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Abstract 

Existing contrastive learning tasks in session-based recommendation primarily focus on 
graph structure perturbations, failing to fully leverage the domain prior that "recent 
interactions better reflect a user's core intent." To address this limitation, this paper 
proposes a Recency-Enhanced Contrastive Hypergraph Neural Network (RECH-HNN). 
The model employs a hypergraph convolutional network as its backbone to capture 
high-order item associations. It further designs a dynamic readout mechanism that fuses 
content-based attention with a recency prior to generate more precise session intent 
representations. Crucially, we introduce a novel recency-intent alignment contrastive 
learning paradigm. By constructing specific augmented views, such as recency-
preserving (positive samples) and tail-replacing (hard negative samples), this paradigm 
guides the model to learn session representations that are robust to early-stage noise 
yet sensitive to changes in core intent. Experimental results on multiple public datasets 
demonstrate that the proposed RECH-HNN model consistently outperforms state-of-the-
art baselines like S²-DHCN on key metrics such as P@K and MRR@K, validating the 
effectiveness of our approach. 
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1. Introduction 

Session-based recommendation aims to predict a user's next action based on their anonymous 
and immediate interaction sequence, which is crucial for scenarios involving rapidly shifting 
user interests or a lack of historical profiles. Research in this field has evolved from early 
Markov Chain models[1] to Recurrent Neural Network (RNN) models capable of capturing 
sequential dependencies. However, these models inherently model along a sequential path, 
making it difficult to effectively characterize the complex non-linear and non-contiguous 
transition relationships among items within a session. 

To overcome these limitations, Graph Neural Networks (GNNs) have been introduced to 
session-based recommendation[2]. By explicitly constructing session sequences into graph 
structures, GNNs can capture high-order dependencies between items. Building on this, recent 
works such as S²-DHCN[3] have further enhanced model performance by incorporating self-
supervised contrastive learning. The core idea of these methods is to construct positive samples 
by applying perturbations to the graph structure to learn session representations that are 
robust to topological noise. 

Despite significant progress, existing contrastive learning paradigms suffer from a fundamental 
limitation: their learning objective is set on generic "structural robustness" while overlooking 
a more critical domain prior in session-based recommendation—the recency of interactions. A 
large body of research has shown that interactions at the end of a sequence are often the most 
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direct manifestation of a user's current core intent, whereas earlier behaviors may contain 
considerable exploration or noise. Current contrastive learning methods have not explicitly 
integrated this prior knowledge into their learning objectives. 

Motivated by this insight, this paper aims to deeply integrate the critical domain prior of 
"recency" into the contrastive learning framework and proposes a new learning objective: 
recency-intent robustness. An ideal session representation should be insensitive to noise in the 
early part of a session but highly sensitive to modifications in the tail sequence that alter the 
core intent. To achieve this, we propose the Recency-Enhanced Contrastive Hypergraph Neural 
Network (RECH-HNN). This model shifts the goal of contrastive learning from "structural 
robustness" to "recency-intent robustness." It not only designs a readout mechanism that fuses 
content and positional priors to accurately locate the core intent but also establishes a novel 
contrastive learning paradigm. Through specific data augmentation strategies like "recency-
preserving" and "tail-replacing," the model is explicitly guided to learn more discriminative 
session representations, thereby offering a new direction for self-supervised learning research 
in this domain.  

2. Related Work  

2.1. Research on Session-Based Recommendation  

For general recommendation problems, matrix factorization is a common solution, which 
decomposes the user-item interaction history into low-dimensional matrices. However, due to 
the sparsity of the rating matrix, it is not suitable for session-based recommendation. Early 
research on session-based recommendation was predominantly based on Markov Chain (MC) 
models. These methods capture short-term item representations within a session but are 
typically limited in modeling long-term user preference dependencies, as they focus on 
sequential transitions between adjacent items. 

With the rise of deep learning, models based on Recurrent Neural Networks (RNNs) have been 
widely applied due to their powerful sequence modeling capabilities. GRU4Rec[4] was a 
pioneering work in this direction, using Gated Recurrent Units (GRUs) to model the sequential 
behavior of items in a session. Building on this, NARM[5] introduced an attention mechanism, 
employing a dual-encoder structure to capture both the user's global preferences and current 
main purpose. STAMP[6] abandoned the recurrent structure of RNNs, relying entirely on self-
attention mechanisms and multi-layer perceptrons to capture users' long- and short-term 
preferences, highlighting the importance of the last click. However, these models still 
essentially focus on modeling sequential transitions between adjacent items, with limited 
ability to capture complex, non-contiguous dependencies within a session. Furthermore, 
Convolutional Neural Network (CNN) models, represented by NextItNet, have also been applied 
to session-based recommendation, learning short-term sequential patterns by stacking causal 
convolutional layers, but they also struggle to capture long-range dependencies. 

In recent years, to further enhance model performance, contrastive learning has been 
introduced as a powerful self-supervised learning paradigm. For instance, COTREC designed a 
graph co-training framework that facilitates information interaction between different views 
through self-supervised tasks. CL4SRec[7] constructs positive pairs through data augmentation 
(e.g., item cropping, masking, reordering) to learn more robust sequence representations. More 
recent work, such as DuoRec[8], improves both generalization and personalization by 
designing a "general-specific" dual contrastive learning objective. These works have validated 
the great potential of contrastive learning in alleviating data sparsity and improving 
representation quality.. 
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2.2. Research on GNN-based Recommendation 

To effectively model the complex topological relationships among items within a session, 
researchers began to construct session sequences into graph structures and use Graph Neural 
Networks (GNNs) for representation learning, which has become a mainstream direction. SR-
GNN is a foundational work in this area, converting session sequences into directed graphs and 
using Gated Graph Neural Networks (GGNNs) to propagate node information. Subsequently, a 
series of works have refined and extended the graph construction and information propagation 
mechanisms. For example, GCE-GNN[9] effectively integrates cross-session global context by 
constructing a global graph and local session graphs. Disen-GNN proposed a disentangled graph 
neural network that models diverse user interests by embedding items into multiple 
independent intent spaces. TAGNN further considered the influence of the target item by 
introducing a target-aware attention mechanism when learning session representations. 

To capture deeper, high-order associations between items, models like S²-DHCN and DHCN[10] 
have introduced the hypergraph structure. By treating a session itself as a hyperedge 
connecting multiple items, hypergraph convolutional networks can more explicitly model the 
complex co-occurrence relationships of items across different sessions, achieving superior 
performance. Meanwhile, some of the latest research has started to focus on the dynamic and 
personalized nature of graph structure learning. For instance, MSG-IF proposed a multi-
granularity intent fusion framework that dynamically discovers and fuses users' continuous 
intent units on a hypergraph. GNN-LSTP explicitly decomposes sessions into long- and short-
term preferences and introduces relevance encoding on a global graph. 

In the combination of self-supervised learning and GNNs, S²-DHCN is a landmark work that 
integrates self-supervised contrastive learning with a hypergraph network. Its core idea is to 
construct positive samples by applying perturbations to the hypergraph structure (e.g., 
node/edge dropping) to learn session representations robust to topological noise. Following 
this line of thought, SG-GNN proposed a multi-task learning framework that simultaneously 
performs next-item prediction and graph structure reconstruction. However, despite the 
significant success of these GNN-based and contrastive learning methods, the design of their 
contrastive tasks still has a common limitation: their objective is set on generic "structural 
robustness," ignoring a more critical domain prior in session-based recommendation—the 
recency of interactions. In summary, although existing works have made considerable progress, 
how to deeply integrate the key domain prior of "recency" into the contrastive learning 
framework to design more targeted self-supervised tasks remains an issue to be further 
explored. The RECH-HNN model proposed in this paper is intended to fill this research gap. 

3. Model Framework and Algorithm Description  

3.1. Problem Definition 

Let  1 2, ,..., mV v v v=  be the set of all items, where m  is the total number of items. An 

anonymous user session sequence can be represented as  
1 2
, ,...,

ns s ss v v v=  , where 
is
v V  is 

the item with which the user interacted at the i -th step in session s ,and n   is the session length. 
The goal of session-based recommendation is to predict the next item 

1ns
v

+
 that the user is most 

likely to interact with, given the current session s .The model needs to generate a prediction 

score vector 1 2
ˆ , ,..., my y y y= for all candidate items V  and perform Top-K recommendation 

based on it. 
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3.2. Overall Model Framework 

The proposed RECH-HNN model aims to learn more discriminative session representations by 
deeply integrating the "recency" prior into the contrastive learning framework. Its architecture 
consists of three core components: Global Hypergraph Encoding, Recency-Enhanced Dynamic 
Readout, and Recency-Intent Contrastive Learning, as shown in Figure 1. 

 
Fig. 1 RECH-HNN model 

3.3. Global Hypergraph Construction and Encoding 

To capture the complex high-order associations among items, we construct a global hypergraph 

( ),G V E= ,where V  is the set of nodes (all items) and E  is the set of hyperedges (all sessions). 

Then, we derive item-item adjacency relationships from the hypergraph structure and use a 
hypergraph convolutional network for information propagation. 

Specifically, the structure of the hypergraph can be represented by an incidence matrix 
m S

H R


 ,where S  is the total number of sessions. If item iv belongs to session js ,then 

1ijH = ;otherwise, 0ijH = .The propagation process of hypergraph convolution can be formally 

defined as: 
( ) ( )( ) ( )1 1/2 1 1/2l l l

v e e v
+ − − −=X D HWD H D X W

•                                         (1) 

where ( )l m dR X  is the learned item embedding matrix at layer l  , d is the embedding 

dimension, and ( )0
X is the randomly initialized item embeddings. vD  and eD  are the diagonal 

matrices of node degrees and hyperedge degrees, respectively, used for normalization. eW   is 

a diagonal matrix representing the weights of hyperedges, usually set as an identity matrix. 
( )l d dR W  is the trainable weight matrix at the l -th layer, and   is a non-linear activation 

function such as LeakyReLU. By stacking L  layers of hypergraph convolutions, the model can 
aggregate information from L -hop neighbors, thereby learning the final item embedding 

representation m d

item R H  that captures global high-order relationships. 

3.4. Recency-Enhanced Dynamic Readout Module 

After obtaining item embeddings that capture high-order relationships, the key is to generate 

an accurate session representation from the corresponding item embedding matrix d

s

mR H  

for the current session s .To this end, we design a dynamic readout module that fuses content-
based attention with a recency prior. 

First, we calculate the content relevance score for each item. This score is determined by the 
item's own information, its position, and the overall session context. For the i -th item in the 
session, its information vector 

is
n  is calculated as follows: 

1 1sigmoid(GLU (tanh( [ ; ])) 2( ))
i i

ss i s GLU h= +n W p h                                  (2) 



International Journal of Science Volume 12 Issue 11, 2025 

ISSN: 1813-4890  
 

86 

where 
is

h  is the i -th row of SH ,i.e.,the embedding of item 
is
v , iP  is its corresponding 

learnable position embedding, and sh  is the session context representation obtained by 

average pooling all row vectors of SH . ;
ii s

 
 p h  denotes vector concatenation. ( )GLU  

represents a Gated Linear Unit, and 1W  is a trainable parameter matrix. Subsequently, the 

content attention score 
is

 is obtained through a dot product with a trainable vector 2w : 

2i is s  =w n
•                                                                      (3) 

Next, we introduce the recency prior. Based on the number of steps i n i = − from the end of the 

sequence for item i ,we define its recency prior score i
 as: 

i i   = −                                                                       (4) 

where   is a hyperparameter that controls the strength of recency. The final attention weight 

i  is obtained by summing the content attention score and the recency prior score, followed by 

normalization with a softmax function. This is probabilistically equivalent to a Product of 
Experts, ensuring that only items important in both content and position receive high weights. 

( )softmaxi i i   = +                                                           (5) 

Finally, the session representation finals  is obtained by a weighted sum of all item embeddings 

within the session according to these attention weights: 

final

1

n

i i

i


=

=s h                                                                (6) 

3.5. Recency-Intent Contrastive Learning 

To guide the model to learn representations with recency-intent robustness, we design a novel 
contrastive learning task. Unlike traditional methods, our data augmentation strategy does not 
focus on generic structural perturbations but is closely centered around the core concept of 
"recency intent." For the anchor representation anchors  generated from each session, we 

construct specific positive and negative samples through particular transformations to create 
its positive and negative views. 

The augmentation strategies are divided into two categories. The first category aims to 
construct positive samples that preserve the core intent. We design two methods for this: one 
is recency-preserving augmentation, which simulates scenarios where users skip exploratory 
behaviors by randomly dropping some items from the early part of the session; the other is 
time-warping augmentation, which enhances the model's robustness to minor fluctuations in 
user interaction rhythm by applying a small amount of Gaussian noise to the step count i when 

calculating the recency prior. The second category of strategies aims to construct hard negative 
samples that can confuse the model. For this, we design tail-replacing augmentation, which 
randomly replaces key items at the end of the session sequence. This operation, while 
minimizing sequence changes, is highly likely to completely alter the user's core intent, thereby 
forcing the model to learn more discriminative features. 

Based on these augmentation strategies, we use a multi-positive InfoNCE loss to optimize the 
model. For an anchor as ,its contrastive loss CLL  is defined as: 

 ( )

( )( )

( )( ) ( )( )
CL

sim , /

sim , / sim , /

p pos

p pos n neg

a p

S

a

a p a n

S S

exp

L log
exp exp



 



 

= −
+



 

s

s s

s s

s
s s s s

                       (7) 
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where ( , )sim  denotes cosine similarity. 
posS  is the set of positive samples generated by the 

two positive augmentation strategies mentioned above. 
negS  includes hard negative samples 

generated by tail-replacing, as well as anchor representations from other sessions within the 
same batch (in-batch negatives), which serve as global negative samples.  is a temperature 
hyperparameter that adjusts the difficulty of distinguishing between samples. Through this loss 
function, the model is driven to pull the anchor closer to positive samples with consistent core 
intent, while pushing it away from negative samples with conflicting intent, especially those 
hard negatives that differ only subtly at the tail. 

3.6. Joint Optimization and Prediction 

After obtaining the final session representation finals ,we calculate the prediction score for each 

item by taking the inner product with all item embeddings itemH .The result is normalized using 

a softmax function to obtain the predicted probability distribution y : 

( )final itemsoftmax= y s H
•                                                         (8) 

The loss function for the main recommendation task is the standard cross-entropy loss CEL : 

( )CE

1

ˆ
m

i i

i

L y log y
=

= −                                                            (9) 

where y  is the one-hot encoded vector of the target item. The total loss function totalL  of the 

model is a weighted sum of the cross-entropy loss CEL  and our proposed recency-intent 

contrastive loss CLL : 

total CE CLL L L= +                                                           (10) 

where   is a hyperparameter that balances the importance of the main task and the self-

supervised task. By minimizing the total loss totalL ,the model is jointly optimized to 

simultaneously achieve accurate recommendations and learn session representations with 
recency-intent robustness. 

4. Experiments 

4.1. Experimental Datasets 

To comprehensively evaluate the effectiveness of the proposed RECH-HNN model, we 
conducted extensive experiments on three public datasets widely used in session-based 
recommendation research: Diginetica, Tmall, and Yoochoose 1/64. The Diginetica dataset 
originates from the 2016 CIKM Cup Personalized E-commerce Search Challenge. The Tmall 
dataset is extracted from the IJCAI-15 competition and consists of user shopping logs from 
Alibaba's Tmall e-commerce platform. The Yoochoose dataset is from the 2015 RecSys 
Challenge and contains a large volume of user clickstream data from e-commerce websites; we 
used its commonly adopted 1/64 sampled version. To ensure data quality and make the 
experiments more realistic, we performed necessary preprocessing on the raw data. 
Specifically, we first filtered out sessions with a length of 1, as such sessions do not provide 
effective sequential information. Simultaneously, to alleviate data sparsity, we also removed 
infrequent items that appeared fewer than 5 times in the dataset. After this preprocessing, the 
detailed statistics of the three datasets are shown in Table 1. 
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Table 1 Dataset Statistics 

Dataset YOOCHOOSE1/64 Tmall Diginetica 

Clicks 557248 818479 982961 

Training Sessions 369859 351268 719470 

Test Sessions 55898 25898 60858 

Items 16766 40728 43097 

Avg. Session Length 6.16 6.69 5.12 

4.2. Evaluation Metrics 

To quantitatively evaluate the recommendation performance of the models, we adopted two 
widely used ranking-based evaluation metrics in the field of session-based recommendation: 
Precision (P) and Mean Reciprocal Rank (MRR). For a given session, the model generates a 
ranked list of all candidate items. We select the top K items as the final recommendation result 
and evaluate the model's performance accordingly. Following the common settings in related 
works, we set K to 20 in our experiments. 

P@K measures the proportion of sessions where the true target item is successfully hit within 
the Top-K recommendation list. Its formula is: 

hit

test

P@K
n

S
=
∣ ∣

                                                            (11) 

where testS  is the total number of sessions in the test set, and hitn  is the number of sessions 

where the target item was correctly predicted in the Top-K list. 

MRR@K not only considers whether the item was hit but also accounts for the position of the 
correctly recommended item in the ranked list. The higher the rank, the higher the value of this 
metric. Its formula is defined as: 

testtest

1 1
MRR @K

ranks S sS 

= 
∣ ∣

                                             (12) 

where srank  represents the rank position of the true target item in the recommendation list for 

session s . If the target item does not appear in the Top-K list, its reciprocal rank is counted as 
0. 

4.3. Overall Performance Comparison 

The experimental results in Table 2 show that RECH-HNN achieves the best performance on all 
three datasets across all evaluation metrics, validating the effectiveness of the proposed 
method. 

Table  2  Compare the experimental results 

Models YOOCHOOSE1/64 Tmall Diginetica 

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20 
FPMC 45.62 15.01 16.06 7.32 26.53 6.95 

GRU4Rec 60.64 22.89 10.93 5.89 29.45 8.33 

NARM 68.32 28.63 23.30 10.70 49.70 16.17 

STAMP 68.74 29.67 26.47 13.36 45.64 14.32 
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SR-GNN 70.57 30.94 29.46 13.96 50.73 17.59 

DISEN-GNN 71.83 31.25 31.58 15.46 53.70 19.05 

GCE-GNN 71.85 32.04 34.35 15.91 54.64 19.20 

S²-DHCN 72.03 32.10 31.41 15.05 53.18 18.43 

HyperS²Rec 72.29 32.30 29.76 16.19 53.29 18.30 

Atten-
Mixer 

72.27 34.55 40.98 16.72 55.12 18.90 

RECH-HNN 72.73 34.67 41.70 18.47 55.95 19.53 

 

Compared to the traditional model FPMC, all deep learning-based models show a significant 
performance advantage, indicating that simple Markov assumptions are insufficient to capture 
the complex non-linear dependencies in sessions. Among the RNN-based models, NARM and 
STAMP, by introducing attention mechanisms, perform far better than the basic GRU4Rec, 
which verifies the necessity of differentiating the importance of items within a session. It is 
noteworthy that GRU4Rec's performance on the Tmall dataset is even worse than FPMC's, 
possibly because the user behavior patterns in the Tmall dataset are more complex and volatile, 
and a single recurrent structure is反而  constrained when handling such highly dynamic 

interest drift. 

All GNN-based methods outperform RNN-based models in most cases. This result clearly 
demonstrates that by explicitly constructing session sequences into graph structures, GNNs can 
capture complex, non-contiguous transition relationships between items that are difficult for 
RNNs to model. Among these GNN models, GCE-GNN and S²-DHCN further improve 
performance by introducing global information or hypergraph structures, illustrating the 
importance of capturing higher-order, more global item associations. 

Most critically, the proposed RECH-HNN model surpasses all strong baseline models, including 
S²-DHCN and Atten-Mixer, on all datasets. The core reason for this performance improvement 
is that RECH-HNN's contrastive learning objective achieves a deeper alignment with the 
intrinsic characteristics of the session-based recommendation task. 

Specifically, on the Yoochoose 1/64 and Diginetica datasets, which have significant clickstream 
features, user behavior sequences often contain a large amount of exploratory clicks (noise) 
and a final, clear purchase intent. Models like S²-DHCN learn "structural robustness" by 
perturbing the graph structure. While effective, this does not directly address the pain point of 
"exploratory noise." RECH-HNN, through data augmentation strategies like "recency-
preserving" and "tail-replacing," constructs a specialized self-supervised task that forces the 
model to understand "what recent items determine the essence of a session." This mechanism 
enables the model to more effectively distill the user's core purchase intent from sequences 
containing a large amount of noise, thus achieving significant improvements on metrics like 
MRR@20 that focus more on ranking quality. 

On the Tmall dataset, which has longer average session lengths and a more complex commercial 
setting, the phenomenon of user interest drift may be more frequent. The Atten-Mixer model 
performs exceptionally well on this dataset, thanks to its powerful sequential feature mixing 
capabilities. However, RECH-HNN still achieves superior performance. The reason is that 
RECH-HNN's "recency-intent alignment" not only suppresses early noise, but its "time-
warping" augmentation strategy also makes the model more robust to minor fluctuations in 
user interaction rhythm. This allows the model to stably focus on the final, most critical 
interaction behaviors even when dealing with multiple intent shifts that may exist in long 
sessions, thus demonstrating excellent performance on the complex Tmall dataset as well. In 
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summary, the superiority of RECH-HNN is not coincidental but a direct reflection of its core 
design philosophy effectively playing out on datasets with different characteristics. 

4.4. Ablation Study 

To verify the effectiveness of each core component in the proposed RECH-HNN model, we 
conducted a series of ablation studies. Specifically, we sequentially removed the recency prior 
injection (w/o RecencyPrior), the hard negative samples (w/o HardNeg), and the entire 
recency-intent contrastive learning framework (w/o CL) from the complete RECH-HNN model 
and analyzed the performance changes. The experiments were conducted on all three datasets, 
with results shown in Figure 2 and Figure 3. 

 
Fig. 2  Recall@20 result when different modules are removed 

 
Fig. 3  Recall@20 result when different modules are removed 

The results show that removing any core component leads to varying degrees of performance 
degradation on P@20 and MRR@20 metrics. This clearly demonstrates that each module in the 
model plays an indispensable role in improving recommendation performance. The specific 
analysis is as follows: 

Impact of the Recency-Intent Contrastive Learning Framework (w/o CL): After removing the 
entire contrastive learning framework, the model's performance experienced the most 
significant decline across all datasets. For example, on the Tmall dataset, the MRR@20 metric 
dropped by about 11.3%. This fully demonstrates that contrastive learning, as a powerful self-
supervised learning paradigm, can effectively learn more robust and generalizable session 
representations by constructing an auxiliary self-supervised task, thereby significantly 
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alleviating the data sparsity problem and providing a crucial regularization signal for the 
optimization of the main recommendation task. 

Impact of the Hard Negative Sample Strategy (w/o HardNeg): When the contrastive learning 
framework was retained but only the hard negative samples were removed, the model's 
performance also decreased noticeably. This directly validates the effectiveness and necessity 
of the "tail-replacing" strategy proposed in this paper. Traditional contrastive learning methods 
mostly use other sessions within a batch as negative samples. While the model can learn to 
distinguish between sessions with obvious differences, its ability to discriminate between 
sessions that are structurally similar but differ subtly in the tail items that determine the core 
intent is often insufficient. The introduction of hard negative samples, by constructing such 
"high similarity, low intent relevance" pairs, forces the model to become highly sensitive to tail 
modifications that are sufficient to change the core intent, thereby obtaining finer and more 
discriminative session representations. 

Impact of the Recency Prior Injection (w/o RecencyPrior): After removing the recency prior 
injection from the dynamic readout module, the model's performance also showed a consistent 
decline. This indicates that explicitly incorporating the domain prior that "recent interactions 
better reflect the user's core intent" into the attention mechanism is highly effective. Without 
this prior knowledge as "soft guidance," the model has to rely entirely on data-driven content 
attention to capture the user's main intent, which not only increases the model's learning 
burden but also makes it more susceptible to interference from noisy items in the early part of 
the session. The injection of the recency prior can stably guide the model's attention to focus 
on the tail of the session, which better reflects the user's immediate needs, thus providing a 
reliable guarantee for generating more accurate session intent representations. 

In summary, the results of the ablation study strongly prove the integrity and synergy of the 
RECH-HNN model design. The recency-enhanced dynamic readout module provides the 
foundation for accurately locating the core intent, while the novel recency-intent contrastive 
learning framework, especially the introduction of the hard negative sample strategy, is key to 
enhancing the discriminative power of the model's representations. The three components are 
complementary and work together to drive the model to learn session representations that are 
robust to early noise and sensitive to changes in core intent, thereby achieving excellent 
recommendation performance. 

5. Conclusion 

This paper proposes a Recency-Enhanced Contrastive Hypergraph Neural Network (RECH-
HNN) for session-based recommendation, designed to address the issue that existing 
contrastive learning paradigms generally ignore the "recency" domain prior. The model uses a 
hypergraph convolutional network to capture high-order item associations and designs a 
dynamic readout mechanism that fuses a recency prior to generate more accurate session 
intents. Furthermore, by constructing specific augmented views such as "recency-preserving" 
and "tail-replacing," this paper introduces a novel recency-intent alignment contrastive 
learning paradigm to learn session representations that are robust to early-stage noise yet 
sensitive to changes in core intent. Experimental results on multiple public datasets validate 
the effectiveness of the proposed method. 

Future work will explore the following directions: (1)Dynamic Intent Evolution Modeling: 
Exploring how to model the multiple potential intents a user may have within a long session 
and their transition processes, rather than just focusing on the final intent. (2)Fusing 
Multimodal Information: Integrating multimodal attributes of items, such as text and images, 
into the contrastive learning framework to build richer item representations and explore more 
challenging hard negative sampling strategies. 
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