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Abstract 

The autonomous navigation system constitutes the core foundation for the operation of 
unmanned surface vessels (USVs), and local path planning algorithms serve as a key 
component within their autonomous navigation framework. This paper conducts a 
systematic review of local path planning algorithms commonly used in the current USV 
field, covering mainstream methods such as the A* algorithm, Dynamic Window 
Approach (DWA), Rapidly-Exploring Random Trees (RRT) algorithm, and Artificial 
Potential Field (APF) algorithm. It conducts an in-depth analysis of the basic principles, 
advantages, and limitations of each algorithm, and summarizes their applicable 
application scenarios. The study reveals that existing local path planning algorithms for 
USVs have demonstrated considerable practical value in simple navigation scenarios 
like open waters, yet they still face significant challenges when addressing complex 
situations. Specifically, these challenges are reflected in three aspects: insufficient 
adaptability to high-density unstructured navigation environments, lack of robustness 
under high-dynamic and strong nonlinear environmental interference, and limited 
planning efficiency in multi-constraint and multi-objective task scenarios. The research 
findings of this paper can provide a systematic reference for the theoretical innovation 
and engineering practice of local path planning technology for USVs. 
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1. Introduction 

With the rapid advancement of intelligence and unmanned technologies in maritime 
transportation, unmanned ships have emerged as a prominent research focus and a critical 
direction for future development in the maritime sector. Autonomous navigation capability 
serves as the core guarantee for the safe and efficient operation of unmanned ships. As a key 
component of the autonomous navigation system, local path planning directly dictates ships’ 
obstacle avoidance decisions and navigation trajectory quality in dynamically complex marine 
environments. Its algorithmic performance exerts a pivotal influence on the practicality and 
reliability of unmanned ships. In recent years, scholars worldwide have conducted extensive 
research on local path planning for unmanned ships, proposing a variety of algorithmic models 
with distinct characteristics. To systematically synthesize the research progress in this field, 
clarify existing technical bottlenecks, and identify future development directions, this paper 
presents a comprehensive review and analysis of current mainstream local path planning 
algorithms for unmanned ships. The autonomous navigation system constitutes the 
fundamental core for the operation of unmanned ships, while local path planning algorithms 
are integral to their autonomous navigation architecture. This paper systematically collates the 
commonly adopted local path planning algorithms in the current unmanned ship domain, 
encompassing mainstream methods such as the A* algorithm, Dynamic Window Approach 
(DWA), Rapidly Exploring Random Tree (RRT) algorithm, and Artificial Potential Field (APF) 
algorithm. It conducts an in-depth analysis of the basic principles, advantageous features, and 
inherent limitations of each algorithm, and summarizes their applicable application scenarios. 
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2. Current development status 

In recent years, a growing number of scholars have conducted innovative optimization work 
based on traditional path planning algorithms, facilitating remarkable advancements in the 
field of local path planning for unmanned ships. To align with navigation requirements in real-
world marine environments, researchers have significantly improved the practical applicability 
and operational reliability of these algorithms through multiple strategies [1], including the 
integration of International Regulations for Preventing Collisions at Sea (COLREGs) constraints, 
the incorporation of ship kinematic characteristics, and the integration of dynamic marine 
environmental features. 

Current mainstream local path planning algorithms primarily encompass: the A* algorithm 
based on a graph search mechanism [2], the Dynamic Window Approach (DWA) that accounts 
for dynamic constraints [3], the Rapidly Exploring Random Tree (RRT) algorithm suitable for 
high-dimensional spaces [4], and the Artificial Potential Field (APF) algorithm characterized by 
physical field modeling [5]. These algorithms exhibit distinct features in terms of theoretical 
frameworks, performance advantages, and applicable scenarios. This chapter will 
systematically elaborate on their core operational mechanisms, conduct in-depth analysis of 
their technical merits and application limitations, and comprehensively summarize their 
current development status in the field of local path planning for unmanned ships. 

2.1. A* algorithm 

The A* algorithm is a classic path planning method based on graph search, with its core lying in 
the weighted combination of a heuristic function h(n) and a cost function g(n). Specifically, g(n) 
represents the actual cost from the start node to the current node n, while h(n) denotes the 
estimated cost from the current node n to the target node. Once the A* algorithm is initiated, it 
first adds the start node to the open list and calculates its cost function, then enters an iterative 
search process: in each iteration, the node with the minimum cost is selected from the open list 
for expansion. If this node is the target node, the path search is completed; if not, the node is 
moved to the closed list to avoid redundant processing, and all its adjacent nodes are checked 
simultaneously. The cost information of adjacent nodes is updated according to the cost 
function, or unprocessed adjacent nodes are directly added to the open list. This process of 
"node selection - expansion - list update" repeats continuously until the target node is found. 
Finally, a complete planned path is generated by backtracking from the target node to the start 
node. The evaluation function of the A* algorithm is as follows: 

f(n)=g(n)+h(n)                                                        (1) 

Advantages of the A* Algorithm: 

The A* algorithm offers significant advantages in ship local path planning. Leveraging an 
evaluation function that satisfies the "no overestimation of actual cost" criterion, it stably 
generates the shortest or minimum-cost path from the start point to the target point, aligning 
with the core requirements of efficiency and energy conservation for ship navigation. 
Meanwhile, the algorithm guides the search direction through heuristic information, drastically 
reducing invalid node expansion. In scenarios with moderate environmental complexity such 
as coastal waters and ports, its planning efficiency meets real-time requirements. It also 
exhibits excellent compatibility with the grid-based environmental modeling method 
commonly used in ship local planning, eliminating the need for complex model conversion and 
lowering engineering implementation difficulty. 

Disadvantages of the A* Algorithm: 

In marine environments, dynamic obstacles and ocean current changes occur frequently. 
However, the A* algorithm is a static planning method—once the environment changes, a 
complete search process must be restarted, leading to potential planning delays and difficulty 
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in addressing sudden collision avoidance scenarios. Additionally, when considering multi-
dimensional ship states (e.g., position, heading, speed) or increasing grid resolution to adapt to 
complex sea areas, its search space expands sharply, resulting in a significant rise in 
computational cost that may exceed real-time control requirements. Furthermore, the 
algorithm does not directly incorporate ship motion constraints such as steering lag and 
minimum turning radius, so the generated path may contain sharp corners. This requires 
additional smoothing processing, increasing system complexity. 

Building on the A* algorithm, scholars have developed various hybrid algorithms that have 
been widely applied in ship local path planning after improvements. Singh et al. [6] proposed a 
constrained A* algorithm considering ocean current interference, whose core goal is to 
compensate for the impact of ocean currents on local path re-planning while enhancing 
computational efficiency. Campbell et al. [7] presented a rule-corrected A* algorithm: it first 
excludes areas violating the International Regulations for Preventing Collisions at Sea 
(COLREGs) from optional grids, then recalculates only specific regions in the grid map, 
ultimately shortening the algorithm’s computation time effectively. 

The application scope of the A* algorithm in local path planning is relatively limited, with two 
core constraints: first, the algorithm itself incurs certain computation time; second, its ability 
to handle multi-dimensional constraints is insufficient. In high-dimensional state space 
scenarios, these shortcomings become more prominent—it not only faces a significant increase 
in computational complexity but also struggles to meet real-time requirements due to 
prolonged computation. These two issues collectively further narrow its applicable scenarios 
to a certain extent. 

2.2. Dynamic Window Approach algorithm 

The Dynamic Window Approach (DWA) is a sampling-based local path planning algorithm. Its 
core idea is to sample the velocity space within the constraints of the robot's kinematics, and 
select the optimal velocity combination through an evaluation function to generate a local 
trajectory that ensures safe obstacle avoidance. Owing to its advantages of high real-time 
performance and strong adaptability to dynamic environments, the algorithm has been widely 
applied in the field of mobile robots and has demonstrated unique merits in the local path 
planning of unmanned surface vessels (USVs). Unlike traditional static planning algorithms, 
DWA adopts an iterative process of "velocity sampling - trajectory prediction - evaluation and 
selection," enabling rapid responses to dynamic obstacles and sudden collision avoidance 
requirements in marine environments. This aligns well with the autonomous navigation 
scenarios of USVs in complex waters such as coastal areas and ports. 

The operational logic of the DWA algorithm revolves around two core components: "velocity 
space constraints" and "trajectory evaluation and optimization." The specific process can be 
divided into four key steps: 

Velocity Space Sampling: 

Based on the USV's kinematic model (including maximum linear velocity, maximum angular 
velocity, acceleration limits, etc.), a set of linear and angular velocity combinations are 
discretely sampled within the feasible velocity space to form a candidate velocity window. 
Different from land robots, velocity sampling for USVs must additionally consider factors such 
as draft and hull inertia to avoid sampling velocities that exceed the vessel's actual maneuvering 
capabilities. 

Trajectory Prediction and Constraint Checking: 

For each sampled velocity combination, the navigation trajectory over a short period in the 
future is predicted using the vessel's kinematic equations. Simultaneously, environmental 
perception information is utilized to check whether the trajectory will collide with static or 
dynamic obstacles, and velocity combinations that violate safety constraints are eliminated. 
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Multi-Objective Evaluation Function Calculation: 

A multi-dimensional evaluation function is designed to quantitatively score the remaining 
feasible trajectories. Common evaluation indicators include safety, goal-orientedness, 
smoothness, and velocity consistency. In different maritime scenarios, the priority of each 
indicator needs to be adjusted through weight coefficients. For example, in narrow waterway 
navigation, the weight of safety should be significantly higher than that of goal-orientedness. 

Optimal Velocity Selection and Execution: 

The velocity combination with the highest evaluation score is selected as the current control 
command to drive the USV to execute the local trajectory. After completing the planning of the 
current cycle, the algorithm re-collects environmental information and repeats the above 
process, realizing a closed-loop iteration of "perception - planning - control." 

In the field of USV local path planning, scholars have carried out extensive research on 
improvement strategies targeting the inherent limitations of the DWA algorithm. QU et al. [8] 
pointed out that traditional USV path planning methods suffer from insufficient adaptability to 
dynamic environments and poor real-time response capabilities. To address these issues, they 
proposed an improved algorithm (DWA-RL) integrated with safe reinforcement learning. This 
algorithm innovatively uses the state encoding of the DWA algorithm as the observation input 
for reinforcement learning, effectively reducing the state space dimension. Meanwhile, by 
designing a safety reward function with collision avoidance constraints and adaptively 
adjusting key algorithm parameters, it ultimately achieves efficient local path planning of USVs 
under the interference of dynamic surges and ocean currents. CHEN et al. [9] focused on the 
poor environmental adaptability of the traditional DWA algorithm in USV path planning and 
proposed an improved decision tree fusion-based algorithm (DT-DWA). By embedding a 
decision tree classifier into the classic DWA framework and introducing dynamic characteristic 
parameters such as "encounter distance" and "encounter time," the algorithm achieves 
adaptive dynamic adjustment of motion weights through accurate evaluation of obstacle threat 
levels, thereby enhancing the adaptability of path planning in complex environments. The DWA 
algorithm, by integrating "dynamic window velocity screening" and "kinematic constraints," 
exhibits unique application advantages in USV local path planning tasks. Through real-time 
deduction of velocity combinations and optimal solution of the cost function, the algorithm can 
effectively incorporate vessel maneuvering characteristics and dynamic environmental 
parameters into the planning process, endowing it with strong environmental adaptability in 
dynamic collision avoidance scenarios. However, it should be noted that the DWA algorithm 
has inherent shortcomings such as limited global vision and insufficient ability to handle 
complex scenarios, which restrict its practical application in confined waters or complex task 
scenarios. 

2.3. Rapidly-Exploring Random Trees algorithm 

The Rapidly Exploring Random Tree (RRT) algorithm is a probability sampling-based path 
planning method. Its core idea is to randomly sample nodes in the state space and gradually 
construct a random tree extending from the start point to the target point, thereby achieving 
path search in complex environments. Characterized by strong adaptability to high-
dimensional spaces and no need for global environmental modeling, the algorithm has been 
widely applied in fields such as mobile robots and autonomous driving. In the local path 
planning of Unmanned Surface Vessels (USVs), the RRT algorithm can effectively handle 
complex scenarios in marine environments, including high-dimensional state spaces (e.g., 
integrating multiple parameters such as position, heading, and speed) and dynamic obstacle 
distributions. It is particularly suitable for navigation environments that are difficult to model 
with traditional algorithms, such as open sea areas and complex reef zones. 
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The core process of the RRT algorithm is as follows: first, initialize the tree structure with the 
start point as the initial node; then randomly sample a node in the configuration space, find the 
nearest neighbor node of this sampled node in the constructed tree, and extend it with a fixed 
step size to generate a new node; after collision detection confirms that the path is collision-
free, add the new node to the tree; repeat the above processes of sampling, nearest neighbor 
search, node extension, and collision detection until the new node is close to the target point; 
finally, generate a feasible path from the start point to the target point by backtracking the node 
connection relationship, as shown in the following figure: 

 
Fig. 1 RRT algorithm 

The original Rapidly Exploring Random Tree (RRT) algorithm exhibits inherent limitations, 
including strong path randomness, low planning efficiency, and poor path smoothness. Directly 
applied to Unmanned Surface Vessels (USVs), it fails to meet the dual demands of navigation 
safety and economic efficiency in maritime scenarios. In recent years, targeting the dynamic 
marine environment and the unique constraints of ship motion, scholars have developed a 
range of targeted optimization strategies: Mao et al. [10] addressed the core issue of 
disconnection between traditional path planning search rules and actual ship maneuverability, 
proposing a state-prediction-based RRT motion planning algorithm; Hu et al. [11] tackled the 
traditional RRT algorithm’s shortcomings (e.g., slow convergence, frequent path turns, and 
subpar planning quality) by developing a heuristic adaptive HA-RRT algorithm. Overall, 
leveraging its strengths of excellent search efficiency, broad applicability, and superior 
scalability in high-dimensional spaces, the RRT algorithm can effectively integrate multi-
dimensional constraints (e.g., kinematics and dynamics) of USVs, thus gaining widespread 
adoption in various practical local path planning scenarios. 

2.4. The Artificial Potential Field algorithm 

The core of the Artificial Potential Field (APF) algorithm lies in abstracting the ship's navigation 
environment into a virtual potential field. The target point acts like a low-potential depression 
generating an attractive force that propels the ship toward it. Static obstacles such as islands 
and reefs, as well as dynamic obstacles like other navigating ships, behave like high-potential 
hills producing a repulsive force that prevents the ship from approaching. As a force-receiving 
object, the ship moves along the direction of the resultant force composed of the attractive and 
repulsive forces to complete local path planning. The key is to calculate the attractive force, 
repulsive force, and total resultant force through mathematical functions. The magnitude of the 
attractive force is usually proportional to the distance between the ship and the target point, 
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while the magnitude of the repulsive force is inversely proportional to the distance between 
the ship and the obstacle. Finally, the ship's navigation direction is continuously adjusted based 
on the direction of the total resultant force. 

Advantages of the APF Algorithm: 

Strong real-time responsiveness: The algorithm features a concise calculation logic. It only 
requires simple mechanical calculations for the positional relationships between the ship's 
current location, obstacles, and the target point, enabling rapid output of the resultant force 
direction. This adapts to the local planning needs of dynamic environmental changes during 
ship navigation. Adaptability to multi-obstacle scenarios: When there are multiple static or 
dynamic obstacles in the navigation area, the total resultant force of multiple repulsive forces 
and a single attractive force can be calculated through vector superposition, allowing quick path 
adjustments to avoid all obstacles. Easy engineering implementation: The algorithm's 
mechanical model is intuitive, and the relevant function formulas are simple. It can be combined 
with the ship's motion model to quickly complete code writing and practical deployment 
without the need for complex hardware support. 

Disadvantages of the APF Algorithm: 

Proneness to local minima: When the attractive force on the ship is offset by the repulsive forces 
from multiple obstacles, the total resultant force becomes zero. This causes the ship to stagnate 
and unable to continue path planning, a problem that is likely to occur in waters surrounded by 
multiple reefs. Risk of target inaccessibility: If there are obstacles near the target point, the 
strong repulsive force generated by the obstacles may offset the attractive force of the target 
point, making it difficult for the ship to reach the target location. Susceptibility to path 
oscillation: In scenarios such as narrow waterways, the ship may experience repeated 
adjustments in navigation direction due to frequent changes in the repulsive force of obstacles, 
affecting navigation stability. 

In recent years, scholars have proposed various solutions for the local path planning of 
unmanned ships. HAN et al. [12] proposed a potential field-extended dynamic window 
algorithm. This algorithm innovatively couples the global path-guided potential field, shoreline 
grid repulsive potential field, and COLREGs repulsive potential field, and then combines it with 
the dynamic window algorithm to generate predicted trajectories that comply with dynamic 
constraints. This method effectively addresses the key issues of the traditional APF algorithm, 
such as rough environmental modeling and disconnection from motion constraints, providing 
a better solution for trajectory planning in related scenarios. Ma et al. [13] proposed an 
improved APF algorithm to solve the low path planning efficiency of sampling-based algorithms 
in dense environments. They integrated the APF with the RRT∗ algorithm to form the APF-RRT∗ 
algorithm. This algorithm constructs artificial potential fields for the start point, target point, 
reference path, and obstacles respectively by combining task and environmental prior 
information, and improves the random sampling step of RRT∗. Under the guidance of the 
potential field, the sampling points are closer to the optimal path, and the number of invalid 
sampling points is significantly reduced. Ultimately, it outperforms mainstream sampling-
based path planning methods in terms of convergence speed, sampling effectiveness, and time 
efficiency. GAN et al. [14] addressed the problems of path oscillation and discontinuous steering 
in the traditional APF algorithm for narrow inland waterway scenarios, designing a four-layer 
composite potential field model based on an elliptical ship domain. This model introduces a 
velocity repulsive potential field to characterize the movement trend of dynamic obstacles, and 
optimizes the curve trajectory generation mechanism by combining steering attraction points. 
It ultimately achieves path planning with continuous curvature that complies with inland 
waterway navigation rules. 
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The APF algorithm has been widely applied in the field of local path planning for unmanned 
ships due to its significant advantages of strong real-time responsiveness and easy integration 
of various constraints. By integrating precise environmental modeling, ship dynamic 
constraints, and maritime navigation rules, the improved APF algorithm has effectively made 
up for the inherent defects of the traditional algorithm. However, in dynamically time-varying 
environments, the design of the real-time potential field update mechanism, as well as how to 
avoid the algorithm falling into local minima in complex obstacle scenarios, remain core 
technical challenges that need to be addressed urgently. 

3. Problems and Challenges 

Although current USV local path planning algorithms have demonstrated certain practicality in 
simple scenarios such as open waters and static obstacles, as maritime mission scenarios evolve 
toward higher complexity, higher dynamics, and multi-constraints, existing algorithms still face 
many core problems and challenges in theoretical adaptability and engineering 
implementation, which can be specifically summarized into the following three aspects: 

3.1. Insufficient Adaptability to High-Density Unstructured Environments 

USVs often face high-density, irregularly shaped unstructured obstacle distributions in typical 
operating scenarios like coastal areas, ports, and reef zones, and existing algorithms have 
obvious shortcomings in adaptability to such environments: the A* algorithm sees a sharp 
reduction in effective grid passage area due to high-density obstacles, leading to a significant 
increase in computational time; the DWA algorithm relies on short-term trajectory prediction 
and is prone to falling into the "local optimal trap," where the current obstacle avoidance 
trajectory may lead the subsequent path into a dead end; the random sampling of the RRT 
algorithm generates a large number of invalid points in high-density obstacle areas, resulting 
in decreased node expansion efficiency and frequent path turns, which are difficult to meet the 
ship's smoothness requirements; the APF algorithm is prone to local minima due to the 
superposition of repulsive forces from multiple obstacles and gravitational imbalance, leading 
to ship stagnation or obstacle avoidance failure, and at the same time, the irregular shape of 
unstructured obstacles is difficult to accurately characterize through traditional geometric 
modeling, further reducing the accuracy of obstacle boundary perception and the reliability of 
obstacle avoidance decisions. 

3.2. Lack of Robustness Under High-Dynamic and Strong Nonlinear 
Environmental Disturbances 

The high dynamic and strong nonlinear characteristics of the marine environment pose severe 
challenges to the robustness of USV local path planning algorithms; the A* algorithm, as a static 
planning method, cannot update environmental information in real time and is prone to 
obstacle avoidance delays when facing sudden dynamic obstacles; although the DWA algorithm 
can handle dynamic obstacles, it does not deeply integrate environmental force disturbances 
such as ocean currents and wind waves, and it is difficult to offset the offset impact on the ship's 
actual trajectory only by adjusting speed constraints; the potential field function of the APF 
algorithm is mostly based on static environment assumptions, and the movement trends of 
dynamic obstacles are not effectively incorporated into repulsive force calculation, which easily 
leads to lag in obstacle avoidance actions. 

3.3. Limited Planning Efficiency in Multi-Constraint and Multi-Objective Task 
Scenarios 

Modern marine tasks performed by USVs often involve the coordinated optimization of 
multiple constraints and multiple objectives, and existing algorithms have obvious limitations 
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in planning efficiency and objective trade-off: from the constraint dimension, in addition to 
traditional obstacle avoidance constraints, it is also necessary to meet multiple constraints such 
as the International Regulations for Preventing Collisions at Sea (COLREGs), the minimum 
turning radius of the ship, and the task time window, and the ambiguity of rules for crossing 
encounters and overtaking in COLREGs makes it difficult to directly convert them into 
quantifiable constraint conditions for algorithms. 

4. Conclusion 

This paper systematically reviews mainstream algorithms in the current field of Unmanned 
Surface Vehicle (USV) local path planning, including A*, Dynamic Window Approach (DWA), 
Rapidly Exploring Random Tree (RRT), and Artificial Potential Field (APF) algorithms, conducts 
an in-depth analysis of each algorithm’s core principles, advantages, limitations, and 
application scenarios, and further explores three core challenges in practical applications: 
insufficient adaptability to high-density unstructured environments, lack of robustness under 
highly dynamic and strongly nonlinear disturbances, and limited planning efficiency in multi-
constraint and multi-objective scenarios; research shows that a single algorithm is difficult to 
fully meet the local path planning requirements of USVs in complex marine environments, so 
the future development of USV local path planning algorithms should focus on three 
directions—first, algorithm fusion and improvement to enhance adaptability to complex 
environments through complementary advantages across algorithms; second, environmental 
modeling and constraint embedding to construct a dynamic potential field model integrating 
wind, wave, and current disturbances, and realize accurate quantification of COLREGs rules by 
combining technologies such as fuzzy logic and Bayesian networks; third, intelligence and 
adaptive optimization to improve the trajectory prediction accuracy of dynamic obstacles using 
deep learning and achieve adaptive adjustment of multi-objective weights through 
reinforcement learning, ultimately achieving the goal of safe, efficient, and robust USV 
autonomous navigation—and the research results of this paper can provide a systematic 
reference for the theoretical innovation and engineering practice of USV local path planning 
technology, helping to promote the intelligent development process of USV equipment. 
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