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Abstract 

Scheduling in intelligent manufacturing systems is the core link for achieving efficient 
allocation of manufacturing resources, while machining time serves as the key basis for 
scheduling decisions. Addressing the practical demands of intelligent processing units 
scheduling, this study constructs an experimental platform for intelligent processing 
units with modular architecture and real-time perception capabilities. A machining 
sequence list was designed based on the physical structure and control logic of the unit. 
To overcome the limitations of traditional time series prediction methods in processing 
multimodal data, this paper proposes an improved Transformer model incorporating a 
weighted attention mechanism, which enhances the model's capability to capture 
critical features through a dynamic weight allocation strategy. Experimental results 
demonstrate that the enhanced prediction model can efficiently and accurately forecast 
machining times. This research provides theoretical support for real-time scheduling of 
intelligent machining cells and offers scalable solutions for optimizing intelligent 
manufacturing systems in Industry 4.0 environments. 
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1. Introduction 

With the rapid development of intelligent manufacturing technologies, intelligent processing 
units [1], as core enablers of Industry 4.0 [2], are becoming pivotal in achieving flexible 
production and dynamic scheduling. In complex and volatile manufacturing scenarios, how to 
optimize production efficiency and reduce resource waste through precise scheduling has 
emerged as a focal point of common concern in both academia and industry [3]. Traditional 
scheduling systems predominantly rely on fixed processing time assumptions, essentially 
employing static rules (such as shortest processing time first) for linear programming of 
production tasks [4]. However, such methods struggle to adapt to dynamically changing 
processing requirements in flexible production environments [5]: On one hand, material 
processing times exhibit significant time-varying characteristics due to multiple influencing 
factors including equipment status, human operations, and environmental disturbances; On the 
other hand, in small-batch customized production scenarios featuring diverse material types 
and complex processing sequences [6], traditional models fail to effectively capture temporal 
dependencies and dynamic coupling features [7]. Scheduling systems based on fixed processing 
time assumptions demonstrate substantial average errors in flexible production lines, leading 
to increased equipment idle rates and order delivery delays. 

This study focuses on addressing dynamic processing time prediction in intelligent processing 
unit scheduling systems. To overcome the limitations of fixed-time assumptions in 
conventional approaches, we propose a Transformer-based time series prediction model 
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enhanced with prior knowledge weighting. The effectiveness of the proposed model is 
rigorously trained and validated through a self-developed intelligent processing unit 
experimental platform. 

2. Intelligent Processing Units 

2.1. Deasign of the Intelligent Processing Units 

In intelligent scheduling research, the intelligent processing unit serves as a critical 
experimental platform, necessitating systematic design of its physical implementation [8]. As 
illustrated in Fig. 1, the experimental platform comprises three functionally integrated modules: 
processing module, logistics module, and perception module, corresponding to processing, 
logistics, and sensing operations respectively. 

 

 
Fig. 1 Schematic diagram of the intelligent processing unit experimental platform 

The processing module is the main body of the intelligent processing unit that processes 
materials and increases their added value. The design of this part meets the requirements for 
production equipment in the scheduling system. The logistics module primarily enables the 
circulation of processed materials within the scheduling system. It not only includes material 
distribution within the intelligent processing unit but also facilitates material exchange with 
upstream and downstream intelligent processing units. This module mainly consists of 
auxiliary equipment in the scheduling system. The perception module is designed to enable 
state awareness of equipment and environments for the scheduling system. The 
implementation of this module involves not only detection devices in the scheduling system but 
also various sensors integrated into production equipment and auxiliary equipment. Sensors 
embedded in production/auxiliary equipment, combined with additional sensors, form the 
hardware foundation of the perception module. 

2.2. Establishment of the Intelligent Processing Units 

To realize the intelligent processing unit with the aforementioned functionalities, this section 
focuses on the equipment for processing and material handling functions. The devices of the 
perception module are integrated into these two categories of equipment and require no 
separate discussion. For scheduling system research based on the intelligent processing unit, 
collaborative robots are selected as the primary processing equipment. A buffer zone is 
established, with two conveyors serving as main devices to implement dual buffering for input 
and output material flow in the intelligent processing unit. 

To achieve the required processing capabilities, collaborative robots equipped with end-
effectors are adopted as production equipment. With rapid advancements in AI technologies, 
breakthroughs in large-scale models and embodied intelligence continuously enhance 
collaborative robots' autonomous learning and scene generalization capabilities. As increasing 
technological applications converge, collaborative robots are positioned as critical productivity 
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tools in intelligent manufacturing visions, hence their selection as the production equipment 
for the experimental platform. 

To enable internal scheduling decisions within the intelligent processing unit, conveyors 
integrated with multi-modal sensing devices are chosen as loading/unloading interfaces for the 
logistics system, collectively forming the buffer equipment. The distinction between 
loading/unloading interfaces depends on the conveyor's functional role in the unit. For 
studying scheduling decision methods, the buffer capacity is designed to hold 10 workpieces, 
with 5 allocated to each interface. Within this capacity, the scheduling system may select any 
workpiece from the loading interface. However, the replenishment position for the loading 
interface is fixed, meaning newly arrived materials always occupy the outermost position of the 
unit. To address this constraint, a material relocation strategy is developed. 

The design assigns Position 1 to the workpiece closest to the processing location, with 
numbering incrementing to Position 5 as distance increases. As shown in Fig. 2, materials are 
transported from Position 5 at the feeding port via the conveyor and finally placed at Position 
1. The critical principle of the adjustment strategy is to minimize conveyor motion complexity: 
ensuring Position 1 remains material-free during conveyor movement. If the scheduling result 
selects material at Position 1 for processing, no material relocation is required; otherwise, 
relocation is mandatory. When the conveyor is not fully loaded, a position transfer strategy is 
triggered: materials at Position 1 are moved to the smallest-numbered vacant position to 
maintain Position 1 empty, facilitating conveyor advancement. After conveyor advancement, 
Position 5 is inevitably emptied, allowing new materials to be accepted. 

 

 
Fig. 2 Relocation strategy 

In the left part of Fig. 2, dashed line ① corresponds to the position transfer strategy when the 
selected workpiece for processing is at Position 2. Specifically, after the material at Position 2 
is removed, the material at Position 1 is transferred to Position 2. Dashed lines ②, ③, and ④ 
follow the same logic. After completing the relocation strategy, the conveyor can be controlled 
to advance. Infrared sensors can only detect the presence/absence of materials at defined 
positions but cannot identify material types. Therefore, a depth camera is installed directly 
above Position 5 to recognize material categories. 
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Fig. 3 Design drawings and physical diagrams of the experimental platform 

Based on the architectural design of the intelligent processing unit scheduling system, the 
experimental platform requires integration of primary production equipment including 
collaborative robots and conveyors. Considering the need for physical support during 
equipment installation and simulated production phases, a physical platform must be designed 
as the base structure of the experimental platform. Device integration and experimental 
design/planning are implemented on this base. The design and assembly result of the complete 
platform are shown in Fig. 3, where two diffuse photoelectric sensors are equipped on one side 
of each conveyor in the physical diagram. 

After completing equipment selection for the experimental platform guided by functional 
requirements, data communication design must be implemented. The design focuses on 
collaborative robots, conveyors, sensors, and depth cameras. These device categories cover all 
types in the aforementioned equipment configuration, with multi-source heterogeneous data 
characteristics requiring distinct communication protocols. Specific implementation methods 
are detailed in Fig. 4. 

 
Fig. 4 Communication diagram of the experimental platform 
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3. Processing Time Prediction Model 

3.1. Processing Time Prediction Requirements 

The scheduling system of the intelligent processing unit requires not only material 
identification but also associated processing information, such as processing time. In traditional 
scheduling methods, to simplify computational processes, the processing time of specific 
materials at designated workstations is assigned fixed values. However, this assumption only 
holds for rigid production lines. When flexible production modes are implemented or human 
operator influences are considered, processing time inevitably becomes variable. 

Current statistical approaches for processing time exhibit limitations, primarily relying on 
aggregating all historical machining durations for statistical processing. However, production 
processes constitute continuous actions where operations at any given time node inherently 
influence preceding and subsequent events. This interdependence is particularly critical in 
highly integrated intelligent processing units, where equipment interactions induce time-series 
variations that must be accounted for. Therefore, a complete processing sequence is proposed 
as Fig. 5, with workpieces selected in each scheduling decision cycle marked by blue ellipses, 
accompanied by their actual machining times. 

 
Fig. 5 Complete processing sequence list 

Scheduling cycles are sequentially connected end-to-end within a complete machining process, 
meaning the total process duration equals the sum of all individual cycles. Even if only one 
material is selected and processed per cycle, the cycle duration cannot be directly adopted as 
the material's processing time for precise characterization. Considering the intelligent 
processing unit's workflow, processing status is triggered when collaborative robots retrieve 
materials from the buffer zone. This timestamp is determined by monitoring robot status. 
Processing completion is registered when robots initiate transfer of processed materials back 
to the buffer. System timestamps captured at these two action initiations are differenced to 
calculate actual processing time. 

For new decision cycles, the task update module acquires the latest single-cycle processing 
sequence. All materials in this sequence require processing time predictions, which are 
combined with the sequence data to serve as inputs for subsequent intelligent scheduling 
algorithms. 

3.2. Transformer Models 

From the aforementioned analysis and discussion, it is concluded that processing time 
prediction primarily relies on processing sequences annotated with historical time data. 
Observation of historical data tables reveals that processing time prediction is fundamentally 
based on processing sequences, where the sequence serves as the method's input and the 
output corresponds to predicted processing times for individual materials. Neural networks, 
computational models inspired by biological neural perception, initially featured simple 
architectures with only input, hidden, and output layers, capable of basic classification tasks. 
With progressive technological advancements, the Transformer model was proposed to better 
capture long-range dependencies in sequential data [9]. Currently widely applied in natural 
language processing and speech recognition domains, this architecture is considered suitable 
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for processing time prediction given that processing sequences inherently record consecutive 
production processes. 

The architecture of the Transformer model is shown in Fig. 6, which primarily consists of 
several key components including positional encoding, encoder-decoder architecture, and 
multi-head attention mechanism. 

The terms "Inputs" and "Outputs" at the bottom of the Fig. 6 refer to the training data provided 
to the model and the expected target output, respectively. The "Output Probabilites" at the top 
denotes the probabilistic distribution generated by the trained model, ultimately manifested as 
predictive outcomes. Taking a translation task as an example, the "Inputs" at the bottom would 
be English text, the "Outputs" would be the corresponding Chinese translation, and the " Output 
Probabilites" at the top represents the model's predictions after training. Both the English input 
and Chinese output sequences entering the Transformer model first undergo input and output 
embedding processes, converting character sequences into vector matrices. 

Following this conversion, positional encoding is applied, typically implemented through 
calculations involving sine and cosine functions. This step integrates positional information of 
elements within the sequence into the original representations. The resulting augmented 
vectors are then processed through the encoder in the left gray box and decoder in the right 
gray box modules. The notation "N×" adjacent to both gray boxes indicates the potential 
stacking of multiple encoder and decoder layers through sequential concatenation. 

Within the encoder, multi-head attention mechanisms and feed forward neural networks 
operate sequentially to encode English character representations. The decoder architecture 
bifurcates based on encoder data injection points: the first segment processes masked multi-
head attention to prevent premature exposure to subsequent positional information, while the 
second segment operations by jointly decoding English-Chinese representations to produce 
final outputs. The multi-head attention mechanism at the beginning of the decoding process is 
masked to prevent the model from observing future information while generating the output 
sequence. 

 
Fig. 6 Transformer model [9] 

The multi-head attention mechanism constitutes the most critical component within the model 
[10]. Its implementation involves applying three distinct linear layers: Query (Q), Key (K), and 
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Value (V), to perform feature transformation on input data. These transformed Q, K, and V 
matrices are subsequently combined through scaled dot product attention computation. The 
mechanism achieves parallelism by simultaneously executing multiple such combination 
processes, with the quantity of parallel processes designated as the number of heads (h). The 
outputs from all attention heads are concatenated and ultimately processed through a linear 
layer to produce the final output. 

In summary, the Transformer model demonstrates distinct advantages in addressing temporal 
sequence problems, rendering it particularly suitable for processing time prediction within 
intelligent processing unit scheduling problems. To further optimize its application in 
scheduling methodologies, weighted feature optimizations can be implemented across 
different input characteristics, coupled with strategic incorporation of prior knowledge to 
enhance prediction accuracy. 

3.3. Weighted Optimization Mechanism 

In the comprehensive processing sequence list, processing times exhibit one-to-one 
correspondence with their respective processing rounds, where the Transformer model 
receives processing sequences as "Inputs" and generates processing time predictions as 
"Outputs." The model ultimately predicts material-specific processing times under varying 
sequence configurations. As outlined in the preceding section, encoded representations of 
processing sequences and their corresponding times are processed through the multi-head 
attention mechanism. Within this framework, all materials in the processing sequence receive 
equal weighting. Under ideal conditions, the model could theoretically discern the relative 
significance of different materials and their positional relationships in influencing processing 
durations via the multi-head attention mechanism. However, relying on autonomous discovery 
of these critical relationships imposes substantial computational demands and risks failure to 
identify the most influential material parameters limitations that hinder practical 
implementation in intelligent processing unit. To address it, weighted feature optimization can 
be systematically implemented to amplify the contribution of dominant features while 
attenuating secondary ones, thereby enhancing the model's predictive accuracy. 

In the scheduling system of the intelligent processing unit, the prior knowledge is mainly 
determined by the material processed for the corresponding processing time of a single 
processing sequence, that is, the prior knowledge can be interpreted [11]. In the complete 
processing sequence table given for training, the processing materials of every round are not 
marked, that is, all materials in each processing sequence are given the same weight when 
processed by the multi-head attention mechanism. The model will spend a considerable 
amount of time to find out what the most influential feature is. In order to avoid this problem, 
the materials selected for each scheduling cycle in the processing sequence are marked, and the 
model is informed in advance to transfer more attention weights to this feature. 

The specific details of the feature weight are to set a weight vector ω = [1, 1, 1...], and the number 
of elements in the vector is consistent with the number of features. When the elements in the 
weight vector are equal to 1, it will not affect the corresponding feature; if it is less than 1, it 
will reduce the influence of the corresponding feature in the attention mechanism; if it is 
greater than 1, it will increase the influence of the corresponding feature. Setting all the 
elements of the weight vector to 1, that is, without any processing, is the standard form of the 
Transformer model. In addition, by setting the weight vector to nn.Parameter, the model can 
dynamically adjust this during training. 
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4. Experiments and Results 

Considering the amount of data and multiple random tests, the key parameters of the model 
are tentatively set to be 64 for the batch size and 8 for the feature embedding dimensions, which 
will be adjusted appropriately according to the training results of the model. The equipment 
used for training is CPU: Intel i5-13400f, GPU: NVIDIA GeForce RTX 2070 SUPER, in addition, 
the maximum training period is set to be 300, but an additional mechanism is designed for the 
early stopping method, the triggering condition is that the loss of the 15 consecutive training 
periods is not optimized, and the training process will be terminated prematurely after the 
early stopping method is triggered. The early stopping method will end the training process of 
the model early after triggering it. The number of hidden neurons is set to 64, the number of 
heads in the multi-head attention mechanism is 8, the dropout rate is 0.001, the number of 
encoders and decoders is 3, and the learning rate is initially set to 0.001. 

Based on the weighted optimization of prior knowledge, the features are divided into primary 
and secondary features, where the primary feature is the material selected for processing in the 
corresponding scheduling cycle, and the rest of the materials are secondary features. In order 
to strengthen the influence of the primary feature, its weighted value is set to 10, meaning the 
influence of this feature will be magnified by 10 times when it is perceived in the multi-attention 
mechanism module. The weight of the secondary feature can also be set to 0.1 to achieve 
weakening the influence of the secondary feature. In the training process, a total of three 
weighting methods with initial ratios of 10:0.1, 10:1 and 1:1 for the primary and secondary 
features are considered, corresponding to the three cases of strengthening the primary feature 
while weakening the secondary feature, strengthening only the primary feature and no 
weighting, respectively. 

After training, the model was evaluated using the coefficient of determination (R2) , mean 
absolute error regression loss (MAE), root mean squared error (RMSE) and mean absolute 
percentage error (MAPE) to evaluate the model [12]. 

Table 1 shows the effect of different batch sizes on model training, and it can be found that 
increasing the batch size to 128 under this dataset does not necessarily improve the 
performance of the model. Under the three weighting methods, there is and only the weighting 
ratio of 1:1 obtains the improvement. However, in the comparison of different weighting ratios, 
the model with 1:1 has the worst performance, and even if the performance of the model under 
this weighting ratio is improved by increasing the batch size, the performance is worse 
compared to the performance of the model with the other two weighting ratios. In this 
comparison, the tentative batch size of 64 can be continued for the next optimization, and it is 
also determined that either the weight ratio of 10:0.1 or 10:1 has an optimizing effect on the 
model, which verifies the reasonableness of the weighted optimization based on the a priori 
knowledge to a certain extent. 

Table 1 Effect of the batch size 

Batch size Weight R2 MAE RMSE MAPE 
64 10:0.1 0.98387 1.333320 1.73059 0.03260 
64 10:1 0.91914 3.13220 3.87504 0.08535 
64 1:1 0.81077 4.38070 5.92795 0.08800 

128 10:0.1 0.91725 3.19767 3.92010 0.08416 
128 10:1 0.91511 3.12820 3.97048 0.08458 
128 1:1 0.91308 3.22651 4.01749 0.08743 

Discussing the effects of different embedding dimensions on the model on the basis of the above 
experiments, it is found that increasing the embedding dimensions can comprehensively 
improve the performance of the model, strengthen the learning ability of the model, and be 
more capable of capturing the differences and changes in the processing sequence. After 
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increasing the embedding dimension, the performance of the model with all three weight ratios 
is improved to some extent, and the comparison relationship between different weight ratios 
remains consistent, still the weight ratio of 10:0.1 is the most effective, the weight ratio of 10:1 
is the second most effective, and the weight ratio of 1:1 is the most ineffective. That is, the 
weighted optimization based on prior knowledge has a positive effect on the training of the 
model and meets the expectation. 

Table 2 Effect of the embedding dimension 

Batch size Weight R2 MAE RMSE MAPE 
64 10:0.1 0.98387 1.333320 1.73059 0.03260 
64 10:1 0.91914 3.13220 3.87504 0.08535 
64 1:1 0.81077 4.38070 5.92795 0.08800 

128 10:0.1 0.98936 1.04327 1.40510 0.02799 
128 10:1 0.91980 3.11935 3.85915 0.08430 
128 1:1 0.91675 3.22449 3.93178 0.08628 

Further discussing the different parameter variations, where the R2 enhancement is smaller, 
this is because the model's metrics have reached 0.98, which is very close to the ideal value of 
1 for this parameter and is close to the conclusions drawn by other scholars using this criterion 
[13]. Considering the training data and the uncertainty after applying to the intelligent 
processing unit, based on this parameter, it can be considered that the training results of the 
model can already meet the needs of the intelligent processing unit scheduling system.MAE and 
RMSE react to the model's error and error amplitude, respectively, and have obtained a better 
representation of the parameters when the weight ratio is 10:0.1, which is more similar to the 
optimization amplitude of other scholars [14]. MAPE mainly embodies the degree of adaptation 
of the model for different data, the optimization results of this parameter show that the trained 
model can have better performance under different processing sequences. Taken together the 
model works best when the batch size is 64, the embedding dimension is 16, and the weight 
ratio is 10:0.1. The loss variation of the training process under this condition is shown in Fig. 7. 

 
Fig. 7 Curves of loss 

Table 3 shows the results of the weighted optimized Transformer model compared with two 
other common neural network models. the CNN and the MLP, whose network performance is 
similar to that of the unweighted optimized Transformer model, and whose performance differs 
significantly from that of the optimized Transformer model, which, to a certain extent, proves 
the optimization algorithms used to be effectiveness of the optimization algorithms used. 

Table 3 Comparison of different models 

Model R2 MAE RMSE MAPE 
Improved Transformer 0.98936 1.04327 1.40510 0.02799 

CNN 0.92635 2.97218 3.69808 0.08051 
MLP 0.90285 3.02995 4.24750 0.08887 
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Randomly intercept 100 rows in the test set, that is, 100 rounds of processing sequence, and 
pass it as input to the above mentioned optimal model. The predicted value is shown in Fig. 8. 
It can be seen from the figure that the predicted processing time is not much different from the 
ture processing time given, which is basically in line with the processing time designed in the 
previous text. 

 
Fig. 8 Comparison of processing time prediction results with ture values 

5. conclusion 

Aiming at the problem of dynamic processing time prediction in the scheduling process of 
intelligent processing units in intelligent manufacturing systems, this paper first designs and 
constructs the experimental platform and processing sequence list of intelligent processing 
units, then optimizes the Transformer model based on prior knowledge weighting, and finally 
uses the processing sequence list to train the optimized model. The results show that the 
weighted improved Transformer model can predict the processing time with high performance, 
and also shows certain advantages compared with the two commonly used neural networks. 
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