
International Journal of Science Volume 12 Issue 2, 2025

ISSN: 1813-4890

31

A Community Detection Algorithm for Graph Autoencoders Based
on Improved Encoding and Decoding Structure and Multiple

Optimizations

Yiwen Shen

School of Information Technology and Engineering, Tianjin University of Technology and
Education, Tianjin 300222, China

Abstract

With the widespread application of graph neural networks (GNNs) in graph
representation learning, community detection, as an important task in graph analysis,
has received increasing attention in recent years. This paper proposes a community
detection method based on VGAE (Variational Graph Autoencoder) and K-means
clustering, and experimentally evaluates this method on multiple academic graph
datasets. The method first uses VGAE to extract the latent variable representation of
nodes in the graph to capture the relationship between nodes and global dependency
information in the graph structure, and then uses the K-means clustering algorithm for
unsupervised community segmentation. We experimented with this method on multiple
datasets, especially on academic literature datasets such as Cora, Citeseer, and PubMed,
and comprehensively evaluated the algorithm performance through evaluation
indicators such as NMI (Normalized Mutual Information), ARI (Adjusted Rand Index),
and Modularity. Experimental results show that the VGAE + K-means method has better
community division effect on these datasets than the classic DeepWalk + K-means and
Node2Vec + K-means methods, especially in F1-Score. We further analyzed the clustering
performance of Node2Vec and DeepWalk on different datasets, and pointed out that the
VGAE model can better capture the complex structural relationships in the graph
through the autoencoder structure, thereby effectively improving the quality of
community division. This study not only demonstrates the potential of VGAE in the field
of graph embedding, but also provides new ideas for community discovery tasks. By
combining VGAE and K-means clustering algorithms, our model can automatically
extract meaningful node representations from graph data and achieve accurate
community division under unsupervised learning. Future work will be devoted to
further optimizing the model, exploring more types of graph datasets, and studying how
to use node features to further improve clustering effects.

Keywords

Community discovery, graph neural network, VGAE, K-means clustering, graph
representation learning.

1. Introduction

In the real world, there are a wide variety of complex entity relationships. Since the graph
structure can well express the complex associations between nodes and edges[1], the entity
relationship can be abstractly expressed as a graph, and we can do more operations on this
basis. For example, recommending friends to users through social networks, studying the
associations between papers through citation networks, and analyzing the interaction
relationships between proteins in biological systems through protein interaction networks.
Among them, community discovery is an important research topic in the field of complex

International Journal of Science Volume 12 Issue 2, 2025

ISSN: 1813-4890

32

networks[2]. Its goal is to divide complex networks into multiple subnetworks, and the nodes
within each subnetwork are closely connected, while the connections between subnetworks
are sparse. In recent years, convolutional neural networks have attracted attention due to their
powerful modeling capabilities and have been widely used in image processing, natural
language processing and other fields. However, traditional convolutional neural networks can
only process Euclidean spatial data such as images, voices and texts, but cannot effectively
process common graph data, because graph data is a typical non-Euclidean spatial data[3].
Therefore, graph convolutional networks were proposed and applied to graph data processing.
With the continuous deepening of research and the increase in data scale, the computational
complexity of graph data due to non-Euclidean spatiality and the spatial complexity of
adjacency matrices are more prominent. We urgently need new deep neural network models[4].
Among them, graph representation learning is the mainstream method to solve these problems.
It is necessary to apply graph representation learning methods to the field of community
discovery. On the one hand, after the graph data is embedded in a specific vector space, the
graph data can be transformed from non-Euclidean data to Euclidean data, which is helpful for
the execution of downstream tasks. On the other hand, while realizing graph data compression,
graph representation learning also alleviates the problem of data dimensionality disaster[5].
We usually use adjacency matrix to express the relationship between nodes in graph data. As
the number of nodes in the graph increases, the dimension of the adjacency matrix increases in
the form of power, which brings great computational complexity to traditional machine
learning algorithms[6]. Graph representation learning can map high-dimensional sparse graph
data into low-dimensional dense vectors, and compress the node feature vectors expressed by
the adjacency matrix[7]. This means that we can use traditional machine learning algorithms
to process and analyze graph data in the future[8].

Based on the existing research model, in order to obtain higher quality node representation,
this paper makes the following improvements based on the existing problems of the VGAE
model:

(1) Improve the encoding model: Improve the GCN encoding in the encoding stage to FAGCN
module encoding, so that the weight coefficient changes in the encoding model are more flexible,
and hidden variables with stronger representation capabilities can be obtained.

(2) Improve the decoding model: In the decoding stage, not only the adjacency matrix is
reconstructed by using the inner product decoder, but also an inverse graph convolution
decoder is constructed to reconstruct the feature matrix.

(3) Update the loss function: This study improves on the basis of VGAE. The loss function adds
node feature matrix reconstruction loss and node feature distribution loss on the basis of the
original loss function of VGAE, and multiple optimization objectives participate in the training
process.

2. Introduction to Model

2.1. Current Model Analysis

Kipf and Welling proposed two graph auto-encoder models, GAE (Graph Auto-Encoder) and
VGAE (Variational Graph Auto-Encoder), based on graph convolutional networks and
variational Bayes[9]. GAE uses GCN as the encoding model, inputs the feature matrix and the
adjacency matrix to obtain the embedded representation of the graph; in the decoding stage,
the matrix inner product is used to perform the decoding operation and reconstruct the
adjacency matrix of the original graph. The encoding operation of GAE is:

𝐻 = 𝐺𝐶𝑁(𝑋, 𝐴) (1)

International Journal of Science Volume 12 Issue 2, 2025

ISSN: 1813-4890

33

where 𝐻 ∈ ℝ𝑁×𝑓 is the embedded vector output by the GCN model in the encoding stage, 𝑋 ∈
ℝ𝑁×𝑑 is the node feature matrix of the original graph, and 𝐴 ∈ ℝ𝑁×𝑁 is the adjacency matrix of
the original graph. Formula (1) can only express the input and output elements of GCN in the
encoding stage. In terms of the working principle of GCN, the literature [10] has formula (2):

𝐺𝐶𝑁(𝑋, 𝐴) = 𝐴̃𝑅𝑒𝐿𝑈(𝐴̃𝑋𝑊0)𝑊1 (2)

 Where 𝐴̃ = 𝐷−1/2𝐴𝐷−1/2 is the normalization of the adjacency matrix, 𝑊0 and 𝑊1 are the
parameter matrices of the two-layer convolutional network in the GCN model. In the literature
[10], Kipf and Welling studied the application of the embedding vector obtained by the GCN
model in downstream tasks such as link prediction and node classification. The difference is
that in GAE, in addition to obtaining the embedding vector, it is also necessary to input the
embedding vector into the decoding stage to reconstruct the adjacency matrix of the original
graph. Unlike most autoencoder models, GAE does not invert the encoder model as the decoder
model, but uses a simple matrix inner product operation as the decoder model to reconstruct
the adjacency matrix, as shown in formula (3):

𝐴̂ = 𝜎(𝐻𝐻𝑇) (3)

In formula (3), 𝜎(∙) represents a nonlinear activation function, 𝐻𝐻𝑇 is a matrix inner product
operation, the stronger the embedding vector representation capability obtained by the
encoder, the more similar the reconstructed adjacency matrix 𝐴̂ is to the original graph
adjacency matrix. Since the element value y of the adjacency matrix in the original graph is
either 0 or 1, and the reconstructed adjacency matrix element 𝑦̂ ∈ [0,1], the cross entropy loss
function is used as the optimization target of the model, as shown in formula (4):

ℒ𝐺𝐴𝐸 = −
1

𝑁
∑ 𝑦𝑙𝑜𝑔𝑦̂𝑦∈𝐴 + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦̂) (4)

like GAE, the GCN model responsible for encoding in VGAE combines the variational idea [11].
The embedding vector is calculated after sampling from the Gaussian distribution. To
determine the Gaussian distribution of the input data, the mean and variance of the original
graph data are required. Therefore, it is necessary to use GCN to fit the mean and variance of
the input data in the encoding model of VGAE. The formulas are shown in equations (5) and
(6) ：

𝜇 = 𝐺𝐶𝑁𝑢(𝑋, 𝐴) (5)

𝑙𝑜𝑔𝜎2 = 𝐺𝐶𝑁𝜎(𝑋, 𝐴) (6)
rrespondingly, due to the use of variational ideas in VGAE, the loss function also needs to be
improved accordingly. The loss function of VGAE is composed of cross entropy and relative
entropy (KL divergence), as shown in equation (7):

ℒ𝑉𝐺𝐴𝐸 = 𝔼𝑞(𝐻|𝑋,𝐴)[log 𝑝(𝐴|𝑍)] − 𝐾𝐿[[𝑞(𝑍|𝑋, 𝐴) ∥ 𝑝(𝐻)]] (7)

Where 𝔼𝑞(𝐻|𝑋,𝐴)[log 𝑝(𝐴|𝑍)] is the expectation, 𝐾𝐿[[𝑞(𝑍|𝑋, 𝐴) ∥ 𝑝(𝐻)]] is the KL divergence,

which is used to measure the difference between distributions. 𝑞(𝑍|𝑋, 𝐴) is the distribution
calculated by the GCN function, and 𝑝(𝐻) uses the standard Gaussian distribution.

2.2. VGAE-ISMO Model

2.2.1. Encoder structure design

(1) Node feature update design

The input of the encoder includes the node feature matrix 𝑋 ∈ ℝ𝑁×𝐹 and the adjacency matrix
𝐴 ∈ ℝ𝑁×𝑁, where N represents the number of nodes and F represents the dimension of the node
features. In the GCN network, the essence of each graph convolution operation is to perform a
weighted summation operation on the neighboring nodes around the node. 𝐴̃ = 𝐷−1/2𝐴𝐷−1/2
is a standardized operation on the adjacency matrix A. The node feature update formula of the
graph convolution in GCN is:

International Journal of Science Volume 12 Issue 2, 2025

ISSN: 1813-4890

34

ℎ𝑖
(𝑙+1)

= ∑
1

√𝑑𝑖𝑑𝑗

𝜎(𝑊(𝑙)ℎ𝑗
(𝑙)

)

𝑗∈𝑁𝑖

(8)

As can be seen from the above formula, in the GCN encoding process, the weight coefficient

between any two nodes is fixed to
1

√𝑑𝑖𝑑𝑗
, which affects the flexibility and generalization ability

of the model. FAGCN introduces adaptive weights 𝛼𝑖𝑗
𝐺 to dynamically determine the

contribution of each neighbor node j to the feature update of the target node i. The adaptive
weight enables the model to dynamically adjust the influence of neighbors according to the
similarity of node features, thereby enhancing the flexibility and expression of feature
aggregation. Therefore, the node feature update formula after introducing adaptive weights is:

ℎ𝑖
(𝑙)

= 𝜀ℎ𝑖
(0)

+ ∑
𝛼𝑖𝑗

𝐺

√𝑑𝑖𝑑𝑗

ℎ𝑗
𝑙−1

𝑗∈𝑁𝑖

(9)

The first term 𝜀ℎ𝑖
(0)

 is the residual connection, which is used to retain the initial features and

prevent the features from being transitionally smoothed. The second term ∑
𝛼𝑖𝑗

𝐺

√𝑑𝑖𝑑𝑗
ℎ𝑗

𝑙−1
𝑗𝜖𝑁𝑖

 is the

adaptive weighted aggregation of neighboring nodes.

(2) Latent variable generation

In traditional GAE and VGAE, latent variables are generated by GCN fitting[12]. The advantage
of this is that it is easier to keep the generated latent variables consistent with the input data
distribution, and then obtain an embedding vector that accurately matches the input data
distribution. However, the additional convolutional layer increases the number of model
parameters and computational complexity, resulting in longer model training and inference
time, and if the dimension of the input data is too high, it will cause overfitting problems.

In this algorithm, we choose to generate the latent variable distribution parameters by linearly

transforming the node features ℎ(𝐿) of the last layer:

𝜇 = ℎ(𝐿)𝑊𝜇 (10)

𝑙𝑜𝑔𝜎2 = ℎ(𝐿)𝑊𝜎 (11)

is generation method directly maps the final feature ℎ(𝐿) extracted by FAGCN to the latent space
distribution parameters without the need for additional graph convolution operations. Its
complexity is concentrated in the convolution part of FAGCN, and the generation of distribution
parameters is simplified to a layer of linear transformation, which reduces the number of
parameters in the model encoding stage and improves computational efficiency. However, it
lacks some accuracy in fitting the data distribution to a certain extent, which makes this
generation method more dependent on the quality of the feature ℎ(𝐿) extracted by FAGCN[13].

(3) Reparameterization and Latent Variable Sampling

In a class of generative models such as (VAE and VGAE), we want to sample the latent variable
Z from a latent distribution so that it obeys the distribution 𝑞(𝑍|𝑋) output by the encoder, that
is:

𝑍~𝑁(𝜇, 𝜎2) (12)

Sampling directly from the potential distribution will result in a non-differentiable training
process. The reparameterization technique can solve this problem by treating the entire
sampling process as a differentiable function, so that the gradient can be passed through the
sampling process and the model can be trained through the standard back-propagation
algorithm.

The reparameterization technique represents the random variable Z as a differentiable
deterministic function:

International Journal of Science Volume 12 Issue 2, 2025

ISSN: 1813-4890

35

𝑍 = 𝜇 + 𝜎⨀𝜖 (13)

Where μ is the mean of the latent distribution obtained from the encoder; σ is the standard
deviation of the latent distribution obtained from the encoder, and 𝜎 = 𝑒𝑥𝑝(0.5 ∙ 𝑙𝑜𝑔𝜎2); ϵ is a
noise term that follows a standard normal distribution, and 𝜖~𝑁(0,1), ⨀represents element-
by-element multiplication. Thus, the sampling of the latent variable Z can be re-expressed as a
deterministic process:

𝑍 = 𝜇 + 𝜎 ∙ 𝜖 (14)

2.2.2. Decoder structure design

In this study, we designed a decoder structure different from the traditional model to
reconstruct the adjacency matrix and node feature matrix of the input graph from the latent
variable Z generated by the encoder[14]. The decoder consists of two parts: reconstructing the
adjacency matrix through the inner product decoder, and reconstructing the node feature
matrix through the inverted GCN decoder. In the GAE and VGAE models, it can be found from
their loss functions that the training goal of the model is only to restore the adjacency matrix of
the original graph, and does not consider the restoration of the node feature matrix. On this
basis, this study adds node feature matrix loss terms and distribution loss terms.

(1) Inner Product Decoder

The inner product decoder reconstructs the adjacency matrix of the graph by calculating the
inner product between the latent variables Z. This method is simple and effective, and can
capture the similarity between nodes in the latent space, thereby generating edge probabilities.
The inner product decoder operates as follows:

𝐴̂ = 𝜎(𝑍𝑍𝑇) (15)

Where 𝐴̂ is the reconstructed adjacency matrix, 𝑍 ∈ ℝ𝑁×𝑑 is the latent variable matrix
generated by the encoder, and 𝜎(∙) is the activation function

(2) GCN Decoder

The GCN decoder reconstructs the node feature matrix from the latent variable Z through the
reverse graph convolution operation, and uses the structural information of the graph to
achieve feature reconstruction by reversely aggregating node features layer by layer. The GCN
decoder operates as follows:

𝑋̂(𝑙−1) = 𝜎 (𝐴̂𝐷−1 2⁄ ∑ 𝛼𝑖𝑗
𝐺 𝑋̂(𝑙)𝑊(𝑙−1)

𝑗∈𝑁𝑖

𝐷−1 2⁄) (16)

where 𝑋̂(𝑙−1) is the reconstructed feature representation of the 𝑙 − 1 layer, 𝛼𝑖𝑗
𝐺 is the adaptive

weight coefficient, 𝑋̂(𝑙) = 𝑍 represents the input of the decoding process starting from the

latent variable Z, and 𝑊(𝑙−1) is the learnable weight matrix of the decoder at the 𝑙 − 1 layer.

(3) Loss function design

The loss function consists of two parts. The first part is the loss function ℒ𝑉𝐺𝐴𝐸 in the VGAE
model, whose training goal is based on the adjacency matrix loss and the difference in input and
output data distribution. The second part adds the reconstructed node feature loss and the
divergence between the probability distribution of the reconstructed node feature matrix and
the probability distribution of the original node feature matrix. Therefore, the total loss
function is as follows:

ℒ𝑉𝐺𝐴𝐸−𝐼𝑆𝑀𝑂 = 𝜆𝑉𝐺𝐴𝐸ℒ𝑉𝐺𝐴𝐸 + 𝜆𝑓𝑒𝑎𝑡

1

𝑁
∑‖𝑋𝑖 − 𝑋𝑖̂‖

2
𝑁

𝑖=1

+ 𝜆𝑓𝑒𝑎𝑡𝑘𝑙
𝐾𝐿[𝑃(𝑋̂|𝑍) ∥ 𝑃(𝑋)] (17)

International Journal of Science Volume 12 Issue 2, 2025

ISSN: 1813-4890

36

Among them, 𝜆𝑉𝐺𝐴𝐸、 𝜆𝑓𝑒𝑎𝑡、and 𝜆𝑓𝑒𝑎𝑡_𝑘𝑙 are the weight coefficients of the losses of each part

respectively.

2.2.3. Model training algorithm

In the training process of this model, the number of input parameters is 7, including the input
graph G, the node feature matrix X, the learning rate lr, the number of training iterations epochs,
the hidden layer configuration hiddendims of the model, the loss function weight λ, and the
regularization configuration parameter dropout. The output of the training is the embedding
expression results of all nodes in the graph and the reconstruction results of the adjacency
matrix. The model training process is shown in Algorithm 1 below:

Algorithm 1: 𝑉𝐺𝐴𝐸_𝐼𝑆𝑀𝑂 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

Input:

Parameters:𝐺, 𝑋, 𝑙𝑟, 𝑒𝑝𝑜𝑐ℎ𝑠, ℎ𝑖𝑑𝑑𝑒𝑛_𝑑𝑖𝑚𝑠, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡, 𝜆

Output:

Parameters:𝑍
1： 𝐴, 𝑋 ← 𝑝𝑎𝑟𝑠𝑒𝐺𝑟𝑎𝑝ℎ(𝐺)

2： 𝐴̃ ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐴)

3： 𝑚𝑜𝑑𝑒𝑙 ← 𝑉𝐺𝐴𝐸_𝐼𝑆𝑀𝑂(ℎ𝑖𝑑𝑑𝑒𝑛_𝑑𝑖𝑚𝑠, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡, 𝜆)

4： 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 ← 𝐴𝑑𝑎𝑚(𝑚𝑜𝑑𝑒𝑙. 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(), 𝑙𝑟)

5： 𝑍 ← 𝑀𝑎𝑡𝑟𝑖𝑥(𝑋. 𝑠ℎ𝑎𝑝𝑒[0], ℎ𝑖𝑑𝑑𝑒𝑛_𝑑𝑖𝑚𝑠[−1])

6： 𝑓𝑜𝑟 𝑒𝑝𝑜𝑐ℎ 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑒𝑝𝑜𝑐ℎ𝑠) 𝑑𝑜

7： 𝑚𝑜𝑑𝑒𝑙 ← 𝑚𝑜𝑑𝑒𝑙. 𝑡𝑟𝑎𝑖𝑛()

8： 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟. 𝑧𝑒𝑟𝑜_𝑔𝑟𝑎𝑑()

9： 𝐴̂, 𝑋̂, 𝑍 ← 𝑚𝑜𝑑𝑒𝑙(𝑋, 𝐴)

10： 𝐿𝑉𝐺𝐴𝐸−𝐼𝑆𝑀𝑂 ← 𝜆𝑉𝐺𝐴𝐸𝐿𝑉𝐺𝐴𝐸 + 𝜆𝑓𝑒𝑎𝑡
1

𝑁
∑ ‖𝑋𝑖 − 𝑋𝑖̂‖

2𝑁
𝑖=1 +

 𝜆𝑓𝑒𝑎𝑡_𝑘𝑙𝐾𝐿[𝑃(𝑋̂|𝑍) ∥ 𝑃(𝑋)]

11： 𝐿𝑉𝐺𝐴𝐸−𝐼𝑆𝑀𝑂 . 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑()

12： 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟. 𝑠𝑡𝑒𝑝()

13： 𝑒𝑛𝑑 𝑓𝑜𝑟

The first line of the algorithm inputs the graph G and parses out the feature matrix X and the
adjacency matrix A. The second line normalizes the adjacency matrix A so that it satisfies 𝐴̃ =
 𝐷−1/2𝐴𝐷−1/2, where D is the degree matrix of the node. The purpose of normalization is to
enhance the stability of the model. The third line instantiates the VGAE-ISMO model. The
required input parameters include the hidden layer configuration hidden_dims (determines the
structure of the encoder and decoder), the regularization parameter dropout, and the weight λ
of the loss function. The fourth line constructs an Adam optimizer to optimize the parameters
of the VGAE-ISMO model. The Adam optimizer combines the momentum method and adaptive
learning rate adjustment to maintain the stability of learning during the parameter update
process. The fifth line of the algorithm initializes the embedding matrix Z, whose size is the
number of nodes N multiplied by the hidden variable dimension ℎ𝑖𝑑𝑑𝑒𝑛_𝑑𝑖𝑚𝑠[−1] . The
seventh line enters the training phase of the model. The eighth line sets the gradient of the
optimizer to 0 to ensure that each iteration does not accumulate the gradient of the previous
time. The ninth line inputs the node feature matrix X and the adjacency matrix A into the VGAE-
ISMO model for forward propagation to obtain the reconstructed adjacency matrix A ̂, the
reconstructed feature matrix X ̂, and the hidden variable Z. The tenth line calculates the total
loss 𝐿𝑉𝐺𝐴𝐸−𝐼𝑆𝑀𝑂 based on the output of the model. The loss function consists of three parts:

International Journal of Science Volume 12 Issue 2, 2025

ISSN: 1813-4890

37

The reconstruction loss 𝐿𝑉𝐺𝐴𝐸 of VGAE measures the similarity between the reconstructed
adjacency matrix 𝐴̂ and the original adjacency matrix 𝐴;

The feature matrix reconstruction error
1

𝑁
∑ ‖𝑋𝑖 − 𝑋𝑖̂‖

2𝑁
𝑖=1 measures the reconstruction

accuracy of the node feature matrix;

The KL divergence of the feature distribution 𝐾𝐿[𝑃(𝑋̂|𝑍) ∥ 𝑃(𝑋)] is used to evaluate the

difference between the feature distribution generated by the latent variable and the true
distribution.

Line 11 propagates the loss backward through the 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑() function and calculates the
gradient; Line 12 updates the model parameters through the optimizer's 𝑠𝑡𝑒𝑝() function. When
the number of training iterations reaches the set value of the hyperparameter epochs, the
model stops training and finally returns the node's embedded representation Z.

3. Experiment and result analysis

3.1. Experimental environment and evaluation indicators

The advantages of NSGA-Ⅱ are that it runs efficiently and the resulting solution set is well-
distributed, and its main shortcomings are that it is difficult to find isolated points and it is easy
to produce a large number of duplicate individuals. In order to overcome the above
shortcomings, this paper proposes an improved NSGA-Ⅱ algorithm, which is mainly improved
in the following two aspects.

Table 1 Dataset Information

Dataset Node Edge Network Category
Cora 2708 5069 引文 7

Citeseer 2110 3668 引文 6

Pubmed 19717 44324 引文 3

Acm 3025 13128 引文 3

DBLP 17716 52867 协作者 4

In order to verify the experimental results, this paper selects several mainstream similar
algorithms for comparative testing, including: DeepWalk, Node2Vec, two classic unsupervised
algorithms based on random walks (Experiment 1) and GAE, VGAE, ARGA, ARVGA and other
graph autoencoders (Experiment 2) as basic models for comparison with NLGAE. In order to
achieve fairness in the comparison, in the process of comparing with the unsupervised model
algorithm, all classification models uniformly use the classic clustering algorithm: K-means
algorithm. In the following experiment, three performance indicators, including normalized
mutual information (NMI), adjusted Rand index (ARI), and F-score (F1), are used to evaluate
the performance of each model.

3.2. Comparative experiment

3.2.1. Experiment 1: Comparison with random walk-based methods

In order to compare the effect of the VGAE-ISMO model on the data set, this paper first selected
classic algorithms based on random walks for comparison, namely DeepWalk and Node2Vec.
After the embedding vectors were obtained by these three algorithms, the K-means algorithm
was uniformly used as the clustering algorithm for community division, and NMI, ARI, and
Modularity were used as evaluation indicators to evaluate the community division results of
each algorithm. Since both the DeepWalk and Node2Vec algorithms rely only on the structural
information of the graph for representation learning and do not use the node feature matrix, in
order to ensure the accuracy of the comparative test, the embedded representation vectors

International Journal of Science Volume 12 Issue 2, 2025

ISSN: 1813-4890

38

obtained by them are spliced with the node feature matrix as the final representation of the
node, and are added to the comparative test.

Table 2 Comparison of algorithms on four indicators: NMI, ARI, and F-score

模型 评价指

标

Cora Citeseer Pubmed ACM DBLP

DeepWalk+K-
means

NMI 0.5979 0.3788 0.3674 0.5124 0.3552
ARI 0.5496 0.3729 0.3773 0.4772 0.3679
F1 0.6238 0.4897 0.4281 0.5673 0.4363

DeepWalk+X+K-
means

NMI 0.4173 0.4832 0.4217 0.5481 0.4163
ARI 0.4865 0.3944 0.4186 0.5237 0.4373
F1 0.5655 0.5363 0.5463 0.5452 0.5167

Node2Vec+K-
means

NMI 0.4065 0.3768 0.3846 0.5036 0.3624
ARI 0.4572 0.2677 0.3574 0.4213 0.3287
F1 0.6742 0.4638 0.4773 0.5863 0.4038

Node2Vec+X+K-
means

NMI 0.3728 0.4423 0.4176 0.5732 0.4236
ARI 0.4782 0.3479 0.3998 0.4612 0.3937
F1 0.4689 0.5127 0.4273 0.5375 0.5084

VGAE-ISMO+X+K-
means

NMI 0.6612 0.6148 0.5661 0.5817 0.5699
ARI 0.5973 0.5780 0.5173 0.5324 0.5824
F1 0.6561 0.6831 0.6038 0.6129 0.6235

Fig. 1 Comparison of algorithms on four indicators: NMI, ARI, and F-score

As shown in Table 2, VGAE-ISMO and similar unsupervised algorithms use NMI, ARI, and F1
evaluation indicators to measure the community division effect on five data sets, including Cora,
Citeseer, Pubmed, DBLP, and ACM. The bold values are the best values. Among them,
DeepWalk+K-means means that the embedding vector is obtained by using DeepWalk and the
clusterer uses K-means. DeepWalk+X+K-means means that the embedding representation

International Journal of Science Volume 12 Issue 2, 2025

ISSN: 1813-4890

39

vector is obtained and then concatenated with the node feature matrix, and the community
division is obtained by clustering using the K-means algorithm. The same is true for
Node2Vec+K-means, Node2Vec+X+K-means and VGAE-ISMO +X+K-means.

As shown in Figure 2, DeepWalk+K-means, DeepWalk+X+K-means, Node2Vec+K-means,
Node2Vec+X+K-means, and VGAE-ISMO +X+K-means are compared in terms of NMI, ARI, and
F1 on each data set. We can draw the following conclusions:

1. DeepWalk+K-means obtains the best values for NMI and ARI on the Cora data set, and even
obtains better numerical results than DeepWalk+X+K-means in the absence of node feature
matrix input. This shows that for the Cora data set, the topological graph structure information
contains more information that is helpful for community division than its node attribute
information, and the latter has poor performance due to the integration of the node feature
matrix. In this case, the performance can be adjusted by adjusting the hyperparameter λ in the
loss function to increase the proportion of graph structure information in the optimization
target; in contrast, Node2Vec+K-means obtains the best value on the F1 indicator because
Node2Vec A more flexible random walk strategy can better capture the local and global
structure of the graph and generate high-quality embedding representations. These
embeddings enable K-means clustering to more accurately divide communities, improve
Precision and Recall, and thus make the F1 index higher.

2. After adding the node feature matrix, the algorithms on the Citeseer, Pubmed, ACM, and DBLP
datasets all showed numerical improvements, which shows that the node feature matrix of
these datasets can enrich clustering information, and VGAE-ISMO has the best performance on
these datasets. Taking the NMI index as an example, especially on the DBLP dataset, VGAE-
ISMO+X+K-means has improved its performance by about 30% compared with the suboptimal
Node2Vec+K-means. The effect is also significant on the Citeseer dataset. VGAE-ISMO+X+K-
means has improved its performance by about 16% compared with DeepWalk+X+K-means. In
addition, although the performance on the Cora dataset is not the best, all three evaluation
indicators are suboptimal.

3.2.2. Experiment 2: Comparison with Graph Autoencoder Method

In this section, VGAE-ISMO is compared with mainstream graph autoencoder models such as
GAE, VGAE, ARGA, and ARVGA. In order to ensure the uniformity of the comparison, K-means
is used as the clustering algorithm. In terms of model parameters, the training iterations of GAE
and VGAE, which are the basic models, are set to 200, the number of encoder layers is set to 2
layers, the hidden layer 1 is set to 32, the hidden layer 2 is set to 32, and the learning rate is
0.01; the parameters of ARGA and ARVGA are all set to the default parameters.

Table 3 Comparison of algorithms on four indicators: NMI, ARI, and F-score

模型 评价指

标

Cora Citeseer Pubmed ACM DBLP

GAE
NMI 0.5612 0.4747 0.2532 0.3722 0.2155
ARI 0.4983 0.4430 0.2484 0.3485 0.1974
F1 0.6527 0.5631 0.3251 0.4623 0.2475

VGAE
NMI 0.6102 0.5472 0.4217 0.4721 0.3247
ARI 0.5826 0.5682 0.4186 0.4273 0.3028
F1 0.5489 0.5127 0.3963 0.4326 0.3367

ARGA
NMI 0.5173 0.5438 0.4638 0.4836 0.4083
ARI 0.4928 0.4347 0.3675 0.4046 0.3359
F1 0.5562 0.4876 0.3365 0.4363 0.3574

ARVGA
NMI 0.6204 0.5825 0.4572 0.4632 0.4363
ARI 0.5638 0.5066 0.4251 0.4346 0.3675
F1 0.6581 0.5527 0.4648 0.5065 0.4472

International Journal of Science Volume 12 Issue 2, 2025

ISSN: 1813-4890

40

VGAE-ISMO
NMI 0.6783 0.6148 0.5661 0.5817 0.5699
ARI 0.6382 0.5780 0.5373 0.5324 0.5824
F1 0.6942 0.6831 0.6038 0.6129 0.6235

Fig. 2 Comparison of algorithms on four indicators: NMI, ARI, and F-score

As shown in Table 3, VGAE-ISMO is compared with GAE, VGAE, ARGA, and ARVGA algorithms
on five datasets: Cora, Citeseer, Pubmed, ACM, and DBLP, using the three evaluation indicators
NMI, ARI, and F1. We can draw the following conclusions:

1. Compared with GAE, VGAE, ARGA, and ARVGA algorithms, VGAE-ISMO has achieved the best
values in the three evaluation indicators NMI, ARI, and F1 on five datasets: Cora, Citeseer,
Pubmed, ACM, and DBLP, and has a certain performance advantage.

2. On the Cora dataset, VGAE-ISMO has a slight improvement over ARVGA. Taking the NMI index
as an example, VGAE-ISMO has a 0.0579 improvement over ARVGA. However, compared with
the basic models GAE and VGAE, the performance has been greatly improved. Taking the DBLP
dataset as an example, VGAE-ISMO has improved 0.3544, 0.3850, and 0.3760 in NMI, ARI, and
F1 indicators compared with GAE, and 0.2452, 0.2796, and 0.2868 respectively compared with
the VGAE model; Taking the Pubmed dataset as an example, VGAE-ISMO has improved 0.3129,
0.2886, and 0.2787 in NMI, ARI, and F1 indicators compared with GAE, and VGAE-ISMO has
improved 0.1444, 0.1187, and 0.2075 respectively compared with VGAE.

Through the content of Chapter 3, we can know the principles of GAE and VGAE models. The
existing problems are: lack of restoration of node feature matrix, single decoder expression
ability, and the problem of fixed weight coefficients between nodes. We designed the VGAE-
ISMO model to address these problems. First, the FAGCN model was used to replace the GCN
model in the encoding stage, and the problem of fixed weight coefficients between nodes was
solved with the help of the GAT idea; secondly, the original decoding structure was improved,
the reconstructed node feature matrix was supplemented, and relevant optimization objectives
were added to the loss function, so that the model not only considers the graph structure

International Journal of Science Volume 12 Issue 2, 2025

ISSN: 1813-4890

41

information when generating the embedded vector, but also considers the node attribute
information, so as to obtain a higher quality embedded representation vector. These
improvements make our VGAE-ISMO model have a leading performance advantage on five
datasets: ora, Citeseer, Pubmed, ACM, and DBLP.

4. Conclusion

Community discovery is an important research topic in the field of complex networks, and its
goal is to divide complex networks into multiple sub-networks. More and more deep learning
algorithms are applied to this topic, and graph representation learning is one of them. GAE and
VGAE models are classic graph representation learning algorithms. In this study, these two
models are studied in depth, and on the basis of existing research, the problems of GAE and
VGAE models are analyzed in detail. The existing problems are solved from three aspects:
improving the encoding structure, decoding structure, and loss function. A graph autoencoder
model VGAE-ISMO based on improved encoding and decoding structure and multi-optimization
is proposed. First, in terms of improving the encoding structure, we use the FAGCN model
instead of the GCN encoding to solve the problem of solidified weight coefficients between
nodes. At the same time, FAGCN can divide the information in the graph data into low-frequency
information and high-frequency information, and selectively and comprehensively obtain
graph structure information; secondly, in terms of decoding structure, we added the
reconstruction of the node feature matrix to make up for the vacancy of the original model in
this regard and solve the problem of single decoder expression ability; finally, the improvement
of the loss function enables the VGAE-ISMO model to simultaneously integrate node feature loss,
graph structure loss, and data distribution loss for training and optimization. The comparative
experimental results show that VGAE-ISMO, as an unsupervised model, can learn high-quality
node embedding vectors. It is not only better than classic unsupervised algorithms such as
DeepWalk and Node2Vec in community discovery tasks, but also has certain performance
advantages in similar graph autoencoder algorithms.

References

[1] Girvan M, Newman M E J. Community structure in social and biological networks[J]. Proceedings of
the national academy of sciences, 2002, 99(12): 7821-7826.

[2] Fortunato S. Community detection in graphs[J]. Physics reports, 2010, 486(3-5): 75-174.

[3] Chen P, Redner S. Community structure of the physical review citation network[J]. Journal of
Informetrics, 2010, 4(3): 278-290.

[4] Chen J, Yuan B. Detecting functional modules in the yeast protein–protein interaction network[J].
Bioinformatics, 2006, 22(18): 2283-2290.

[5] X. Su et al., "A Comprehensive Survey on Community Detection With Deep Learning," in IEEE
Transactions on Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2021.3137396.

[6] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels: First steps,” Social Networks,
vol. 5, no. 2, pp. 109–137, 1983.

[7] Liu C, Zheng X, Zhao P. Overlapping Community Discovery Algorithm Based on Seed Node
Importance Selection[C]//Proceedings of the 2023 8th International Conference on Multimedia
and Image Processing. 2023: 113-117.

[8] P. Pons and M. Latapy, “Computing communities in large networks using random walks,” in
Computer and Information Sciences, 2005, pp. 284–293.

[9] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv
preprint arXiv:1609.02907, 2016.

[10] Kipf T N, Welling M. Variational graph auto-encoders[J]. arXiv preprint arXiv:1611.07308, 2016.

International Journal of Science Volume 12 Issue 2, 2025

ISSN: 1813-4890

42

[11] Choong J J, Liu X, Murata T. Learning community structure with variational autoencoder[C]//2018
IEEE international conference on data mining (ICDM). IEEE, 2018: 69-78.

[12] Zhao P, Zheng X, Liu C. Probability-Corrected Overlapping Community Detection Algorithm Based
on GCN[C]//2023 Asia Symposium on Image Processing (ASIP). IEEE, 2023: 24-31.

[13] Fei R, Wan Y, Hu B, et al. A novel network core structure extraction algorithm utilized variational
autoencoder for community detection[J]. Expert Systems with Applications, 2023, 222: 119775.

[14] Qiu C, Huang Z, Xu W, et al. VGAER: graph neural network reconstruction based community
detection[J]. arXiv preprint arXiv:2201.04066, 2022.

