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Abstract 

Hydrolases coded by phage are key enzymes secreted by phages during the process of 
infecting host bacteria. The presence of hydrolases not only enables phages to penetrate 
the polysaccharide capsule of host bacteria but also facilitates bacterial lysis through 
synergistic action with porin proteins. Predicting phage hydrolases is crucial for 
exploring the pathogenic mechanisms and therapeutic approaches of certain related 
diseases. In this study, based on the dataset constructed by Ding et al., we conducted 
predictive analysis of phage hydrolases. First, phage enzymes were identified from both 
phage enzymes and non-phage enzymes, and then phage hydrolases were further 
screened from the identified phage enzymes. Four feature parameters were extracted. 
Single-feature prediction and fused-feature prediction were performed on these four 
features. Preliminary dimensionality reduction was achieved using the Maximum 
Relevance-Minimum Redundancy (mRMR) method, followed by secondary 
dimensionality reduction using Analysis of Variance (ANOVA). Based on the Support 
Vector Machine (SVM) algorithm and under the Jackknife test, the highest prediction 
success rates for phage enzymes and phage hydrolases reached 85.88% and 95.16%, 
respectively. 

Keywords 

Hydrolases coded by phage, Phage enzymes, Feature information, Dimensionality 
reduction. 

1. Introduction 

Bacteriophages, a type of virus capable of infecting and replicating within bacteria, represent 
the most widely distributed group of viruses. They are commonly found in environments rich 
in bacterial communities, such as soil and the intestinal tracts of animals [1]. The interactions 
between bacteriophages and microbial communities play a significant role in influencing the 
Earth's chemical cycles [2]. Structurally, bacteriophages exhibit a complex symmetry. The head, 
which houses the genetic material, displays icosahedral symmetry, while the tail, characterized 
by helical symmetry, contains proteins that specifically bind to receptor proteins on the surface 
of host bacteria, facilitating the recognition and infection of target bacteria. Recent studies have 
highlighted the emergence of antibiotic resistance in certain bacteria during disease treatment, 
necessitating the exploration of novel methods to inhibit bacterial growth. Research has 
demonstrated that bacteriophages can lyse bacteria, offering a potential therapeutic approach 
for disease treatment [3]. Furthermore, in the realm of food safety testing, bacteriophages not 
only enable rapid and accurate detection of foodborne pathogens but also play a crucial role in 
microbial inactivation during raw material collection and processing [4]. 

Enzymes encoded by bacteriophages that disrupt the penetration layer of host cells are 
collectively referred to as hydrolases. hydrolases coded by phage are critical enzymes secreted 
during the infection of host bacteria, primarily responsible for degrading bacterial cell walls, 
capsules, or nucleic acids, thereby facilitating the processes of phage invasion, replication, and 
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progeny release [5]. The presence of hydrolases not only enables bacteriophages to penetrate 
the polysaccharide capsules of host bacteria but also collaborates with holing proteins to induce 
bacterial lysis [6]. Some hydrolases contain secretory signal peptide sequences, which can 
substitute for holing proteins and directly lyse bacteria [7]. Consequently, the accurate 
identification of bacteriophage-encoded hydrolases not only aids in elucidating the lysis 
mechanisms of the bacteriophage-bacteria system but also provides a foundational basis for 
the development of novel antimicrobial agents. In recent years, researchers have employed 
machine learning algorithms to predict hydrolases coded by phage. 

In 2016, DING et al [8]. proposed a predictive model, termed PHYPred, specifically tailored for 
forecasting hydrolases coded by phage. This model employed g-gap dipeptide composition to 
delineate protein sequences and leveraged Analysis of Variance (ANOVA) and Incremental 
Feature Selection (IFS) methodologies to meticulously screen for optimal feature subsets. 
Classification and predictive tasks were then executed using the Support Vector Machine (SVM) 
algorithm, with model parameters being fine-tuned through grid search optimization. Moving 
forward to 2020, LI et al [9]. extracted four distinct feature parameters: G-gap Dipeptide 
Composition (GGDC), Pseudo Amino Acid Composition (PseAAC), Grouped Tripeptide 
Composition (GTPC), and the Composition, Transition, and Distribution (CTD) characteristics 
of amino acids. These parameters were seamlessly integrated through feature fusion, and the 
optimal features were rigorously selected using ANOVA. Ultimately, predictions were carried 
out using the SVM algorithm. 

The identification process of hydrolases coded by phage involves two critical steps: first, 
distinguishing phage enzymes  from non-phage enzymes, and subsequently differentiating 
hydrolases coded by phage from non-hydrolases within the identified phage enzymes. Utilizing 
the dataset constructed by Ding et al., four types of feature information were extracted: amino 
acid composition (AAC), dipeptide deviation from expected Mean (DDE), Composition/ 
Transition/ Distribution (CTD), natural vector method (NV).These feature parameters were 
then combined, and the resulting combinations were initially reduced in dimensionality using 
the minimum redundancy-maximum relevance (mRMR) algorithm. Subsequently, a secondary 
dimensionality reduction was performed through analysis of variance (ANOVA). The extracted 
feature information was input into a support vector machine (SVM) for prediction, yielding the 
final results. 

2. Materials And Methods 

2.1. Benchmark Dataset 

Reliable and high-quality datasets are crucial for the construction of predictive models. In this 
work, samples were gained from Ding.et al. Consequently, the definitive benchmark dataset 
contains 255 proteins, of which 124 proteins belong to phage enzymes, and the remaining 131 
are non-phage enzymes. Furthermore, 124 phage enzymes are divided into 69 hydrolases and 
55 nonhydrolases, respectively. The following calculations are all based on these data. 

2.2. Protein Feature Extraction 

2.2.1. Amino Acid Composition(AAC) 

In protein classification research, Amino Acid Composition (AAC) is one of the most widely used 
sequence feature descriptors [10]. It characterizes protein sequences based on the frequency 
of occurrence of the 20 different amino acids within the sequence. AAC forms a 20 denotes the 
dimension of the vector, which can be mathematically represented by the following formula: 

   

 1 2 3 20[ , , , , , , ]AAC iP R R R R R=   (1) 
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where L represents the length of the protein sequence, and  mi denotes the number of 
occurrences of the i-th amino acid in the protein. 

2.2.2. Composition/Transition/Distribution (CTD) 

The CTD feature was first introduced by Dubchak et al. in 1995 as a protein feature extraction 
method for protein folding class prediction [11]. It comprises three components: amino acid 
composition (CTDC), amino acid transition (CTDT), and amino acid distribution (CTDD). During 
the feature calculation process, 13 physicochemical properties were selected, and the 20 amino 
acids were categorized into three groups based on each physicochemical property. Each 
physicochemical property corresponds to a 21 denotes the dimension of the vector 
representing composition, transition, and distribution. Consequently, the CTD feature can be 
expressed as a 273 denotes the dimension of the vector (21 × 13). Table 1 provides the 
classification of amino acids based on their physicochemical properties. 

CTDC refers to the proportion of individual amino acids with specific physicochemical 
properties within the entire protein sequence, which can be calculated using the following 
formula: 

 ( 1, ,13; 1,2,3)

i

ji

j

n
C i j
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= = =  (3) 

Where L represents the length of the amino acid sequence, and ni 
j  is the number of residues in 

the j-th group of the i-th physicochemical property. 

CTDT refers to the transition probability between two adjacent amino acid residues belonging 
to two different groups, which can be calculated using the following formula: 

 ,

, ( 1, ,13; 1,2,3; 3)
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Where mi 
j,k represents the number of dipeptides in the sequence where, according to the i-th 

physicochemical property, the first amino acid belongs to the j-th group and the second amino 
acid belongs to the k-th group, or the first amino acid belongs to the k-th group and the second 
amino acid belongs to the j-th group. 

CTDD quantifies the distribution status of amino acids with specific residues in the sequence. It 
calculates the position of the first occurrence of each group of amino acids, as well as their 
distribution values at the 25%, 50%, 75%, and 100% positions within the sequence. The 
position of each residue is then normalized by dividing it by the total length of the sequence, as 
described by the following formula. 

 .

, ( 1, ,13; 1,2,3; 1,25,50,75,100)

i

j qi

j q

p
D i j q

L
= = = =  (5) 

where pi 
j,q represents the minimum sequence length that contains the first q% of the j-th group 

of amino acids classified according to the i-th physicochemical property. 
Table 1 Classification of physical and chemical properties of amino acids 

Physicochemical 
properties 

Type 1 
Type 2 Type 3 

Hydrophobicity_PRAM90
0101 

RKEDQN GASTPHY CLVIMFW 

Hydrophobicity_ARGP82
0101 

QSTNGDE RAHCKMV LYPFIW 

Hydrophobicity_ZIMJ680
101 

QNGSWTDE
RA 

HMCKV LPFYI 
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Hydrophobicity_PONP93
0101 

KPDESNQT GRHA YMFWLCVI 

Hydrophobicity_CASG92
0101 

KDEQPSRN
TG 

AHYMLV FIWC 

Hydrophobicity_ENGD86
0101 

RDKENQHY
P 

SGTAW CVLIMF 

Hydrophobicity_FASG89
0101 

KERSQD NTPG 
AYHWVMF

LIC 

Van der Waals Volume GASTPDC NVEQIL MHKFRYW 

polarity LIFWCMVY PATGS HQRKNE 

polarizability GASDT CPNVEQIL KMHFRYW 

charge KR 
ANCQGHILMFPST

WYV 
DE 

solvent accessibility ALFCGIVW RKQEND MSPTHY 

secondary structure EALMQKRH VIYCWFT GNPSD 

2.2.3. Dipeptide deviation from expected mean (DDE) 

DDE is a feature descriptor related to dipeptide composition, which takes into account the 
degeneracy of codon encoding. Amino acids are determined by codons composed of three 
nucleotides. Since 61 codons encode the 20 amino acids, degeneracy exists, meaning that a 
single amino acid can be encoded by multiple codons [12]. Therefore, the theoretical frequency 
of dipeptide occurrence can be described by the degeneracy of codon encoding. For a protein 
sequence, the DDE feature parameter is obtained by directly calculating its dipeptide 
composition and then normalizing the results. This can be expressed using the following 
formula: 

 
1 2 400[ , , , , ]DDE iP f f f f=  (6) 
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In Equation (11), fi represents the DDE value for each of the 400 possible dipeptides in the 
protein sequence, DCi denotes the observed frequency of the ii-th dipeptide in the sequence,  
 TMi represents the theoretical mean, and  TVi represents the theoretical variance. In Equations 
(12), (13), and (14), ni indicates the number of occurrences of the i-th dipeptide, L represents 
the length of the protein sequence.  Cr and Cs represent the number of codons encoding the first 
and second amino acid residues in the dipeptide "rs" respectively, and CN represents the total 
number of possible codons, excluding the three stop codons. 

2.2.4. Natural Vector Method (NV) 

The NV is a computational method designed to predict protein structure, function, interactions, 
and mutation effects [13]. It is capable of predicting secondary structures (such as α-helices 
and β-sheets), tertiary structures (spatial folding), and binding sites between proteins and 
other molecules, thereby enabling the classification of proteins. For each protein, three key 
pieces of information are extracted: the number of amino acids, the average position of amino 
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acids, and the second-order normalized central moment of amino acids. As a result, each protein 
sequence can be represented as a 60 denotes the dimension of the vector, as illustrated in 
Equation (11). 

 k

2 2 2[ , , , , , , , , , , ]A Y

NV A A k k Y YP n D n D n D  =  (11) 
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In Equation (12), nk represents the number of occurrences of amino acid k in the protein 
sequence, Ri denotes the i-th amino acid in the protein sequence, and L represents the length of 
the protein sequence. For each amino acid k, it can be defined as: 

 ( ) :{ , , , , , } {0,1}kw A C D W Y →  (13) 

In Equation (13), Wk(.) is a mapping function from the set {A,C,D,⋯,W,Y} to the set {0,1}. It takes 
any element from the set {A,C,D,…,W,Y} as input and outputs either 0 or 1. where wk(Ri)=1, if Ri 
=k. Otherwise, wk(Ri)=0. 
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In Equation (14) and (15) Next, let S(k)(i) be the distance from the first amino acid (regarded as 
origin) to the i-th amino acid k in the protein sequence, Tk be the total distance of each set of 
the 20 amino acids, and μk be the mean position of the amino acid k. 

2.3. Support Vector Machine 

Support Vector Machine (SVM), first proposed by Vapnik and colleagues, constitute a learning 
methodology [14]. They have been successfully employed in bioinformatics research, 
encompassing protein subcellular localization and structural prediction of proteins. SVM are a 
prevalent supervised learning algorithm within the realm of machine learning, particularly for 
addressing binary classification tasks. The core concept of SVM involves mapping the originally 
extracted features of data into a multidimensional feature space, where an optimal decision 
hyperplane is sought by maximizing the margin between samples. This ensures that positive 
and negative samples in the training set are separated to the utmost degree within this feature 
space. A schematic illustration of this process is provided below: 

As illustrated in Fig 1, squares and dots represent two distinct classes of samples to be classified, 
respectively. The line delineating these two classes is the classification line, with lines and 
representing the closest sample points to this line and being parallel to it. The distance between 
lines and is known as the classification margin. A wider classification margin corresponds to a 
smaller overall error for the classifier. The hyperplane that maximizes the separation between 
samples belonging to two different classes is referred to as the maximum margin hyperplane. 
For this paper, predictions were carried out using the LIBSVM SVM algorithm software package 
developed by Chang and Lin. In SVM, a kernel function is utilized to map data from a low-
dimensional space to a high-dimensional space. Common kernel functions include the linear 

file:///E:/1--IJS/2025/IJS-12-4/英文格式.doc
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kernel, Laplacian kernel, and radial basis function (RBF) kernel, among others. In this study, the 
RBF kernel function from LIBSVM was adopted as the kernel function [15]. 

 

 
Fig. 1 Two or more references 

2.4. Feature selection 

2.4.1. Max-Relevance and Min-Redundancy (mRMR) 

Feature selection is a critical step in the machine learning process, aimed at reducing data 
dimensionality and computational complexity, thereby enhancing the accuracy of predictive 
models. To date, numerous effective feature selection methods have been proposed, such as 
analysis of variance (ANOVA), maximum relevance-minimum redundancy (mRMR), and 
principal component analysis (PCA). In this study, mRMR is employed to reduce the 
dimensionality and redundancy of high-dimensional features. mRMR simultaneously considers 
the relevance between features and the target variable as well as the redundancy among 
features. This ensures that the selected features not only effectively explain the target variable 
but also avoid excessive redundancy, thereby improving the quality and stability of feature 
selection [16]. The method aims to maximize the relevance between features and the target 
class while minimizing the correlation among features. The approach is described as follows: 

 
( , )

( , ) ( , ) log
( ) ( )

P x y
I x y P x y dxdy

P x P y
=    (16) 

In the above formula, I(x;y) represents the mutual information between the random variables 
x and y, P(x) and P(y) denote the probability densities, respectively, and P(x,y) represents the 
joint probability density of  x and  y. 

The formulas for calculating the relevance between features and the target variable, as well as 
the correlation among features, are as follows: 

 
1

max ( , ), ( ; )
i

i

x S

D S c D I x c
S 

=   (17) 

 
2

,

1
min ( ), ( ; )

i j

i j

x x S

R S R I x x
S 

=   (18) 

Where S is the feature set, where n denotes the total number of features within this 
set. c represents the target class, and I(xi;c) signifies the mutual information between 
feature i and the target class c. Furthermore, I(xi;xj) denotes the mutual information between 
feature i and feature j. D is defined as the mean of the mutual information values computed 
between each feature xi in the feature set S and the class c. The redundancy among the features 
is quantified by calculating the mutual information between each pair of features within the 
feature set S, and this is denoted as R. 
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2.4.2. Analysis Of Variance（ANOVA） 

Redundant or irrelevant features can reduce prediction accuracy and increase computational 
time. To eliminate such features, this study employs ANOVA as the second feature selection 
algorithm. The fundamental principle of ANOVA is that the value of a feature in a sample is 
primarily influenced by the differences between sample groups and the variations within 
individual samples. The F-value is calculated as the ratio of between-group differences to 
within-group differences. A higher F-value indicates that the feature exhibits more significant 
differences between sample groups compared to the variations within individual samples [17]. 
Consequently, ANOVA allows for the ranking of each feature based on its significance. The F-
value for each feature is computed as follows. 

 
2

2

( )
( )

( )

B

W

S i
F i

S i
=  (19) 

where is the score of the i-th feature, a high F(i)-value means a high ability to identify the sample; 
SW2(i) is the variance within groups; SB2(i) is the variance among groups; and they can be 
calculated as follows: 
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where SSB(i) is the sum of the squares between the groups; SSW(i) is the sum of squares within 
the groups; K is the total number of classes; N is the total number of samples. and they can be 
calculated as follows: 
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Here,  fi(s,j) represents the F-value of the k-th feature in the j-th sample of the i-th category. 

2.5. Performance Evaluation Metrics 

Accurately and comprehensively evaluating the predictive performance of models is a crucial 
task in machine learning-based protein function prediction. In this study, we employed the 
Jackknife test method and the following performance evaluation metrics: Sensitivity (Sn), 
Specificity (Sp), Accuracy (Acc), and Matthews Correlation Coefficient (MCC). Sn represents the 
proportion of positive samples correctly identified; Sp indicates the proportion of negative 
samples correctly identified; Acc denotes the proportion of all samples correctly identified. MCC 
measures the correlation between the classifier's predictions and the actual classifications, 
serving as a comprehensive evaluation metric. It takes into account True Positives (TP), True 
Negatives (TN), False Positives (FP), and False Negatives (FN), making it suitable for evaluating 
binary classification problems even when there is a significant imbalance between positive and 
negative samples. The specific formulas for these four evaluation metrics are as follows: 

 
TP

Sn
TP FN

=
+

 (24) 
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In the aforementioned formulas, TP refers to the number of bacteriophage viral proteins 
correctly predicted; TN represents the number of bacteriophage non-viral proteins correctly 
predicted; FP indicates the number of bacteriophage non-viral proteins incorrectly predicted; 
and FN denotes the number of bacteriophage viral proteins incorrectly predicted. These terms 
are essential for evaluating the predictive performance of the model in distinguishing between 
bacteriophage viral and non-viral proteins. 

3. Results and discussion 

3.1. Bacteriophage Enzyme Prediction Results  

3.1.1. Prediction Results of Single Feature Parameters 

In this study, based on the SVM algorithm, we extracted features including AAC, DDE, CTD, and 
NV to predict phage enzymes under the Jackknife test. The detailed results are presented in 
Table 2. 

Table 2 Prediction results of single characteristic parameters 

Features Sn/% Sp/% MCC Acc/% 

AAC 79.84 67.94 0.48 73.73 

DDE 70.16 75.57 0.46 72.94 

CTD 80.65 67.18 0.48 73.73 

NV 76.61 73.28 0.50 74.90 

As shown in Table 2, the highest MCC and Acc values reached 0.50 and 74.90%, respectively, 
both achieved by the NV. In contrast, the prediction results of DDE were relatively poor, which 
may be attributed to its insufficient capture of the unique structural characteristics and 
functional site information of phage enzymes, or the presence of redundant features. 

3.1.2. Prediction Results of Combined Features 

Compared to single feature encoding methods, integrating feature information can more 
comprehensively and accurately represent the complex characteristics of protein sequences. 
Therefore, to enhance model performance, we adopted a feature fusion strategy. The feature 
parameters AAC, DDE, CTD, and NV were fused for prediction, as shown in Table 3. 

Table 3 The prediction results of fusion feature information 

Features Sn/% Sp/% MCC Acc/% 

AAC+CTD 79.03 67.94 0.47 73.33 

AAC+DDE 70.16 75.57 0.46 72.94 

AAC+NV 74.19 71.76 0.46 72.94 

CTD+DDE 72.58 74.81 0.47 73.73 

CTD+NV 62.90 80.15 0.44 71.76 

DDE+NV 63.71 80.15 0.45 72.16 

AAC+CTD+DDE 74.19 70.99 0.45 72.55 

AAC+CTD+NV 72.58 73.28 0.46 72.94 

AAC+DDE+NV 64.52 78.63 0.44 71.76 

CTD+DDE+NV 74.19 74.05 0.48 74.12 

AAC+CTD+DDE+NV 76.61 74.81 0.51 75.69 

As can be seen from Table 3, the fusion of feature parameters AAC, DDE, CTD, and NV achieved 
the highest accuracy (Acc) of 75.69%, with an MCC of 0.51, indicating that multi-feature fusion 
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can integrate the advantages of different features and effectively enhance the predictive 
capability of the model. In contrast, among the two-feature parameter combinations, the 
combination of Dipeptide Deviation from Expected Mean (DDE) and Natural Vector (NV) 
performed relatively poorly, with a prediction accuracy (Acc) of 71.76%. This may be due to 
the limited overlap in feature information between these two parameters, which hindered their 
complementary effects. Although the prediction accuracy (Acc) of some feature combinations 
improved compared to single features, the extent of improvement was modest, likely due to 
information redundancy among the features. Therefore, the next step involves dimensionality 
reduction on the fused features to further enhance prediction accuracy. 

3.1.3. Prediction Results After Dimensionality Reduction of Combined Features 

Feature selection is a crucial step in machine learning and data analysis, primarily aimed at 
identifying the most useful features from the original feature set while eliminating irrelevant 
or redundant ones. Due to the significant increase in dimensionality after feature parameter 
fusion, this chapter employs the mRMR (minimum Redundancy Maximum Relevance) 
algorithm for preliminary feature screening, followed by the ANOVA (Analysis of Variance) 
algorithm for secondary dimensionality reduction (results are detailed in Table 4), ultimately 
obtaining the optimal feature subset.  
Table 4 The prediction results after performing variance analysis for dimensionality reduction 

Features Sn/% Sp/% MCC Acc/% 

AAC+CTD 79.03 81.68 0.61 80.39 

AAC+DDE 86.29 81.68 0.68 83.92 

AAC+NV 79.84 83.87 0.64 81.96 

CTD+DDE 87.90 81.68 0.70 84.71 

CTD+NV 82.26 84.73 0.67 83.53 

DDE+NV 81.68 78.63 0.60 80.15 

AAC+CTD+DDE 85.48 83.21 0.69 84.31 

AAC+CTD+NV 81.68 79.39 0.61 80.53 

AAC+DDE+NV 79.84 85.50 0.65 82.75 

CTD+DDE+NV 87.90 83.97 0.72 85.88 

AAC+CTD+DDE+NV 87.90 82.44 0.70 85.10 

As shown in Table 4, after initial dimensionality reduction using mRMR, further application of 
ANOVA for secondary dimensionality reduction resulted in improved prediction accuracy and 
a further reduction in feature dimensionality. Specifically, after two rounds of dimensionality 
reduction, the CTD+DDE+NV feature combination continued to perform the most prominently, 
achieving a prediction Acc, Sn, Sp, and MCC of 85.88%, 87.9%, 83.97%, and 0.72, respectively. 
These values represent improvements of 2.35%, 3.32%, 1.53%, and 0.05 compared to the 
results after the initial mRMR dimensionality reduction, fully demonstrating the effectiveness 
of the secondary dimensionality reduction. 

3.2. Hydrolases coded by phage Prediction Results 

3.2.1. Prediction Results of Single Feature Parameters 

In this section, three feature parameters, including AAC, DDE, CTD, and NV, were extracted. 
Based on the support vector machine (SVM) algorithm, the prediction of phage lytic enzymes 
was conducted under the Jackknife test. The specific results are presented in Table 5. 

Table 5 Prediction results of single characteristic parameters 

Features Sn/% Sp/% MCC Acc/% 

AAC 73.91 50.91 0.26 63.71 
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DDE 76.81 58.18 0.36 68.55 

CTD 69.57 69.09 0.38 69.35 

NV 79.71 54.55 0.36 68.55 

As shown in Table 5, the prediction results of the five feature parameters are relatively low, 
with Acc all below 70.00%. Among them, the feature with the highest Sp, MCC, and Acc is DDE, 
achieving 69.09%, 0.38, and 69.35%, respectively. This indicates that the DDE feature has a 
strong capability in distinguishing non-phage lytic enzymes. The feature with the highest Sn is 
NV, at 79.71%, suggesting that the NV feature has an advantage in capturing key information 
about phage lytic enzymes and can more accurately identify positive samples. The feature with 
the poorest prediction performance is AAC, with an Acc of 63.71% and the lowest MCC of 0.26. 

3.2.2. Prediction Results of Combined Features 

Building on the single-feature predictions, the feature parameters AAC, DDE, CTD, and NV were 
fused, and the SVM algorithm was employed to predict under the Jackknife test. The results of 
different combination methods are presented in Table 6. 

Table 6 The prediction results of fusion feature information 

Features Sn/% Sp/% MCC Acc/% 

AAC+CTD 66.67 67.27 0.34 66.94 

AAC+DDE 75.36 65.45 0.41 70.97 

AAC+NV 75.36 61.82 0.38 69.35 

CTD+DDE 82.61 69.09 0.52 76.61 

CTD+NV 79.71 65.45 0.46 73.39 

DDE+NV 76.81 69.09 0.46 73.39 

AAC+CTD+DDE 75.36 67.27 0.43 71.77 

AAC+CTD+NV 75.36 65.45 0.41 70.97 

AAC+DDE+NV 72.46 70.91 0.43 71.77 

CTD+DDE+NV 78.26 67.27 0.46 73.39 

AAC+CTD+DDE+NV 78.26 69.09 0.48 74.19 

As shown in Table 6, the accuracy (Acc) of most feature combinations improved after feature 
fusion. Among the two-feature parameter combinations, only the AAC+CTD combination 
showed a decrease in prediction accuracy (Acc) compared to the single CTD feature, with a 
reduction of 2.41%. Among them, the CTD+DDE combination achieved the highest Acc of 
76.61%, which is the best prediction result among all combinations. Its sensitivity (Sn), 
specificity (Sp), and Matthews correlation coefficient (MCC) were 82.61%, 69.09%, and 0.52, 
respectively. Compared to the single CTD feature, the prediction accuracy increased by 7.26%, 
and compared to the single DDE feature, the Acc improved by 8.12%. Among the three-feature 
combinations, the CTD+DDE+NV combination achieved the highest Acc of 73.39%. For the 
fusion of all four features, the AAC+CTD+DDE+NV combination achieved an Acc of 74.19%. 

Although the fusion of three-feature and four-feature information introduces more feature 
information, their prediction accuracy (Acc) does not surpass that of the CTD+DDE combination. 
The reason may be that the three-feature and four-feature fusions were not subjected to 
dimensionality reduction, leading to redundant information in the feature space, which 
obscured the critical discriminative information in the sequences and ultimately affected the 
final prediction results. Additionally, while appropriate feature combinations can improve 
prediction outcomes, not all combinations have a positive impact. Therefore, dimensionality 
reduction is necessary to filter out the most discriminative feature combinations, thereby 
achieving higher prediction accuracy. 
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3.2.3. Prediction Results After Dimensionality Reduction of Combined Features 

Due to the significant increase in dimensionality after feature parameter fusion, this chapter 
employs the mRMR (minimum Redundancy Maximum Relevance) algorithm for preliminary 
feature screening. Subsequently, ANOVA (Analysis of Variance) is used for secondary 
dimensionality reduction (results are detailed in Table 7), ultimately obtaining the optimal 
feature combination. 
Table 7 The prediction results after performing variance analysis for dimensionality reduction 

Features Sn/% Sp/% MCC Acc/% 

AAC+CTD 92.75 87.27 0.80 90.32 

AAC+DDE 89.86 83.64 0.74 87.10 

AAC+NV 91.30 83.64 0.75 87.90 

CTD+DDE 92.75 85.45 0.79 89.52 

CTD+NV 89.86 89.09 0.79 89.52 

DDE+NV 95.65 89.09 0.85 92.74 

AAC+CTD+DDE 94.20 96.36 0.90 95.16 

AAC+CTD+NV 91.30 86.44 0.78 89.06 

AAC+DDE+NV 95.65 89.09 0.85 92.74 

CTD+DDE+NV 94.20 90.90 0.85 92.74 

AAC+CTD+DDE+NV 95.65 87.27 0.84 91.94 

As shown in Table 7, after initial dimensionality reduction using mRMR, further application of 
ANOVA for secondary dimensionality reduction resulted in improved accuracy (Acc) in most 
cases, along with a further reduction in feature dimensionality. The Acc after two rounds of 
dimensionality reduction exceeded 87.00%. Among them, the feature combination with the 
best prediction performance was AAC+CTD+DDE, which, after dimensionality reduction, was 
reduced to 129 dimensions. Its sensitivity (Sn), specificity (Sp), Matthews correlation 
coefficient (MCC), and accuracy (Acc) were 94.20%, 96.36%, 0.90, and 95.16%, respectively. 

3.3. Comparison with Existing Methods 

To further validate the effectiveness of the proposed prediction model, a comparison was made 
with the results obtained from previous studies. The specific prediction results are presented 
in Table 8 and Table 9. 

Table 8 Comparison of predicted results of Phage enzymes 

Method Sn/% Sp/% MCC Acc/% 

Ding et al 87.10 87.10 - 84.30 

Our prediction 
model 

87.90 83.97 0.72 85.88 

As can be seen from Table 8, the prediction accuracy (Acc) of our model reaches 85.88%, which 
is 1.58% higher than that of Ding et al.'s method. Therefore, the prediction results for phage 
enzymes in our model outperform those of other methods. 

Table 9 Comparison of predicted results of hydrolases coded by phage 

Method Sn/% Sp/% MCC Acc/% 

Ding et al 94.50 92.80 - 93.50 

Our prediction 
model 

94.20 96.36 0.90 95.16 

As shown in Table 9, the prediction results of the model proposed in this paper outperform 
those of Ding et al., with the prediction accuracy (Acc) being 1.66% higher than that of Ding et 
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al.'s method. Therefore, the prediction results of the model in this paper for phage lytic enzymes 
are superior to those of other methods.  

4. Conclusion 

This paper extracted amino acid monopeptide component information (AAC), amino acid 
dipeptide deviation from the expected average value information (DDE), amino acid 
composition, transition and distribution information (CTD), and amino acid natural vector 
information (NV) based on phage enzymes and hydrolases coded by phage. The prediction 
results of single feature parameters and fused feature parameters were discussed in detail. 
Then, the fused features were initially reduced in dimension using the minimum redundancy-
maximum relevance (mRMR) method, and then further reduced in dimension using analysis of 
variance (ANOVA) to identify the best fused features. The support vector machine algorithm 
was used, and the prediction results were discussed in detail under the Jackknife test. After 
identifying the best fused features, the prediction results of phage enzymes and hydrolases 
coded by phage were compared with those of different algorithms. Ultimately, the highest 
prediction success rate of single feature parameters before dimension reduction for phage 
enzymes was 74.90%, and the highest prediction success rate of fused features was 76.61%. 
After two rounds of dimension reduction using the mRMR method and ANOVA, the highest 
prediction success rate of fused features reached 85.88%. The highest prediction success rate 
of single feature parameters before dimension reduction for hydrolases coded by phage was 
69.35%, and the highest prediction success rate of fused features was 75.69% to 76.61%. After 
two rounds of dimension reduction using the mRMR method and ANOVA, the highest prediction 
success rate of fused features reached 95.16%. The prediction results of the support vector 
machine algorithm were higher than those of random forest and logistic regression. The 
prediction results of phage enzymes and phage hydrolases were better than those of previous 
studies, indicating that this model is a reliable tool for predicting hydrolases coded by phage. 

References 

[1] R.J. Clark, B.J. March: Bacteriophages and Biotechnology: Vaccines, Gene Therapy and Antibacterials, 
Trends in Biotechnology, 24 (2006) No.5, p.212-218. 

[2] N. Auslander, A.B. Gussow, S. Benler, et al. Seeker: Alignment-Free Identification of Bacteriophage 
Genomes by Deep Learning, Nucleic Acids Research, 48 (2020) No.21, p.e121. 

[3] Y.Q. Zhang, Z.Y. Li: RF Phage Virion: Classification of Phage Virion Proteins with a Random Forest 
Model, Frontiers in Genetics, 13 (2023), p.1103783. 

[4] A. Vikram, J. Woolston, A. Sulakvelidze: Phage Biocontrol Applications in Food Production and 
Processing, Current Issues in Molecular Biology, 40 (2020) No.1, p.267-302. 

[5] M. Rashel,J. Uchiyama, I. Takemura, et al. Tail-Associated Structural Protein Gp61 of Staphylococcus 
Aureus Phage Phi MR11 Has Bifunctional Lytic Activity, FEMS Microbiology Letters, 284 (2008) 
No.1, p.9-16. 

[6] H. Nishikawa, M. Yasuda,J. Uchiyama J, et al. T-Even-Related Bacteriophages as Candidates for 
Treatment of Escherichia Coli Urinary Tract Infections, Archives of Virology, 153 (2008) No.3, 
p.507-515.  

[7] D. Grandgirard, J.M. Loeffler, V.A. Fischetti, S.L. Leib: Phage Lytic Enzyme Cpl-1 for Antibacterial 
Therapy in Experimental Pneumococcal Meningitis, The Journal of Infectious Diseases, 197 (2008) 
No.11, p.1519-1522.  

[8] H. Ding, W. Yang, H. Tang, P.PM Feng, J. Huang, W. Chen, et al: PHYPred: A Tool for Identifying 
Bacteriophage Enzymes and Hydrolases, Virologica Sinica, 31 (2016) No.4, p.350-352. 

[9] H.F. Li, X.F. Wang, H. Tang: Predicting Bacteriophage Enzymes and Hydrolases by Using Combined 
Features, Frontiers in Bioengineering and Biotechnology, 8 (2020), p.183.  



International Journal of Science Volume 12 Issue 4, 2025 

ISSN: 1813-4890  
 

25 

[10] Z.P. Feng: Prediction of the Subcellular Location of Prokaryotic Proteins Based on a New 
Representation of the Amino Acid Composition, Biopolymers, 58 (2001) No.5, p.491-499. 

[11] Huang Y A, You Z H, et al: Improved Protein-Protein Interactions Prediction via Weighted Sparse 
Representation Model Combining Continuous Wavelet Descriptor and PseAAcomposition, BMC 
Systems Biology, 10 (2016) No.Supplement 4, p.485-494. 

[12] S. Vijayakumar, G. Namasivayam: Harnessing Computational Biology for Exact Linear B-Cell Epitope 
Prediction: A Novel Amino Acid Composition-Based Feature Descriptor, OMICS: A Journal of 
Integrative Biology, 19 (2015) No.10, p.648-658. 

[13] J.T. Xin, S.L. Hao, Z.Z. Mei, et al: Identification of Hormone Binding Proteins Based on Machine 
Learning Methods, Mathematical Biosciences and Engineering: MBE, 16 (2019) No.4, p.2466-2480.  

[14] M. Deng, C.L. Yu, Q. Liang, et al: A Novel Method of Characterizing Genetic Sequences: Genome Space 
with Biological Distance and Applications, PLOS ONE, 6 (2011) No.3, p.e17293. 

[15] H.L. Zou: iAHTP-LH: Integrating Low-Order and High-Order Correlation Information for Identifying 
Antihypertensive Peptides, International Journal of Peptide Research and Therapeutics, 28 (2021) 
No.4, p.2651-2659. 

[16] C. Ding, H.C. Peng: Minimum Redundancy Feature Selection from Microarray Gene Expression Data, 
Journal of Bioinformatics and Computational Biology, 3 (2005) No.2, p.185-205. 

[17] S.S.Yuan, D. Gao, et al: IBPred: A Sequence-Based Predictor for Identifying Ion Binding Protein in 
Phage, Computational and Structural Biotechnology Journal, 20 (2022) No.7, p.4942-4951. 

 


