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Abstract 

This paper presents the prediction of surface settlement induced by the excavation of 
rectangular pipe jacking tunnels using four machine learning (ML) algorithms. The 
settlement database was derived from the West Extension Project of Liuye Avenue in 
Hunan Province, where 104 data indicators from the right side of the tunnel (including 
jacking force, excavation speed, grouting pressure, and settlement) were selected, with 
80 of them serving as input parameters for the ML models. Hyperparameter tuning 
based on particle swarm optimization (PSO) was employed to effectively explore the 
optimal combinations and enhance prediction performance. The performance of the ML 
models was evaluated by comparing the mean squared error (MSE), mean absolute error 
(MAE), and coefficient of determination (R²). The results indicate that the PSO-SVR 
model outperforms other models in terms of surface settlement prediction accuracy and 
generalization ability, with MSE, MAE, and R²values of 0.294, 0.437, and 0.909, 
respectively. 
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1. Introduction 

With the continuous advancement of urbanization in China, the development of urban 
underground space has been further promoted to alleviate the tension of urban land use and 
traffic congestion. The length of subway lines has even reached one-third of the total operating 
mileage[1]. During the tunnel excavation process, surface settlements induced by the tunneling 
may cause significant damage to existing structures. With the rapid development of artificial 
intelligence and the increasing interdisciplinarity of various fields, machine learning algorithms, 
as a method for studying the intrinsic relationships and patterns within data, have provided a 
more valuable approach to solving the problem of ground deformation prediction during shield 
tunneling construction. 

In 1998, Shi[2] et al. used a BP neural network to predict deformation caused by tunnel 
excavation in Brasília and found that the error was reduced by half compared to conventional 
models. Since then, numerous scholars have attempted to use artificial neural network models, 
primarily BP neural networks, to predict ground deformation caused by shield tunneling, 
achieving promising results. Additionally, Support Vector Machines (SVM)often exhibit higher 
prediction accuracy than artificial neural networks when dealing with small datasets. Random 
Forest (RF), as an ensemble machine learning algorithm, has gained popularity in predicting 
ground deformation due to its high accuracy and ability to process large amounts of data 
quickly. Zhou[3] et al. established an intelligent model based on Random Forest to verify its 
applicability in risk prediction, assisting on-site engineers in determining safety risks. 
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Ramezanshirazi[4] et al. and others have also used machine learning algorithms to effectively 
predict ground surface settlement caused by tunneling. Mahmoodzadeh[5] et al. compared the 
efficiency and feasibility of various machine learning algorithms to study the accuracy of a 
single algorithm in predicting ground settlement, providing guidance for identifying the 
evolution of tunnel-induced settlement. 

To better understand the application of machine learning in predicting ground deformation 
caused by tunneling, this study reviewed domestic and international literature from recent 
years and found that the algorithms most frequently used in previous studies are Random 
Forest (RF), Support Vector Machine (SVM), and Back Propagation Neural Network (BPNN). 
Subsequently, the superiority of certain algorithms was illustrated by comparing various 
algorithmic models. However, to date, there is still no specific method to determine which 
algorithm is the most suitable for predicting tunnel settlement. Generally, the performance of 
algorithmic models is improved by setting the hyperparameters of different algorithms. 
Therefore, it is worthwhile to study the performance comparison of various machine learning 
algorithms in the same case, given the lack of a machine learning algorithm for settlement 
prediction with robust training. Focusing on the prediction of tunnel settlement, this study 
combines the improved intelligent optimization algorithm (PSO) with Support Vector 
Regression (SVR), relying on the real-time monitoring data from the construction of the 
rectangular pipe jacking tunnel on the West Extension of Liuye Avenue to establish a PSO-SVR 
surface settlement prediction model. This model is compared and analyzed with traditional 
Random Forest, BP neural network, and SVM models to identify the optimal prediction model, 
in the hope of providing theoretical support and technical reference for the prediction of 
surface settlement in similar shield tunnels. 

2. Machine Learning Algorithms 

This work introduces four widely used artificial intelligence algorithms: Random Forest (RF), 
Support Vector Regression (SVR), and Back Propagation Neural Network (BPNN). Additionally, 
the Particle Swarm Optimization algorithm (PSO) is integrated into the Support Vector 
Regression (SVR)model to optimize its hyperparameters. These algorithms are extensively 
applied in underground engineering. Below, we focus on the improved PSO-SVR algorithm. 

2.1. PSO-SVR Algorithm 

The PSO algorithm is incorporated into the SVR model to optimize its hyperparameters, 
addressing the shortcomings brought by the randomness of initial hyperparameters. The 
flowchart of the algorithm is shown in Fig. 1. The PSO-SVR model process can be divided into 
the following three stages: 

In the first stage, the SVR and PSO algorithms are initialized, and the optimization parameters 
of the SVR model are listed. For the SVR model, the kernel, regularization parameter C, and 
kernel coefficient epsilon are optimized. The particle swarm optimization algorithm defines key 
parameters such as population size, particle velocity and position, as well as the fitness function, 
in preparation for the hyperparameter optimization of the SVR model. 

In the second stage, the assembled model is iteratively updated. According to the principles of 
the particle swarm optimization algorithm, the velocity and position of particles are updated 
using Equations (1) and (2). Subsequently, the combined model calculates the global minimum 
fitness of the particle swarm optimization algorithm and the error of the cross-validation 
samples, and updates the initial hyperparameters. 

In the third stage, the optimal solution is output. The model determines whether the error 
meets the termination condition. If the termination condition is satisfied, the optimal 
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hyperparameters determined by the global extremum position of the SVR model are output; 
otherwise, the iterative learning process will continue. 

               (1) 

                                      (2)  

In the formula: ， represents the total number of particles in the swarm. denotes 

the inertia weight, represents the velocity of particle I,  is a random number uniformly 

distributed between (0,1), indicates the current position of particle I,  and are the 

learning factors. 

 
Fig.1 PSO-SVR flow chart 

2.2. Hyperparameter selection 

The hyperparameters for the four machine learning models are Table 1: 
Table 1 Hyperparameter selection 

Algorithmic models Hyperparameter 
settings 

Valid values 

SVM c 
gamma 

1 
1 

RF n_estimators 100 

BP learning_rate 
hidden_dim 

loss 

0.03 
20 
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PSO-SVR kernel 
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1.169 
23.250 
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3. Engineering Case Analysis 

The construction of Liuye Avenue adopts the manufacturing process of "oblique intersection, 
oblique construction, and vertical jacking." The frame bridge construction involves setting up 
working pits, back walls, slip plates, and on-site assembly of shield support frames. The frame 
bridge intersects with the Changzhang Expressway at an angle of 63.881°, with a cover soil 
thickness of approximately 2.000-2.683 m. During the construction process, the normal traffic 
on the expressway cannot be interrupted. However, the jacking construction will disturb the 
subgrade, causing settlement. Excessive settlement can affect the safety of normal traffic. 
Therefore, it is necessary to arrange monitoring points on the road surface. To ensure that the 
frame bridge meets the requirements during the construction process and to ensure 
construction safety, monitoring points are arranged at key points of the frame bridge and the 
steel shield. 

4. Database Construction 

4.1. Input Parameter Selection 

The data used in this study originates from the construction monitoring data of Liuye Avenue 
in Changde City, Hunan Province. The tunnel was constructed using the pipe jacking method, a 
rapidly developing non-excavation tunnel construction method following the shield method. 
The database consists of two excavation variables and one grouting variable, totaling 26 
datasets. Each dataset is updated in real-time by the excavation equipment and covers the 
parameter ranges of each variable. In this study, the first 80% (20 datasets) are used as the 
training set, and the remaining 20% (six datasets) are used as the prediction set. The specific 
dataset is shown in Table 2 below: 

Table 2 Data Set 

Variable Paramet
er type 

Data  

Min. Max. Ave. S.D. 

Jacking force/KN Input 15601.4
7 

48504.5
61 

34586.2 9814.75 

Excavating 
velocity/(m/d) 

Input 0.825 1.985 1.64 0.223 

Grouting 
pressure/MPa 

Input 0.063 0.416 0.27 0.079 

Settlement value/mm Output -4 2 -0.23 1.245 

4.2. Data Preprocessing 

Considering the limited number of data sets but the large size of individual data, a 
normalization process is required. By using a linear equation to scale the data to a specific range, 
the normalization process can reduce errors caused by significant data differences during 
training, thereby increasing training efficiency and overall model accuracy. Additionally, 
normalization can render the data dimensionless, reducing differences between data points 
and facilitating better data analysis and comparison. 

In this study, the traditional machine learning approach of using gradient descent to calculate 
the minimum fitness value was continued. Through an iterative process, the gradient 
information of the equation is updated in real time, allowing for a more accurate and effective 
search for the optimal solution of the parameters. 
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5. Model Evaluation 

The error metrics of the models (as shown in Fig.2-5) indicate that the PSO-SVR model has an 
MSE of 0.294, MAE of 0.437, and R² of 0.909. Fig.2-3 shows that the PSO-SVR model has the 
lowest MAE and MSE values, indicating the best fit and strongest generalization ability. Among 
the three traditional models, the BP neural network demonstrates superior prediction 
performance but requires longer computation time and exhibits some overfitting. Overall, the 
PSO-SVR model outperforms others in accuracy and stability. 

 
Fig. 2 Comparison of MSE error values 

 

 
Fig. 3 Comparison of MAE error values 
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Fig. 4 Comparison of R2 error values 

 

 
Fig. 5 Comparison chart of settlement predictions 

6. Conclusion 

In this study, a machine learning (ML)-based prediction framework for estimating surface 
settlement following tunnel excavation was developed. The methods for pre-processing raw 
data, error analysis, and hyperparameter selection were also introduced. Finally, based on the 
field records from the rectangular pipe jacking tunnel project on the West Extension of Liuye 
Avenue, a comprehensive comparison of the performance of four models was conducted, and 
the main conclusions are as follows: 

1. The proposed intelligent prediction framework consists of three stages: database 
establishment, algorithm model construction, and model evaluation. The primary processes 
include the selection of input parameters, data set partitioning, data pre-processing, and 
optimization using the particle swarm optimization (PSO) algorithm. Through the analysis of 
26 data sets from the rectangular pipe jacking tunnel on Liuye Avenue, it was found that the 
proposed ML algorithm prediction framework is rational and can provide a reference for 
predicting surface settlement in rectangular pipe jacking tunnels. 

2. In this study, data normalization was performed to avoid large differences between features, 
which could otherwise cause some features to have a disproportionate influence on the model. 
This process also enhanced the convergence speed and accuracy of the model. Moreover, a 
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comparative analysis was conducted between models with optimized hyperparameters and 
those without optimization. The results indicated that the optimal model, within a relatively 
short period, outperformed other models in all metrics except for R², which was 0.068 lower 
than that of the back propagation neural network (BPNN). The model exhibited superior 
performance in predicting surface settlement. The support vector regression (SVR) algorithm 
improved by particle swarm optimization demonstrated higher accuracy than other models, 
with a reduction in error rates and enhanced generalization ability. 

3. The interaction mechanism between the pipe jacking machine and the soil strata is complex. 
The intelligent model can effectively address the highly nonlinear issues of construction 
parameters and provide a reference for safe and efficient pipe jacking construction. Future 
research will thoroughly investigate the pipe-soil interaction mechanism and leverage more 
engineering data to conduct research on the application of artificial intelligence techniques in 
the field of tunnel settlement prediction. 
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