform frequency domain analysis. Since the data is real-valued, we can leverage the 
property that the amplitude spectrum of the Fourier transform of a real function is an even 
function to achieve some data reduction using DFT. Here, we employed DFT amplitude to 
reduce the misclassification rate to 19.13%. Although the misclassification rate decreased, it 
remained more than double the error rate achieved with the 190 features above, as shown in 
Table 5. 
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Table 5. Classified Evaluation Indicator Table After Data Reduction 

 Precision Recall F1_Score 

ARR 64 100 78.049 

CHF 100 13.333 23.529 

NSR 100 22.222 36.364 

The above analysis indicates that the accuracy of a classifier's classification depends on the 
careful selection of features. 

To address the issue of classifier effectiveness, we attempted clustering data using only the 
classification feature vectors. The k-means clustering algorithm is a widely used unsupervised 
learning method. Gap statistics also serve as an effective approach in machine learning for 
determining the number of clusters within a dataset. Using both methods, we can determine 
the optimal number of clusters and cluster assignments. Our data may have between 1 and 6 
clusters. Gap statistics indicate that the optimal number of clusters is 3. However, if we examine 
the number of records in each of the three clusters, we find that k-means clustering based on 
classification feature vectors performs poorly in separating the three diagnostic categories, as 
shown in Table 6. 

Table 6 Number of Results for Separating Three Diagnostic Categories Using k-means 
Clustering Based on Classification Feature Vectors 

Ans=3*1 

        61 

74 

27 

 

Now, let's review our data: there are 96 individuals in the ARR category, 30 in the CHF category, 
and 36 in the NSR category. 

4. Conclusion 

The differentiation between ARR, NSR, and CHF holds significant importance in cardiology and 
plays a crucial role in preventing human diseases. This paper proposes a small-to-medium-
sized model that employs wavelet analysis to extract wavelet features from electrocardiogram 
(ECG) signals. From these features, selected classification features are chosen to form a 
classification feature vector. Following data reduction, the ECG signals are ultimately classified 
into three categories using the machine learning SVM algorithm. The model's advantage lies in 
its ability to significantly reduce both data volume and computational load through feature 
extraction while capturing multiple distinctions between ARR, CHF, and NSR classes, as 
demonstrated by cross-validation results and the SVM classifier's performance on the test set. 

This experiment further demonstrates that applying SVM directly to raw ECG signals yields 
poor performance, and the same result occurs without clustering the classification feature 
vectors using SVM. In other words, neither the classifier nor the data features alone are 
sufficient to separate the three categories. However, when data reduction is performed using 
feature extraction techniques before applying the classifier, the three categories are well-
separated. This demonstrates that extracting classification feature vectors from data enhances 
computational efficiency by transforming data into a more manageable form, thereby providing 
more detailed investigation opportunities for subsequent classification tasks. 

Since all records in the MIT-BIH database originate from European subjects, to broaden its 
applicability, future clinical research should focus not only on accurately classifying the three 
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ECG signals but also on achieving more efficient and rapid classification while improving model 
generalization performance. 
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