
International Journal of Science Volume 12 Issue 4, 2025 

ISSN: 1813-4890  
 

1 

Short-term power load prediction based on TCN-LSTM hybrid 
model 

Yu Sun*, Zhen Tao 

Anhui University of Finance and Economics, Bengbu 233000, China 

*Corresponding author: Yu Sun (Email:3164832583@qq.com) 

Abstract 

Power load forecasting is a key link to ensure the safe, stable and economic operation of 
the power system. However, the non-stationarity and multivariate coupling 
characteristics of load data lead to the challenge of insufficient accuracy in traditional 
forecasting methods. To this end, this study proposes a hybrid TCN-LSTM model based 
on temporal convolutional networks (TCN) and long-short-term memory networks 
(LSTM), aiming at fusing local temporal feature extraction with long-term dependency 
modeling capabilities. The TCN model efficiently captures the short-term fluctuation 
patterns of load data through causal convolution and extended convolution, while the 
LSTM model further mines the time-series global trend features. The experiments use 
power load data with 15-minute sampling intervals from the 2016 Mathematical 
Modeling Competition for Electricians to validate the model performance by dividing the 
training set with the test set. The TCN-LSTM model has a mean absolute percentage error 
(MAPE) of 1.17% and a coefficient of determination (R²) of 0.9950, which is significantly 
better than the other comparative models, TCN, LSTM, and CNN-LSTM models. The model 
provides a high-precision forecasting tool for power system scheduling and energy 
planning, helping to improve the efficiency of renewable energy utilization and carbon 
neutrality targets. 

Keywords 

Power Load Forecasting; LSTM Model; TCN Model; Hybrid Model; Deep Learning. 

1. Introduction 

Power load forecasting plays a pivotal role in smart grids and energy management systems, 
directly influencing the safety, economy and reliability of the power system [1]. Precise load 
forecasting not only facilitates power dispatching and reduces energy waste, but also enhances 
the utilization efficiency of renewable energy and promotes the realization of the carbon 
neutrality goal. 

Traditional load forecasting methods mainly rely on time series analysis and statistical 
modeling. However, these methods are difficult to effectively capture the complex nonlinear 
load characteristics, especially when dealing with multiple variables such as weather, economic 
factors, and social behaviors, the prediction accuracy is limited [2]. 

In recent years, load forecasting methods based on machine learning and deep learning have 
gradually emerged. A feedback computing mechanism was designed by establishing a BiLSTM 
model, which solved the coupling problem of the time series information before and after the 
power load [3]. As the complexity, nonlinearity and non-stationarity of load data are 
increasingly prominent, a single model is often insufficient to comprehensively depict the 
changing patterns. Therefore, hybrid models have gradually gained widespread attention in 
power load forecasting. The hyperparameters of LSTM network are fine-tuned by using PSO 
algorithm to enhance the prediction performance of the model [4]. To handle complex 
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nonlinear data, deep kernel learning and multi-kernel information bidirectional boosting are 
combined to form nonlinear composite kernels [2]. These methods have demonstrated 
outstanding performance in both short-term and medium-to-long-term load forecasting. 
Particularly, by integrating big data and cloud computing technologies, the power load 
forecasting system has been further optimized, enabling more efficient power dispatching and 
management [5]. 

The TCN algorithm has achieved good results in numerous prediction fields [6][7]. LSTM model 
is an improved variant of RNN model, specifically designed to handle and predict the long-term 
dependencies in sequential data, and has been widely applied in the field of power load 
forecasting [8][9][10]. The prediction error has been significantly reduced, which has 
remarkably enhanced the accuracy of power load forecasting. Given the outstanding 
performance of LSTM and TCN in the power load forecasting task, this paper combines the two 
to achieve high-precision forecasting of ultra-short-term power load. Due to the short time 
interval of ultra-short-term prediction, the influence of meteorological factors is relatively 
small [1], thus meteorological factors are not taken into consideration in this paper. The final 
experimental results demonstrate that the proposed hybrid model outperforms the single 
model in terms of prediction accuracy, thereby enhancing the reliability of power load 
forecasting. 

2. Methodology 

2.1. Temporal Dependency Modeling with TCN Components 

The TCN layer captures temporal dependencies and recognizes patterns in time series data 
through its internal structural features. It combines causal and extended convolution for 
temporal dependency learning. The mathematical expression for causal convolution is given in 
Equation (1), where yt is the output of time step t, W is the convolution kernel weight, and in 
this study the gradient vanishing problem is solved using the ReLU activation function, and b is 
the bias term. In order to expand the sensory field, TCN uses extended convolution. The specific 
calculation formula is shown by Equation (2), where k is the convolution kernel size, d is the 
expansion factor, and xt-d∙i denotes the input value sampled at interval d. 

yt=f(W∙xt-k:t+b).                                                             (1) 

yt=∑Wi∙xt-d∙i.                                                             (2) 

H(t)=F(x(t))+x(t).                                                             (3) 

Extended convolution inserts spacers into the convolutional kernel, allowing neurons at each 
layer to perceive a larger range of inputs without increasing the number of parameters. In 
addition, TCN also integrates residual joining to optimize the gradient flow, which is shown by 
Eq. (3), where H(t) is the output after residual joining and x(t) is the input data. F(x(t)) is the 
output of convolution operation. This alleviates the gradient vanishing problem and improves 
the training efficiency of the deep network. 

2.2. Long-term dependency capture using LSTM components 

The emergence of recurrent neural networks (RNN) solves the problem that traditional neural 
networks have difficulty in effectively extracting features from large amounts of data when 
dealing with time series prediction. When dealing with long sequence programs, RNNs suffer 
from gradient vanishing or gradient mutation. As one of the variants of RNN structure, the birth 
of LSTM solves the inherent problems of RNN to some extent. LSTM was first proposed by 
Schmidhuber et al (1997). Compared to RNN, LSTM adds input gates (it), forgetting gates (ft), 
output gates (ot), and storage units (ct).The core of LSTM is the information about the state of 
the storage units, which can be added or deleted under the control of the three gates. The 
overall structure of the LSTM neural network is shown in Fig. 1. 
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Fig. 1 LSTM internal structure diagram 

The mechanism of the LSTM unit is described as follows: 

ft=σ(Wf∙[ht-1,xt]+bf).                                                            (4) 

it=σ(Wi∙[ht-1,xt]+bi).                                                            (5) 

ot=σ(Wo∙[ht-1,xt]+bo).                                                            (6) 

ct ̃ =tanh(Wc∙[ht-1,xt]+bc).                                                         (7) 

ct=(ft*ct-1+it*ct ̃).                                                                 (8) 

ht=ot*tanh(ct).                                                                   (9) 

In the first step, the LSTM model determines the information needed to forget the current cell 
state. This process is realized through the forgetting gate, whose main function is shown in 
equation (4),where Wf and bf are the weight matrix and bias of the oblivious gate, respectively, 
xt is the current input to the storage cell, ht-1 is the output, and ct is the cell state. Second, the 
LSTM model determines what information needs to be added to the cell state, a process that is 
realized by inputting the gate and the state information of the candidate cell, c ̃t, whose main 
function is as in Eqs. (5)(7). Immediately after obtaining c ̃t with it, the cell state needs to be 
updated. As shown in Equation (8), ft*ct-1 indicates that the forgetting gate selectively forgets 
some of the state information of the old cell; it*c ̃t indicates that the input gate adds some new 
information to the cell state. Finally, after updating the new cell state, the output depends not 
only on the new cell state but also on the output gate, as shown in Eqs. (6)(9). 

2.3. Hybridization for short- and long-term forecasting 

The optimized TCN component is responsible for extracting local temporal features and passing 
these features to the LSTM component to establish long-term dependencies before generating 
predictions through the fully connected layer. 

y ̂(t+1)=fDense (ht).                                                             (10) 

where ht is the final hidden state of the LSTM at time t, and y  ̂(t+1) denotes the mapping of the 
output of the LSTM to the final predicted value through the fully connected layer. 

3. Experimental Results and Discussion 

3.1. Data sources 

The experiment is based on the electrical loads from January 1, 2009 to January 10, 2015 
provided by the 2016 Mathematical Modeling Competition for Electricians , and the sampling 
period of the data is 15 min. Data from January 1, 2009 to January 8, 2015 were used as model 
input data, and the training and test sets were divided at a scale of 0.8. In addition, these 
experiments were conducted in a python 3.11 environment running the Windows 11 operating 
system with a 64-bit AMD64 processor. 
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3.2. Performance measures 

Four commonly used error detection methods, namely MAE, RMSE, MAPE, and R2, are used in 
this study to compare the accuracy of experimental models.This study also uses these metrics 
as a basis for evaluating the predictive effectiveness of multiple prediction models. The 
formulas for the above four performance criteria are as follows: 

MAE=1/n∙∑| yt-yt ̂ |.                                                             (11) 

RMSE=(1/n∙∑(yt- yt ̂ )2)(1/2).                                                        (12) 

MAPE=1/n∙∑(| yt-yt ̂ |)/yt.                                                         (13) 

R2=1-{1/n∙∑(yt-yt ̂ )2}/{1/n∙∑(yt-y ̅t)2}.                                              (14) 

Where yt is the actual power load data, yt ̂ is the predicted power load data, and n is the number 
of power load data. 

3.3. Analysis of results 

The experiment is also compared with the prediction model of CNN-LSTM. The experiment 
shows the comparison between the hybrid model TCN-LSTM proposed in this paper and the 
benchmark model LSTM, TCN and CNN-LSTM . Table 1 lists the numerical results of the above 
predictive model performance metrics. Figure 2 visualizes the comparison between the true 
and predicted values of each model on January 8, 2015. From the images, it is found that the 
predicted curve of TCN-LSTM model is basically consistent with the trend of the actual curve. 
Figure 3 shows the RMSE and MAE values for each model. Based on the above data results, it is 
found that the TCN-LSTM model performs the best. Its RMSE value is 151.3114, which is lower 
than the other models.The predictive performance of TCN model and TCN-LSTM model are 
close to each other, and the predictive performance of LSTM model is at the bottom. For the R2 
value, the TCN-LSTM model predicts the best, with a model fit value of 0.9950.In conclusion, 
the TCN-LSTM model outperforms the other models and is able to achieve excellent predictions. 

Table 1 Prediction performance for each model 

Model MAPE RMSE MAE R2 

CNN-LSTM 0.0206 280.7940 156.2568 0.9828 

LSTM 0.0270 314.4159 216.6398 0.9756 

TCN 0.0225 253.4598 157.8595 0.9859 

TCN-LSTM 0.0117 151.3114 88.8020 0.9950 

 

 
Figure 2 Comparison of the model prediction value with the true value 
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Figure 3 Comparison of RMSE and MAE values for different models 

4. Conclusion 

Electricity load data is characterized by non-stationarity, non-linearity and complexity. 
Research on power load forecasting has increased extensively in recent years. In order to obtain 
highly accurate and robust prediction results for PV power series, this study uses the 2016 
Electrician's Cup mathematical modeling data as an example of the proposed hybrid 
combination model based on TCN and LSTM, in which the TCN model extracts the local features 
of the time series to capture the short-term patterns in the time series.The LSTM receives the 
features extracted by the TCN and efficiently captures the long-term dependencies for a better 
understanding of the overall trend of the time series. Two benchmark models, LSTM and TCN 
with CNN-LSTM, are used as comparison models in the experimental design, and the results 
show that the TCN-LSTM model proposed in this paper is better in prediction by comparing the 
performance metrics of model evaluation. 

In the subsequent research work, it should focus on the load forecasting problem in specific 
segments. Expanding the data analysis method to multiple specific fields such as industry, 
agriculture, commerce, etc. can better combine the actual scenarios and dig out more valuable 
information, thus effectively improving the accuracy of the prediction. In future power load 
forecasting, the advantages of the big data platform should be fully utilized, and the massive 
data should be efficiently processed with the help of parallel artificial intelligence in order to 
speed up the data analysis, thus significantly improving the real-time and accuracy of 
forecasting. 
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