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Abstract 

It is well known that symbolic dynamics is based on the iterated maps of endomorphism 
on a given interval.  Although coarse granulation leads information lost, however for a 
given periodic super stable kneading sequence (SSKS) , the corresponding parameters 
of iterated endomorphism map may be calculated by the word-lifting algorithm or 
technique, it is to solve a system of nonlinear equations with m variables for m-modal 
maps. The famous tough issue is initial sensitivity. In the paper, for m takes 2, the 
bimodal map is considered for the simplest case. The endomorphism conditions are 
firstly used to obtained the parameter range estimation by grid method, the final goal is 
to obtain a proper parameter range for selection of initial value, it will alleviate the 
hardness of initial problem.  On the other hand, the boundaries of SSKS in bimodal maps 
are drawn and four corresponding equations are obtained by numerical method. 
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1. Introduction 

Symbolic dynamics can be constructed with an endomorphism iterative map by a coarse 
granulation process. Symbolization of a numerical orbit looks like information lose, Kaplan [1] 
had proposed an algorithm to solve the inverse problem firstly, it was developed by B.-L. Hao 
in symbolic dynamics of unimodal maps later and named it the word-lifting algorithm [2]. With 
the development of the 1D symbolic dynamics, the difficult of lacking explicit express in inverse 
function of polynomials to the 5th power or more leads to no way to research the symbolic 
dynamics in 1D m-modal maps if 4m  .  We had proposed an effective numerical algorithm and 
solved this problem [3], in fact, the new word-lifting algorithm is quick and effective because of 
using Newton's iterative method of second-order convergence, the key issue is a proper initial 
point should be given in the parameter space, else the iterative process may lead to a divergence.   

The traditional method to find a proper initial point is empirical and comes from the geometric 
meaning of parameters. For example, in an iterative system with bimodal maps, c and d 
represents the horizontal coordinate of critical point C and D, it satisfies a non-equality -1 < c < 
d < 1. In fact, we observe a phenomenon during some newton iteration process which can not 
attain the fixed point, the map value often beyond the range of endomorphism interval [-1,1], 
this kind of divergence accounts for a large proportion, of course the primary reason is the 
selection of an unfit initial point. So, the distribution diagram of initial points should be 
researched and drawn, it will boost a convergence probability of the newton iterative method 
by such an empirical initial point. In the paper, some endomorphism condition for bimodal 
maps are proposed, two parameters c and d form a rectangle region in a plane by the geometric 
meaning, the region is divided into a dense grid, for every cross point, the corresponding map 
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is calculated, if the endomorphism condition is satisfied, the cross point is marked as green 
color else as red color on the plane graph. If the partition is fine enough, a graph with red and 
green color is finished, it is called endomorphism region graph (ERG). The result is that if the 
initial point you selected falls into the red region, the newton iteration must go into the orbit of 
divergence, while if falls into the green region, the newton iteration will converge or diverge, 
apparently the selection in green region will enlarge the chance of convergence during the 
newton iteration process. 

On the other hand, we know the SSKS is called ‘joint’ in symbolic space and played an important 
role in star product [4]. All the parameters of SSKSs in symbolic dynamics of 1D bimodal maps 
are calculated by the new word-lifting algorithm in the parameter space, in fact it is a parameter 
plane here. The boundaries are approximate four lines, their equations are presented in the 
paper by fitting method.  The ERG and ‘joint’ graph are drawn in a same plane, it is a interesting 
thing. 

The paper is organized as follows. In sec.2, iteration modal map with endomorphism interval 
and symbolic dynamics of bimodal maps is introduced, ERG is obtained by the endomorphism 
conditions and the grid method; in sec.3, the parameters of two type of SSKS with period 1-12 
are calculated by word-lifting algorithm, while the boundaries of ‘joint’ in the parameter plane 
are fitted into four linear equations; in sec.4, conclusion is given.    

2. Producing ERG With Endomorphism Conditions and Grid Method  

2.1.  The Iteration Modal and Symbolic Dynamics of Bimodal Maps 

Consider the general bimodal maps ( ) ( )( )f x k x c x d dx i= − − + , on the interval [-1,1] of 

endomorphism, by two boundary conditions f (-1) = -1 and f (1) = 1, 
3
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parameters k and i are eliminated. In fact, the iterated map of bimodal is written as 

1 ( , , )n nx f x c d+ =                                                               (1) 

Here, c and d are horizontal coordinates of two critical points C and D, while L,M and R are three 
monotonous limbs, by the MSS order [5], L C M D R  holds. For an initial point x0, by 
iterative map (1), a numerical orbit is obtained as x0, x1, ... , xn, it can be  converted into a 
symbolic sequence 0 1 nS S S , by the following rule (2), the coarse granulation process is 

quintessence of the symbolic dynamics [6].  
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If the sequence is periodic, for example ( )XDYC


 and ( ) ( )( ),XD YC
 

 are two type of SSKS and 

they are called ‘joint’ in the symbolic space, while they are simply normalized as XDYC  and 

( ),XD YC , the former is single cycle and the latter is with two cycles, where ,X Y  are sequences 

composed of  { , , }L M R , these sequences are periodic and passed through the two critical points 

C and D respectively. Other notations and concepts such as sorting order rule of sequence, shift 
operator and the word-lifting algorithm are omitted here [7]. 
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2.2. Endomorphism Conditions and Grid Method 

An endomorphism map is defined as f G G→： , 1D bimodal maps should let G is I,  I  takes  [-

1, 1] without loss of generality, 

:f I I→                                                                           (3) 

1D symbolic dynamics requires the kernel map should be endomorphism, for 0x I , by (1) and 

(3), , 1,2, .kx I k =  It will hold the structure of algebra and topology, after symbolization (2), 

symbolic dynamics may describe real dynamic system, otherwise the calculation of topological 
entropy, orbit analysis would lose the premise. For an initial point 0 0( , )c d , the following 

inequalities and two boundary conditions forms the endomorphism conditions: 

1 ( ) ( ) 1

1 1

( 1) 1,   (1) 1

f d f c

c d

f f

−   


−   
 − = − =

                                                                    (4) 

Two boundary conditions imply that the three monotonic limbs L, M and R is (+-+) type 
respectively, see Fig.1. Another case (-+-) is trivial, we do not discuss in this paper.      

 

 
 

 Fig. 1 SSKS RDLMC for +-+case 

 

2.3. Producing ERG By Endomorphism Conditions and Grid Method  

First, a Cartesian coordinate system is established, c is denoted as x axis and d as y axis 

respectively. [ 1,1] [ 1,1]−  −  square is meshed into 2n  grid cross points and 2( 1)n−  grids. Second, 

for every cross point, it is checked by condition (4), if it satisfies and mark the point as 1, else 

marked as 0. After visited all the 2n  grid cross points, we have obtained all the marked variables 
Z. Finally, the points marked as 1 are drawn as green color, others as red color. The ERG has 
been finished.  The goal of ERG is useful for proper selection of initial point before the newton-
iteration method starts.  Points on the red area would lead to a divergence at once, the green 
area should be considered, although it can ensure the convergence. It will enhance the 
probability of convergence. Here we presented the Matlab codes for the deeper understanding 
the implement of ERG. 

function y1 = if_in(c,d) 

    y1 = 1; 

    yc = f1(c,c,d); 
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    yd = f1(d,c,d); 

    if ((c>=d) || (yc>1) || (yd<-1) || (yc<=yd)) 

        y1=0; 

    end 

end 

function yy=f1(xx,c,d) 

    k=1/(1/3+c*d); 

    i=3/2*(c+d)/(1+3*c*d); 

    yy=k/3*xx.^3-k/2*(c+d)*xx.^2+k*c*d*xx+i; 

end 

n = 120; 

x = linspace(-1,1,n); 

y = linspace(-1,1,n); 

[X,Y] = meshgrid(x,y); 

Z = zeros(size(X)); 

for row = 1:n 

    for col=1:n 

        Z(row,col) = if_in(X(row,col),Y(row,col)); 

    end 

end 

x1 = reshape(X,1,n*n); 

y1 = reshape(Y,1,n*n); 

z1 = reshape(Z,1,n*n); 

t1 = find(z1==1); 

t2 = find(z1==0); 

scatter(x1(t1),y1(t1),36,[0 1 0],'filled') 

hold on 

scatter(x1(t2),y1(t2),36,[1 0 0],'filled')         

 

The codes above may produce the ERG (see Fig.2). 

 

 
Fig. 2 ERG for 1D bimodal maps 
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If it takes n = 1000, the more detailed and high definition of ERG is obtained.  It is obvious that 
the green region looks like a rectangle. It may be fitted by the Matlab function 
convhull(x1(t1),y1(t1)) which is contextual association with Matlab codes above. Three 
boundary equations are as follows: 

, ( 1,1)

3 2, ( 1, 0.5)

1 2
, ( 0.5,1)

3 3

d c c

d c c

d c c


 =  −


= +  − −

 = +  −


                                                            (5) 

The green domain is an open set of the points apparently, the points on the three boundaries 
do not satisfy endomorphism conditions (4). In addition, points away from the border may be 
more easier to fall into the endomorphism interval on the subsequent iterations. We know that 
the SSKS is the ‘joint’ in the symbolic space and played an important role on the study of 
symbolic dynamics, in addition, other ‘skeleton’ or ‘muscle’ are developed with ‘joint’ [4], if the 
parameters of the SSKS have been calculated and drawn in a same plane with ERG, it will 
enhance the knowledge of selection of initial point. 

3. Drawing the ‘joints’ on the parameter plane with ERG   

3.1. Calculation of Parameters for Two Type SSKS XDYC  and ( ),XD YC  

For a given periodic sequence ,W n W=  is the period of W ,  all the permutation of sequences 

can be produced as set 0

n . By the admissibility conditions, 

( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ).

L W C W M W C W

D W M W D W R W





                                                 (6) 

Where ( )S W  stands for all subsequences of symbol S  and  , , , ,S L C M D R ,  is the MSS 

order [5]. It is worthing of noting that ( )C W XD=  and ( )D W YC=  for XDYC  type, on the 

other hand, ( )C W YC=  and ( )D W XD=  for ( ),XD YC  type. For 0

nW   , if it meets the 

requirement of (6), it is called admissible SSKS of n-period, all the admissible SSKS form a set 

1

n . Here, we presented a table for the count of admissible SSKS in 1

n . Every element in 1

n  

corresponds a real numerical orbit. 

Table 1 The count of elements in 1

n  for n  takes value 2-15 

Period n XDYC  ( ),XD YC
 Total Counts 

2 1 0 1 
3 2 0 2 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

5 
12 
30 
78 

205 
546 

1476 
4026 

11070 
30660 
85410 

239144 

1 
4 

14 
44 

129 
372 

1064 
3020 
8554 

24256 
68862 

195868 

6 
16 
44 

122 
334 
918 

2540 
7046 

19624 
54916 

154272 
435012 
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3.2. Calculation the Parameters for W  in  1

n  

Every SSKS in 1

n  corresponds to a system of nonlinear equations which can be solved by 

newton-iteration method with the new word-lifting algorithm [], the calculation process is 

omitted here.  30653 SSKSs for period 1-12 in 1

n  is involved in the calculation, only four SSKS 

runs divergence, the reason still come from the initial value sensitivity. In fact, for period 13-15 

in 1

n  more and more SSKSs would be in a difficult position to calculate for the same reason, in 

spite of the low proportion. However, for m-modal map 3m   the initial value sensitivity 
becomes more intractable. This the goal of the paper, to acquire more knowledge for the 
parameter distribution. 30649 points are drawn with blue color while the EGR boundaries with 
green lines are drawn with the same coordinate plane. (seen Fig.1 left) 

 
Fig. 3 ERG and ‘joints’ in a same plane(left); Enlarging the graph  

for domain [ 0.52, 0.44] [0.44,0.52]− −  (right) 

The left graph in Fig.3 shows that the ‘joint’ area is 0.0064 while the area of the ERG is 1, the 
area of parameter region only occupies the 0.64 percent of the ERG’s. It seems that the EGR has 
little effect, however, the two green boundary lines turned out to be the boundary of the 
parameter of ‘joints’ in Fig.3 apparently. the result shows the simple endomorphism conditions 
(4) can determine the part of boundaries of the ‘joint’, the initial points can be selected in the 
small bule region which is a rhombus, boundary equations are easily fitted by Matlab code, four 
vertex coordinates of the rhombus boundary are calculated as following 

( 0.4627654521266084,0.4627654521266084),

( 0.4441474047698563,0.5186175314666635),

( 0.4999994841099075,0.4999994841099075),

( 0.5186175314666636,0.4441474047698559).

−

−


−

 −

                                 (7) 

The four vertex coordinates lined to four edges of a rhombus which form a parameter plane of 

all ‘joints’ in 1

n , the left corner is dense and right corner is sparse. Zoom in on any subregion, 

the fancy fractal structures are contained within it.  

4. Conclusion 

The simple endomorphism conditions may produce the boundary of dense region for ‘joints’ 
which named SSKS and constructed the kneading space. It will provide a more exact selection 
of the initial point during the newton-iteration method by the new word-lifting algorithm. The 
method of producing ERG is very useful for the word-lifting algorithm for 1D m-modal maps in 
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spite that the 99 percent region is useless, the parameter region is resized smaller, it is easier 
to find proper initial values than before. In fact, if 3m   the difficult of parameter calculation 
will increase violently, there are three critical points, the SSKS have more type and more 
complicated cases. It is worthy of searching the boundary of parameter space for trimodal maps 
and word-lifting should be developed deeper and deeper, it will drive the progress of symbolic 
dynamics. 
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