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Abstract

Existing contrastive learning tasks in session-based recommendation primarily focus on
graph structure perturbations, failing to fully leverage the domain prior that "recent
interactions better reflect a user's core intent." To address this limitation, this paper
proposes a Recency-Enhanced Contrastive Hypergraph Neural Network (RECH-HNN).
The model employs a hypergraph convolutional network as its backbone to capture
high-order item associations. It further designs a dynamicreadout mechanism that fuses
content-based attention with a recency prior to generate more precise session intent
representations. Crucially, we introduce a novel recency-intent alignment contrastive
learning paradigm. By constructing specific augmented views, such as recency-
preserving (positive samples) and tail-replacing (hard negative samples), this paradigm
guides the model to learn session representations that are robust to early-stage noise
yet sensitive to changes in core intent. Experimental results on multiple public datasets
demonstrate that the proposed RECH-HNN model consistently outperforms state-of-the-
art baselines like S>-DHCN on key metrics such as P@K and MRR@XK, validating the
effectiveness of our approach.
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1. Introduction

Session-based recommendation aims to predict a user's next action based on their anonymous
and immediate interaction sequence, which is crucial for scenarios involving rapidly shifting
user interests or a lack of historical profiles. Research in this field has evolved from early
Markov Chain models[1] to Recurrent Neural Network (RNN) models capable of capturing
sequential dependencies. However, these models inherently model along a sequential path,
making it difficult to effectively characterize the complex non-linear and non-contiguous
transition relationships among items within a session.

To overcome these limitations, Graph Neural Networks (GNNs) have been introduced to
session-based recommendation[2]. By explicitly constructing session sequences into graph
structures, GNNs can capture high-order dependencies between items. Building on this, recent
works such as S>-DHCNJ[3] have further enhanced model performance by incorporating self-
supervised contrastive learning. The core idea of these methods is to construct positive samples
by applying perturbations to the graph structure to learn session representations that are
robust to topological noise.

Despite significant progress, existing contrastive learning paradigms suffer from a fundamental
limitation: their learning objective is set on generic "structural robustness" while overlooking
a more critical domain prior in session-based recommendation—the recency of interactions. A
large body of research has shown that interactions at the end of a sequence are often the most
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direct manifestation of a user's current core intent, whereas earlier behaviors may contain
considerable exploration or noise. Current contrastive learning methods have not explicitly
integrated this prior knowledge into their learning objectives.

Motivated by this insight, this paper aims to deeply integrate the critical domain prior of
"recency” into the contrastive learning framework and proposes a new learning objective:
recency-intent robustness. An ideal session representation should be insensitive to noise in the
early part of a session but highly sensitive to modifications in the tail sequence that alter the
core intent. To achieve this, we propose the Recency-Enhanced Contrastive Hypergraph Neural
Network (RECH-HNN). This model shifts the goal of contrastive learning from "structural
robustness" to "recency-intent robustness." It not only designs a readout mechanism that fuses
content and positional priors to accurately locate the core intent but also establishes a novel
contrastive learning paradigm. Through specific data augmentation strategies like "recency-
preserving" and "tail-replacing," the model is explicitly guided to learn more discriminative
session representations, thereby offering a new direction for self-supervised learning research
in this domain.

2. Related Work

2.1. Research on Session-Based Recommendation

For general recommendation problems, matrix factorization is a common solution, which
decomposes the user-item interaction history into low-dimensional matrices. However, due to
the sparsity of the rating matrix, it is not suitable for session-based recommendation. Early
research on session-based recommendation was predominantly based on Markov Chain (MC)
models. These methods capture short-term item representations within a session but are
typically limited in modeling long-term user preference dependencies, as they focus on
sequential transitions between adjacent items.

With the rise of deep learning, models based on Recurrent Neural Networks (RNNs) have been
widely applied due to their powerful sequence modeling capabilities. GRU4Rec[4] was a
pioneering work in this direction, using Gated Recurrent Units (GRUs) to model the sequential
behavior of items in a session. Building on this, NARM|[5] introduced an attention mechanism,
employing a dual-encoder structure to capture both the user's global preferences and current
main purpose. STAMP[6] abandoned the recurrent structure of RNNs, relying entirely on self-
attention mechanisms and multi-layer perceptrons to capture users' long- and short-term
preferences, highlighting the importance of the last click. However, these models still
essentially focus on modeling sequential transitions between adjacent items, with limited
ability to capture complex, non-contiguous dependencies within a session. Furthermore,
Convolutional Neural Network (CNN) models, represented by NextItNet, have also been applied
to session-based recommendation, learning short-term sequential patterns by stacking causal
convolutional layers, but they also struggle to capture long-range dependencies.

In recent years, to further enhance model performance, contrastive learning has been
introduced as a powerful self-supervised learning paradigm. For instance, COTREC designed a
graph co-training framework that facilitates information interaction between different views
through self-supervised tasks. CL4SRec[7] constructs positive pairs through data augmentation
(e.g., item cropping, masking, reordering) to learn more robust sequence representations. More
recent work, such as DuoRec[8], improves both generalization and personalization by
designing a "general-specific" dual contrastive learning objective. These works have validated
the great potential of contrastive learning in alleviating data sparsity and improving
representation quality..
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2.2. Research on GNN-based Recommendation

To effectively model the complex topological relationships among items within a session,
researchers began to construct session sequences into graph structures and use Graph Neural
Networks (GNNs) for representation learning, which has become a mainstream direction. SR-
GNN is a foundational work in this area, converting session sequences into directed graphs and
using Gated Graph Neural Networks (GGNNs) to propagate node information. Subsequently, a
series of works have refined and extended the graph construction and information propagation
mechanisms. For example, GCE-GNN[9] effectively integrates cross-session global context by
constructing a global graph and local session graphs. Disen-GNN proposed a disentangled graph
neural network that models diverse user interests by embedding items into multiple
independent intent spaces. TAGNN further considered the influence of the target item by
introducing a target-aware attention mechanism when learning session representations.

To capture deeper, high-order associations between items, models like S*>-DHCN and DHCN[10]
have introduced the hypergraph structure. By treating a session itself as a hyperedge
connecting multiple items, hypergraph convolutional networks can more explicitly model the
complex co-occurrence relationships of items across different sessions, achieving superior
performance. Meanwhile, some of the latest research has started to focus on the dynamic and
personalized nature of graph structure learning. For instance, MSG-IF proposed a multi-
granularity intent fusion framework that dynamically discovers and fuses users' continuous
intent units on a hypergraph. GNN-LSTP explicitly decomposes sessions into long- and short-
term preferences and introduces relevance encoding on a global graph.

In the combination of self-supervised learning and GNNs, S>-DHCN is a landmark work that
integrates self-supervised contrastive learning with a hypergraph network. Its core idea is to
construct positive samples by applying perturbations to the hypergraph structure (e.g.,
node/edge dropping) to learn session representations robust to topological noise. Following
this line of thought, SG-GNN proposed a multi-task learning framework that simultaneously
performs next-item prediction and graph structure reconstruction. However, despite the
significant success of these GNN-based and contrastive learning methods, the design of their
contrastive tasks still has a common limitation: their objective is set on generic "structural
robustness," ignoring a more critical domain prior in session-based recommendation—the
recency of interactions. In summary, although existing works have made considerable progress,
how to deeply integrate the key domain prior of "recency" into the contrastive learning
framework to design more targeted self-supervised tasks remains an issue to be further
explored. The RECH-HNN model proposed in this paper is intended to fill this research gap.

3. Model Framework and Algorithm Description

3.1. Problem Definition

Let ¥V ={v,v,,...,v,,} be the set of all items, where m is the total number of items. An

> m
anonymous user session sequence can be represented as s ={vsl,vS2,...,vs } , where v, €V is
the item with which the user interacted at the 7 -th step in session s,and 7 is the session length.
The goal of session-based recommendation is to predict the next item v, ~thatthe user is most

likely to interact with, given the current session s.The model needs to generate a prediction
score vector y =,,¥,,...,», for all candidate items 7 and perform Top-K recommendation
based on it.
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3.2. Overall Model Framework

The proposed RECH-HNN model aims to learn more discriminative session representations by
deeply integrating the "recency" prior into the contrastive learning framework. Its architecture
consists of three core components: Global Hypergraph Encoding, Recency-Enhanced Dynamic
Readout, and Recency-Intent Contrastive Learning, as shown in Figure 1.

RECH-HNN Model

Main Recommendation Task

Recency-Enhanced Next-Item . Recommendation

Readout Prediction Loss (L_CE)
Input: N Hypergraph . g
Session Sequence Encoder -

Joint
Optimization
Contrastive Learning Task pt

Recency-Intent o Recency-Intent o Contrastive
Data Augmentation Alignment Loss (L_CL)

Fig. 1 RECH-HNN model

3.3. Global Hypergraph Construction and Encoding
To capture the complex high-order associations among items, we construct a global hypergraph
G= (V, E) ,where V' is the set of nodes (all items) and E is the set of hyperedges (all sessions).

Then, we derive item-item adjacency relationships from the hypergraph structure and use a
hypergraph convolutional network for information propagation.

Specifically, the structure of the hypergraph can be represented by an incidence matrix
HeR™ ,where |S| is the total number of sessions. If item v, belongs to session s; ,then

H, =1;otherwise, H, =0.The propagation process of hypergraph convolution can be formally
defined as:

X(1+1) _ O'(D;UZHWQD;IH. D;UZX([) ) W(z) (1)

where X" € R is the learned item embedding matrix at layer / , d is the embedding
dimension, and X is the randomly initialized item embeddings. D, and D, are the diagonal

matrices of node degrees and hyperedge degrees, respectively, used for normalization. W, is
a diagonal matrix representing the weights of hyperedges, usually set as an identity matrix.

W e R* is the trainable weight matrix at the/-th layer, and o is a non-linear activation
function such as LeakyReLU. By stacking L layers of hypergraph convolutions, the model can
aggregate information from L -hop neighbors, thereby learning the final item embedding

representation H,, € R™ that captures global high-order relationships.

3.4. Recency-Enhanced Dynamic Readout Module
After obtaining item embeddings that capture high-order relationships, the key is to generate
an accurate session representation from the corresponding item embedding matrix H, € R"

for the current session s.To this end, we design a dynamic readout module that fuses content-
based attention with a recency prior.

First, we calculate the content relevance score for each item. This score is determined by the
item's own information, its position, and the overall session context. For the i-th item in the
session, its information vector »n_ is calculated as follows:

n, =sigmoid(GLU, (tanh(W,[p;h ])) + GLU 2(25)) (2)
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where h__ is the i-th row of H; ,e.,the embedding of item v_, P is its corresponding
learnable position embedding, and /4 is the session context representation obtained by

average pooling all row vectors of Hj .[pi;h ] denotes vector concatenation. GLU(\)

represents a Gated Linear Unit, and W, is a trainable parameter matrix. Subsequently, the

content attention score ', is obtained through a dot product with a trainable vector w,:

a, =w;n, (3)
Next, we introduce the recency prior. Based on the number of steps 6, = n —i from the end of the
sequence for itemi,we define its recency prior score «; as:

o ==7-§ (4)
where y is a hyperparameter that controls the strength of recency. The final attention weight

a, is obtained by summing the content attention score and the recency prior score, followed by

normalization with a softmax function. This is probabilistically equivalent to a Product of
Experts, ensuring that only items important in both content and position receive high weights.

@, = softmax (a; + a;') (5)
Finally, the session representation s, is obtained by a weighted sum of all item embeddings

within the session according to these attention weights:
sf'mal = zaihi (6)
i=1

3.5. Recency-Intent Contrastive Learning

To guide the model to learn representations with recency-intent robustness, we design a novel
contrastive learning task. Unlike traditional methods, our data augmentation strategy does not
focus on generic structural perturbations but is closely centered around the core concept of
"recency intent." For the anchor representation s, ,  generated from each session, we

construct specific positive and negative samples through particular transformations to create
its positive and negative views.

The augmentation strategies are divided into two categories. The first category aims to
construct positive samples that preserve the core intent. We design two methods for this: one
is recency-preserving augmentation, which simulates scenarios where users skip exploratory
behaviors by randomly dropping some items from the early part of the session; the other is
time-warping augmentation, which enhances the model's robustness to minor fluctuations in
user interaction rhythm by applying a small amount of Gaussian noise to the step countd, when

calculating the recency prior. The second category of strategies aims to construct hard negative
samples that can confuse the model. For this, we design tail-replacing augmentation, which
randomly replaces key items at the end of the session sequence. This operation, while
minimizing sequence changes, is highly likely to completely alter the user's core intent, thereby
forcing the model to learn more discriminative features.

Based on these augmentation strategies, we use a multi-positive InfoNCE loss to optimize the
model. For an anchor s_,its contrastive loss L, is defined as:

Z exp(sim(sa,sp)/r)

S, eSpm.

> exp(sim(sa,sp)/r)Jr > exp(sim(s,.s,)/7)

S, eSmS S, eSm)g

Loy (sa) =—log (7)
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where sim(]) denotes cosine similarity. S is the set of positive samples generated by the
two positive augmentation strategies mentioned above. S,,, includes hard negative samples

generated by tail-replacing, as well as anchor representations from other sessions within the
same batch (in-batch negatives), which serve as global negative samples. 7 is a temperature
hyperparameter that adjusts the difficulty of distinguishing between samples. Through this loss
function, the model is driven to pull the anchor closer to positive samples with consistent core
intent, while pushing it away from negative samples with conflicting intent, especially those
hard negatives that differ only subtly at the tail.

3.6. Joint Optimization and Prediction

After obtaining the final session representation s, ,we calculate the prediction score for each

item by taking the inner product with all item embeddings #,,, .The result is normalized using

a softmax function to obtain the predicted probability distribution y :
y = softmax (sﬁmll ‘H.. ) (8)

The loss function for the main recommendation task is the standard cross-entropy loss L. :

Loy ==Y ylog(3,) (9)
i=1

, of the
model is a weighted sum of the cross-entropy loss L., and our proposed recency-intent

where y is the one-hot encoded vector of the target item. The total loss function L

total

contrastive loss L, :
Lo =Leg +B-Ley (10)
where £ is a hyperparameter that balances the importance of the main task and the self-

supervised task. By minimizing the total loss L . ,the model is jointly optimized to

total ’
simultaneously achieve accurate recommendations and learn session representations with
recency-intent robustness.

4. Experiments

4.1. Experimental Datasets

To comprehensively evaluate the effectiveness of the proposed RECH-HNN model, we
conducted extensive experiments on three public datasets widely used in session-based
recommendation research: Diginetica, Tmall, and Yoochoose 1/64. The Diginetica dataset
originates from the 2016 CIKM Cup Personalized E-commerce Search Challenge. The Tmall
dataset is extracted from the IJCAI-15 competition and consists of user shopping logs from
Alibaba's Tmall e-commerce platform. The Yoochoose dataset is from the 2015 RecSys
Challenge and contains a large volume of user clickstream data from e-commerce websites; we
used its commonly adopted 1/64 sampled version. To ensure data quality and make the
experiments more realisticc we performed necessary preprocessing on the raw data.
Specifically, we first filtered out sessions with a length of 1, as such sessions do not provide
effective sequential information. Simultaneously, to alleviate data sparsity, we also removed
infrequent items that appeared fewer than 5 times in the dataset. After this preprocessing, the
detailed statistics of the three datasets are shown in Table 1.
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Table 1 Dataset Statistics

Dataset YOOCHOOSE1/64 Tmall Diginetica
Clicks 557248 818479 982961
Training Sessions 369859 351268 719470
Test Sessions 55898 25898 60858
Items 16766 40728 43097
Avg. Session Length 6.16 6.69 5.12

4.2. Evaluation Metrics

To quantitatively evaluate the recommendation performance of the models, we adopted two
widely used ranking-based evaluation metrics in the field of session-based recommendation:
Precision (P) and Mean Reciprocal Rank (MRR). For a given session, the model generates a
ranked list of all candidate items. We select the top K items as the final recommendation result
and evaluate the model's performance accordingly. Following the common settings in related
works, we set Kto 20 in our experiments.

P@K measures the proportion of sessions where the true target item is successfully hit within
the Top-K recommendation list. Its formula is:

Py
| S

is the total number of sessions in the test set, and n,, is the number of sessions

P@K =

(11)

test |

where §

test

where the target item was correctly predicted in the Top-K list.
MRR@K not only considers whether the item was hit but also accounts for the position of the

correctly recommended item in the ranked list. The higher the rank, the higher the value of this
metric. Its formula is defined as:

1 1
MRR @K = 12
@ | S 2 rank (12)

tCSt| Sesiest
where rank_ represents the rank position of the true target item in the recommendation list for

session s. If the target item does not appear in the Top-K list, its reciprocal rank is counted as
0.

4.3. Overall Performance Comparison

The experimental results in Table 2 show that RECH-HNN achieves the best performance on all
three datasets across all evaluation metrics, validating the effectiveness of the proposed
method.

Table 2 Compare the experimental results

Models YOOCHOOSE1/64 Tmall Diginetica
P@20 MRR@20 P@20 MRR@20 P@20 MRR@20
FPMC 45.62 15.01 16.06 7.32 26.53 6.95
GRU4Rec 60.64 22.89 10.93 5.89 29.45 8.33
NARM 68.32 28.63 23.30 10.70 49.70 16.17
STAMP 68.74 29.67 26.47 13.36 45.64 14.32
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SR-GNN 70.57 30.94 29.46 13.96 50.73 17.59
DISEN-GNN 71.83 31.25 31.58 15.46 53.70 19.05
GCE-GNN 71.85 32.04 34.35 15.91 54.64 19.20
S2-DHCN 72.03 32.10 31.41 15.05 53.18 18.43
HyperSZRec 72.29 32.30 29.76 16.19 53.29 18.30
Atten- 72.27 34.55 40.98 16.72 55.12 18.90
Mixer
RECH-HNN 72.73 34.67 41.70 18.47 55.95 19.53

Compared to the traditional model FPMC, all deep learning-based models show a significant
performance advantage, indicating that simple Markov assumptions are insufficient to capture
the complex non-linear dependencies in sessions. Among the RNN-based models, NARM and
STAMP, by introducing attention mechanisms, perform far better than the basic GRU4Rec,
which verifies the necessity of differentiating the importance of items within a session. It is
noteworthy that GRU4Rec's performance on the Tmall dataset is even worse than FPMC('s,
possibly because the user behavior patterns in the Tmall dataset are more complex and volatile,
and a single recurrent structure is x fi1 constrained when handling such highly dynamic
interest drift.

All GNN-based methods outperform RNN-based models in most cases. This result clearly
demonstrates that by explicitly constructing session sequences into graph structures, GNNs can
capture complex, non-contiguous transition relationships between items that are difficult for
RNNs to model. Among these GNN models, GCE-GNN and S*-DHCN further improve
performance by introducing global information or hypergraph structures, illustrating the
importance of capturing higher-order, more global item associations.

Most critically, the proposed RECH-HNN model surpasses all strong baseline models, including
S2-DHCN and Atten-Mixer, on all datasets. The core reason for this performance improvement
is that RECH-HNN's contrastive learning objective achieves a deeper alignment with the
intrinsic characteristics of the session-based recommendation task.

Specifically, on the Yoochoose 1/64 and Diginetica datasets, which have significant clickstream
features, user behavior sequences often contain a large amount of exploratory clicks (noise)
and a final, clear purchase intent. Models like S*-DHCN learn "structural robustness" by
perturbing the graph structure. While effective, this does not directly address the pain point of
"exploratory noise." RECH-HNN, through data augmentation strategies like "recency-
preserving" and "tail-replacing,” constructs a specialized self-supervised task that forces the
model to understand "what recent items determine the essence of a session." This mechanism
enables the model to more effectively distill the user's core purchase intent from sequences
containing a large amount of noise, thus achieving significant improvements on metrics like
MRR@20 that focus more on ranking quality.

On the Tmall dataset, which has longer average session lengths and a more complex commercial
setting, the phenomenon of user interest drift may be more frequent. The Atten-Mixer model
performs exceptionally well on this dataset, thanks to its powerful sequential feature mixing
capabilities. However, RECH-HNN still achieves superior performance. The reason is that
RECH-HNN's "recency-intent alignment" not only suppresses early noise, but its "time-
warping" augmentation strategy also makes the model more robust to minor fluctuations in
user interaction rhythm. This allows the model to stably focus on the final, most critical
interaction behaviors even when dealing with multiple intent shifts that may exist in long
sessions, thus demonstrating excellent performance on the complex Tmall dataset as well. In
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summary, the superiority of RECH-HNN is not coincidental but a direct reflection of its core
design philosophy effectively playing out on datasets with different characteristics.

4.4. Ablation Study

To verify the effectiveness of each core component in the proposed RECH-HNN model, we
conducted a series of ablation studies. Specifically, we sequentially removed the recency prior
injection (w/o RecencyPrior), the hard negative samples (w/o HardNeg), and the entire
recency-intent contrastive learning framework (w/o CL) from the complete RECH-HNN model
and analyzed the performance changes. The experiments were conducted on all three datasets,
with results shown in Figure 2 and Figure 3.
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72.73 72.15 71.89 EZ wfo Hard Negative
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Yoochoose 1/64 Tmall Diginetica
Fig. 2 Recall@20 result when different modules are removed
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5
o
Yoochoose 1/64 Tmall Diginetica

Fig. 3 Recall@20 result when different modules are removed

The results show that removing any core component leads to varying degrees of performance
degradation on P@20 and MRR@20 metrics. This clearly demonstrates that each module in the
model plays an indispensable role in improving recommendation performance. The specific
analysis is as follows:

Impact of the Recency-Intent Contrastive Learning Framework (w/o CL): After removing the
entire contrastive learning framework, the model's performance experienced the most
significant decline across all datasets. For example, on the Tmall dataset, the MRR@20 metric
dropped by about 11.3%. This fully demonstrates that contrastive learning, as a powerful self-
supervised learning paradigm, can effectively learn more robust and generalizable session
representations by constructing an auxiliary self-supervised task, thereby significantly
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alleviating the data sparsity problem and providing a crucial regularization signal for the
optimization of the main recommendation task.

Impact of the Hard Negative Sample Strategy (w/o HardNeg): When the contrastive learning
framework was retained but only the hard negative samples were removed, the model's
performance also decreased noticeably. This directly validates the effectiveness and necessity
of the "tail-replacing" strategy proposed in this paper. Traditional contrastive learning methods
mostly use other sessions within a batch as negative samples. While the model can learn to
distinguish between sessions with obvious differences, its ability to discriminate between
sessions that are structurally similar but differ subtly in the tail items that determine the core
intent is often insufficient. The introduction of hard negative samples, by constructing such
"high similarity, low intent relevance" pairs, forces the model to become highly sensitive to tail
modifications that are sufficient to change the core intent, thereby obtaining finer and more
discriminative session representations.

Impact of the Recency Prior Injection (w/o RecencyPrior): After removing the recency prior
injection from the dynamic readout module, the model's performance also showed a consistent
decline. This indicates that explicitly incorporating the domain prior that "recent interactions
better reflect the user's core intent" into the attention mechanism is highly effective. Without
this prior knowledge as "soft guidance,"” the model has to rely entirely on data-driven content
attention to capture the user's main intent, which not only increases the model's learning
burden but also makes it more susceptible to interference from noisy items in the early part of
the session. The injection of the recency prior can stably guide the model's attention to focus
on the tail of the session, which better reflects the user's immediate needs, thus providing a
reliable guarantee for generating more accurate session intent representations.

In summary, the results of the ablation study strongly prove the integrity and synergy of the
RECH-HNN model design. The recency-enhanced dynamic readout module provides the
foundation for accurately locating the core intent, while the novel recency-intent contrastive
learning framework, especially the introduction of the hard negative sample strategy, is key to
enhancing the discriminative power of the model's representations. The three components are
complementary and work together to drive the model to learn session representations that are
robust to early noise and sensitive to changes in core intent, thereby achieving excellent
recommendation performance.

5. Conclusion

This paper proposes a Recency-Enhanced Contrastive Hypergraph Neural Network (RECH-
HNN) for session-based recommendation, designed to address the issue that existing
contrastive learning paradigms generally ignore the "recency” domain prior. The model uses a
hypergraph convolutional network to capture high-order item associations and designs a
dynamic readout mechanism that fuses a recency prior to generate more accurate session
intents. Furthermore, by constructing specific augmented views such as "recency-preserving"
and "tail-replacing," this paper introduces a novel recency-intent alignment contrastive
learning paradigm to learn session representations that are robust to early-stage noise yet
sensitive to changes in core intent. Experimental results on multiple public datasets validate
the effectiveness of the proposed method.

Future work will explore the following directions: (1)Dynamic Intent Evolution Modeling:
Exploring how to model the multiple potential intents a user may have within a long session
and their transition processes, rather than just focusing on the final intent. (2)Fusing
Multimodal Information: Integrating multimodal attributes of items, such as text and images,
into the contrastive learning framework to build richer item representations and explore more
challenging hard negative sampling strategies.
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