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Abstract 

This study focuses on the path optimization problem of the "Bench Dragon" in a dynamic 
system, constructing a mathematical model based on the equiangular spiral equation 
and a U-turn space model, and applying a simulated annealing algorithm for 
optimization calculations. By precisely calculating the movement parameters of the 
dragon's head and each section of the benches, the U-turn path length is minimized, 
ensuring no collisions during the system's turning process. Experimental results show 
that by adjusting the spiral pitch and optimizing the U-turn path, the path length is 
reduced to a minimum value of 13.7212 meters, enhancing both motion efficiency and 
system stability. This provides a theoretical reference for path planning and 
optimization in complex dynamic systems. 
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1. Introduction 

The "Bench Dragon" forms a long-chain system with a complex dynamic structure by linking 
multiple benches end-to-end. As urban spatial structures become more complex and public 
activity demands increase, this dynamic chain system faces challenges related to spatial 
utilization efficiency and the precision of motion paths in modern urban environments[1-4]. 
This study aims to transform the path optimization problem of the "Bench Dragon" into a 
typical chain motion system optimization problem. We developed a mathematical optimization 
model based on the spiral equation and U-turn space model. The model is solved using a 
simulated annealing algorithm to minimize path length, precisely control U-turn areas, and 
ensure the stability of the system's dynamic behavior. 

2. Method 

2.1. Path Modeling and Equation Construction 

2.1.1. Path Description 

To accurately describe the coiling motion of the "Bench Dragon," we use a polar coordinate 
system to define its path. Assuming the dragon’s head coils clockwise along an equiangular 
spiral with a pitch of p, the path can be represented by a spiral curve. The path equation in polar 
coordinates can be defined as follows: 

 

 
 (1) 
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Where r(θ) is the radial distance, representing the radius of the spiral as a function of the polar 
angle θ; r0 is the initial radius of the spiral; pis the pitch, i.e., the change in radius per full rotation 
of the spiral, given as p=0.55m, and the spiral is equiangular. 

2.1.2. Position Calculation 

The "Bench Dragon" consists of multiple benches connected end-to-end. To accurately simulate 
the motion trajectory of each bench section, we must account for the offset of each section 
relative to the dragon’s head. Assuming the length of each bench is L, the polar angle and radial 
distance of the n-th bench section are given by: 

 

 
 (2) 

   

 

This allows us to calculate the polar coordinates for each bench section in sequence. These polar 
coordinates are then converted to Cartesian coordinates to obtain the position of each bench 
section at time t.  

2.1.3. Velocity Calculation 

The velocity of each bench section can be calculated by the displacement between adjacent time 
steps. The velocity is obtained by integrating the displacement of the bench section over time: 

 

 
 (3) 

 

2.2. Collision Detection Model 

The "Bench Dragon" is composed of multiple connected benches, and during motion, each 
bench section must avoid collisions. To achieve this, we construct a collision detection model 
using geometric analysis to determine if any bench sections overlap. Specifically, each bench 
section is approximated as a rectangle, and we calculate the positions of the four corner points 
of adjacent bench sections to check for overlap. Let the four corner points of the bench be Mn, 
Mn’, Nn, Nn’ . Based on the symmetry of the rectangle, we can derive: 

 

 

 (4) 
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To detect collisions between adjacent benches, we use the Separating Axis Theorem (SAT). This 
theorem states that if the projections of two rectangles on any separating axis do not overlap, 
then the rectangles do not collide. The specific steps are as follows: 

Determine separating axes: For each pair of adjacent benches, select their edges as separating 
axes, and compute the projections on these axes. 

Compute projections: Calculate the projections of the four corner points of each bench on the 
separating axes and check if the projections overlap. 

Collision detection: If the projections do not overlap on all separating axes, the benches are not 
colliding; if at least one separating axis shows overlapping projections, a collision has occurred. 

2.3. U-Turn Space Model 

2.3.1. Geometric Construction of the U-Turn Space 

To enable the "Bench Dragon" to turn smoothly in a limited space, the U-turn space is defined 
as a circular region with a radius Rturn, centered at the spiral’s origin. Within this region, the 
"Bench Dragon" must perform a U-turn from coiling inward to coiling outward, ensuring 
continuity and smoothness of the path as the dragon’s head enters and exits the region. 

Geometric definition: The radius of the U-turn space is Rturn. For example, Rturn=4.5m.  This 
radius is determined based on the length of the benches and the minimum turning radius 
required during the U-turn. 

Boundary conditions: The boundary of the U-turn space is the outer edge of the circle, and the 
U-turn process must be completed within this area without collisions. Thus, the dragon’s head 
must remain inside the circular region throughout the turning maneuver. 

2.3.2. Calculation of Minimum Pitch 

To ensure that the "Bench Dragon" can smoothly enter the turnaround space without collision, 
we need to determine a minimum pitch (p), which is the smallest distance between each coil of 
the spiral path. This allows the dragon’s head to reach the boundary of the turnaround space 
while maintaining continuity and avoiding collisions. The calculation process is as follows: 

Spiral Equation: Assume the spiral equation is r(θ) = r0 + (p / 2π) * θ, where p is the pitch and 
r0 is the initial radius of the spiral. The boundary radius of the turnaround space is defined as 
Rturn, and the condition for the dragon’s head to reach this boundary is: 

 

  (5) 

 

Polar Angle Calculation: Using the above equation, we can solve for the polar angle θturn when 
the dragon’s head reaches the boundary of the turnaround space: 

 

 
 (6) 

 

Time Calculation: Assume the speed of the dragon’s head is constant vhead, the time tturn for the 
dragon’s head to reach the boundary of the turnaround space can be expressed as: 

 

 
 (6) 
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By adjusting the pitch p under the condition of no collision, we can calculate the minimum pitch 
that allows the dragon’s head to reach the boundary of the turnaround space while satisfying 
the above conditions. 

2.3.3. Modeling the S-shaped Turnaround CurveS 

In the turnaround space, to achieve a smooth turnaround for the dragon’s head, the path is 
designed as an "S"-shaped curve. This curve is composed of two tangent circular arcs: the first 
arc has a smaller radius R, and the second arc has a radius double that, i.e., 2R. 

Small Arc Construction: Assume the small arc has a radius R and is centered at the center of the 
turnaround space. Define the start and end points of this arc, which forms the initial part of the 
turnaround path. 

Large Arc Construction: The large arc has a radius of 2R and is tangent to the small arc. This 
large arc forms the second part of the turnaround path, ensuring that the dragon’s head 
smoothly completes the direction change and continues coiling counterclockwise. 

Tangency Condition: To ensure continuity and smoothness of the turnaround curve, the 
tangency condition is set so that the tangent directions of the two arcs are the same at the 
tangency point. This prevents abrupt changes in the dragon’s head movement when entering 
and exiting the turnaround area. 

2.3.4. Optimization of Turnaround Curve Parameters 

To minimize the length of the turnaround path, the parameters of the turnaround curve (such 
as the small arc radius R) need to be optimized. 

Objective Function. The total length of the turnaround curve is defined as the optimization 
objective, with the function being: 

 

 
 (6) 

 

Where Lsmall and Llarge are the lengths of the small and large arcs, respectively. 

2.4. Simulated Annealing Algorithm for Optimizing the Turnaround Path Model 

2.4.1. Basic Principles of the Simulated Annealing Algorithm 

The Simulated Annealing (SA) algorithm is a global optimization method based on the physical 
annealing process[5-8]. It simulates the cooling process of materials at high temperatures, 
gradually lowering the system’s energy to find the optimal solution. In the "Bench Dragon" path 
optimization, the path length is taken as the objective function. By adjusting the path 
parameters (such as the small arc radius R and the large arc radius 2R), the turnaround path is 
optimized to minimize the total path length.  

Energy Function: The total length of the turnaround path Lturn is regarded as the energy function, 
and the goal is to find the parameter combination that minimizes Lturn. 

Temperature Control: The algorithm starts with a high initial temperature, allowing the system 
more freedom to avoid being trapped in local minima. As the number of iterations increases, 
the temperature gradually decreases, allowing the system to converge to the global optimal 
solution. 

2.4.2. Optimization Objectives and Parameter Settings 

1. Optimization Objective: Minimize the total length of the "S"-shaped turnaround path. The 
objective function is the same as Equation (6). The goal is to find the optimal small arc radius R 
and large arc radius 2R that minimize the total length L_turn. 
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2. Initial Parameter Setup: Set the initial small arc radius Rinit and initial temperature Tinit. 
Additionally, set the minimum temperature Tmin and temperature decay coefficient α, which 
control the cooling rate of the temperature. 

2.4.3. Generation of Neighbor Solutions and Acceptance Criteria 

In each iteration, the SA algorithm generates a new solution, i.e., a new small arc radius Rnew. 
The steps for generating neighbor solutions and the acceptance criteria are as follows: 

Neighbor Solution Generation: A new radius Rnew is generated by adding a random perturbation 
ΔR to the current radius Rcurren. The perturbation range gradually decreases as the temperature 
decreases, ensuring finer search at lower temperatures. 

Objective Function Calculation: Compute the objective function values for the current and new 
solutions, i.e., calculate Lturn(Rcurrent) and Lturn(Rnew). 

Acceptance Criteria: If the objective function value of the new solution is smaller (i.e., the path 
length is shorter), the new solution is accepted directly. If the new solution’s objective function 
value is larger, the new solution is accepted with a certain probability, determined by the 
formula: 

 

 
 (7) 

 

Where ΔL = Lturn(Rnew) - Lturn(Rcurrent) and T is the current temperature. This criterion allows the 
algorithm to escape local minima and explore the global optimum. 

2.4.4. Temperature Decay and Iteration Termination Conditions 

After each iteration, the temperature is updated according to the decay coefficient α, following 
the equation Tnew = α * Tcurrent. As temperature decreases, the probability of accepting worse 
solutions diminishes, allowing algorithm to converge to the optimal solution[9,10]. The 
algorithm stops when either: ①The current temperature falls below the minimum 
temperature Tmin.②the maximum number of iterations is reached, ensuring sufficient 
exploration of the solution space. 

3. Result 

3.1. Path Modeling Results 

The visualization of the dragon dance team's spiral inward motion with a 0.55-meter constant 
pitch in a clockwise direction is shown (Fig. 1). Additionally, a dynamic display of the movement 
at each second can be provided. This visualization helps better understand the inward spiral 
motion of the dragon dance team and the trajectory of the dragon head. 

3.2. Collision Detection Model Results 

The dragon dance team’s trajectory follows a spiral path. By calculating whether the boards of 
the inner and outer layers of the spiral overlap, we can determine if a collision has occurred 
(Fig. 2). The dragon team spirals inward until one of the four corner points of an adjacent bench 
overlaps with another bench’s corner point, indicating a collision at that moment. 
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Fig. 1 Changes in the position of the dragon 

head over time 
Fig. 2 Critical state at the moment of 

collision 

3.3. Turnaround Space Model Verification and Simulation 

Using Matlab, the inward motion of the dragon dance team with a 0.55-meter constant pitch is 
visualized. The pitch size is iteratively adjusted to determine when the dragon head reaches the 
turnaround space, enhancing understanding of the motion and trajectory. 

  
Fig.3 Constant pitch curve: entering the 

turnaround space 
Fig.4 Constant pitch curve: magnified view of 

entering the turnaround space 

3.4. Simulated Annealing Optimization Results and Analysis 

The simulated annealing algorithm is employed to optimize and calculate the minimum total 
length of the turnaround curve, yielding a shortest path of 13.7212 meters. The large arc (blue 
portion) represents the beginning of the S-shaped turnaround path, indicating the moment the 
dragon head is about to change direction. The small arc (red portion) marks the end of the path, 
as the dragon head prepares to exit the spiral. 
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Fig.5 Length of the minimum turnaround curve 

4. Summary 

This study establishes a mathematical model and optimization algorithm to precisely model 
and optimize the path of the "bench dragon" system. The minimum pitch is determined to be 
0.4597 meters, and the turnaround path is optimized to 13.7212 meters. The optimization 
minimizes path length while ensuring system stability. Experiments verify the algorithm’s 
effectiveness, providing a scientific basis for path optimization and spatial planning in similarly 
complex dynamic systems. 

Acknowledgements 

The authors gratefully acknowledge the financial support from the Undergraduate Teaching 
Reform Research Project of Hunan Provincial Education Commission (202401001521). 

References 

[1] Sarimveis H, Patrinos P, Tarantilis C D, Kiranoudis C T. Dynamic modeling and control of supply 
chain systems: A review. Computers & Operations Research, 2008, 35(11): 3530-3561. 

[2] Lee C W, Lee J H, Cha B J, Kim H Y, Lee J H. Physical modeling for underwater flexible systems 
dynamic simulation. Ocean Engineering, 2005, 32(3-4): 331-347. 

[3] Oussar Y, Dreyfus G. How to be a gray box: dynamic semi-physical modeling. Neural Networks, 2001, 
14(9): 1161-1172. 

[4] Cannon R H. Dynamics of physical systems. Courier Corporation, 2003. 

[5] Bertsimas D, Tsitsiklis J. Simulated annealing. Statistical Science, 1993, 8(1): 10-15. 

[6] Yao X. A new simulated annealing algorithm. International Journal of Computer Mathematics, 1995, 
56(3-4): 161-168. 

[7] Park M W, Kim Y D. A systematic procedure for setting parameters in simulated annealing 
algorithms. Computers & Operations Research, 1998, 25(3): 207-217. 

[8] Zomaya A Y, Kazman R. Simulated annealing techniques. In: Algorithms and theory of computation 
handbook: general concepts and techniques, 2010: 33-33. 

[9] Delahaye D, Chaimatanan S, Mongeau M. Simulated annealing: From basics to applications. 
Handbook of Metaheuristics, 2019: 1-35. 

[10] Azizi N, Zolfaghari S. Adaptive temperature control for simulated annealing: a comparative study. 
Computers & Operations Research, 2004, 31(14): 2439-2451. 

 


