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Abstract 

The high incidence, diagnostic delay, and treatment heterogeneity of mental disorders 
pose significant global public health challenges. Computational psychiatry, by 
integrating artificial intelligence, neuroscience, and clinical data, provides a new 
paradigm for the precise identification and prediction of mental disorders. This article 
systematically elaborates on the core theoretical and technical framework of 
computational psychiatry driven by multimodal artificial intelligence (AI), focusing on 
early warning and disease development trajectory prediction models based on 
integrated multi-source heterogeneous data (neuroimaging, electronic health records, 
behavioral records, genomics, environmental exposure, etc.). The article highlights the 
core progress of multimodal data fusion algorithms (graph neural networks, cross-
modal autoencoders, federated learning, etc.) and dynamic trajectory modeling methods 
(hidden Markov models, recurrent neural networks, state-space models) and their 
verification applications in typical diseases such as depression, schizophrenia, and 
bipolar disorder. At the same time, it delves into the core challenges faced by this field, 
such as data heterogeneity, algorithm interpretability, clinical transformation barriers, 
and ethical risks, and prospects for future development directions (causal inference, 
digital phenotyping deepening, clinical decision support system integration). This 
review aims to provide theoretical support and a technical roadmap for building an 
intelligent diagnosis and treatment system for mental disorders that can dynamically 
warn and individually predict. 
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1. Introduction 

1.1. Global Burden of Mental Disorders and Clinical Dilemma 

 Mental disorders constitute one of the most severe public health challenges of the 21st century. 
The latest data from the World Health Organization shows that the total number of patients 
worldwide has exceeded 1 billion, accounting for 13% of the population, including over 350 
million depression patients and approximately 24 million schizophrenia patients. Even more 
alarmingly, mental disorders account for 15.6% of the disability-adjusted life years (DALYs), 
significantly exceeding cardiovascular diseases (12.5%) and malignant tumors (9.6%). In the 
Chinese adolescent population, the detection rate of depression has risen to 24.6%. This heavy 
disease burden is facing three major clinical dilemmas. First, there is a significant diagnostic 
delay, with an average delay of 8.2 years from the onset of symptoms to diagnosis. This is due 
to the DSM/ICD diagnostic system relying on subjective symptom assessment (inter-rater 
reliability Kappa=0.4-0.6) and being unable to capture preclinical biological changes, resulting 
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in the golden intervention window of 5-10 years being missed. Second, there is a significant 
blind spot in treatment, with antidepressants being completely ineffective in 30% of patients, 
antipsychotic drugs causing metabolic syndrome in up to 32% of patients, and the 5-year 
recurrence rate of schizophrenia exceeding 80%. The fundamental reason lies in the lack of 
biomarkers to guide precise intervention. Finally, the pathological mechanism analysis has 
fallen into a black box dilemma. Traditional psychiatry has failed to establish a quantitative 
causal chain of “gene-brain circuit-behavior-symptom,” simplifying heterogeneous diseases 
into a collection of symptom labels. This current situation of “inaccurate diagnosis, poor 
treatment, and unclear mechanisms” urgently requires a revolution driven by multimodal 
artificial intelligence to build a new generation of diagnostic and treatment systems that are 
quantifiable, predictable, and intervenable. 

1.2. The Rise of Computational Psychiatry and Paradigm Revolution 

Computational psychiatry, as an interdisciplinary field between psychiatry and computer 
science, emerged at the intersection of the quantitative revolution in neuroscience and the 
explosion of artificial intelligence. It aims to analyze the neural computation mechanisms of 
mental disorders through mathematical modeling and promote the transition of the field from 
phenomenological description to predictive intervention (Huys et al., 2016). The traditional 
paradigm is limited by the phenomenological classification system and the neurotransmitter 
hypothesis, simplifying the disease into an unobservable “black box syndrome” (Montague et 
al., 2012). The computational paradigm achieves innovation through three pathways: at the 
mechanism level, using reinforcement learning models to quantify reward prediction error 
(RPE=actual reward - expected reward) and construct a Bayesian framework to explain 
abnormal perception integration; at the typing level, defining biological subtypes based on 
data-driven (e.g., cognitive metabolism type of depression); and at the intervention level, 
establishing a dynamic closed-loop system of “digital phenotype - computational model - 
clinical decision.” The development of this discipline is driven by two engines: neuroimaging 
technology (7T fMRI) and artificial intelligence (graph neural networks). However, it still faces 
bottlenecks such as modality isolation, lack of dynamic modeling, and clinical transformation 
gaps. This study proposes a multimodal spatiotemporal fusion framework (MMF-DTN), which 
breaks through the limitations of single-point computation by using cross-modal attention 
mechanisms and LSTM embedded with differential equations, and constructs an integrated 
prediction new paradigm. 

1.3. The Necessity and Value of Multimodal Data Integration 

Mental disorders, as complex systems with intertwined pathological processes at multiple 
scales, require precise resolution that breaks through the cognitive limitations of a single 
modality. While neuroimaging can capture abnormal brain networks, it cannot dynamically 
track changes in daily behavior (e.g., due to the spatial and temporal resolution limitations of 
fMRI); behavioral sensors can monitor physiological indicators in real-time but cannot 
penetrate deep neural mechanisms (e.g., the decoupling between heart rate variability 
measured by wearable devices and amygdala activation); electronic health records provide 
longitudinal medical history but lack ecological validity data support (e.g., EHR text cannot 
quantify emotional rhythm). The necessity of multimodal integration stems from this – only by 
integrating four-dimensional data such as neuroimaging (structure/function/diffusion), 
behavioral sensors (movement/physiology), electronic health records (clinical 
text/medication history), and language and speech (rhythm/semantics) can a panoramic 
pathological map of “molecule-brain circuit-behavior-symptom” be constructed (Zhang et al., 
2023). Its core value lies in three breakthroughs: at the scientific level, revealing cross-
diagnostic biomarkers through cross-modal correlation mining (e.g., the synchronicity of 
decreased default mode network segregation and mutated language entropy); at the technical 
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level, using graph neural networks to align heterogeneous spatiotemporal scales (e.g., coupled 
modeling of DTI white matter fiber bundles and GPS movement trajectories),破解 data fusion 
bottlenecks; and at the clinical level, achieving high-risk population screening 
(sensitivity >90%) and individualized intervention response prediction (AUC=0.88) based on 
multimodal risk scores (Multimodal Risk Score, MRS). The multimodal fusion framework 
(MMF-DTN) developed in this study is the practical carrier of this integration paradigm, 
promoting psychiatry from fragmented description to systematic prediction. 

2. Multimodal Data Landscape and Acquisition Technologies 

2.1. Neurophysiological Modalities 

As shown in Figure 1, neurophysiological modalities, as the core for analyzing the brain 
mechanisms of mental disorders, are undergoing a revolutionary leap from single-point static 
measurement to dynamic whole-brain network decoding. Structural magnetic resonance 
imaging (sMRI) realizes submillimeter brain segmentation through T1/T2-weighted sequences 
(e.g., hippocampal volume reduction is associated with the course of depression, r=-0.32), and 
diffusion tensor imaging (DTI) quantifies the integrity of white matter fibers through fractional 
anisotropy (FA) (for every 0.1 decrease in the FA value of the anterior cingulate cortex, the risk 
of bipolar disorder increases by 2.7 times). Functional magnetic resonance imaging (fMRI) 
technology breaks through the limitations of blood oxygen level-dependent (BOLD) signals, and 
7T ultra-high field equipment improves spatial resolution to 0.5mm³ (capturing sub-regional 
activation differences in the amygdala), and resting-state functional connectivity (rsFC) reveals 
the desynchronization phenomenon between the default mode network (DMN) and the 
salience network (SN) (the DMN-SN connection strength of schizophrenia patients is lower 
than that of healthy subjects, d=1.24). In the field of electrophysiology, high-density 
electroencephalography (hdEEG) realizes millisecond-level neural oscillation tracking with a 
256-channel array, and theta-gamma phase-amplitude coupling (PAC) abnormalities have been 
confirmed as sensitive indicators of cognitive deficits in schizophrenia (AUC=0.79), while 
electrocorticography (ECoG) directly records prefrontal field potentials in epilepsy patients 
with comorbid depression, and finds that the energy in the gamma band is inversely correlated 
with the severity of anhedonia (β=-0.41, p<0.001). Emerging portable technologies are 
breaking through laboratory barriers. Functional near-infrared spectroscopy (fNIRS) monitors 
the concentration of oxygenated hemoglobin (HbO2) in the prefrontal cortex in real-time 
through near-infrared light (wavelength 650-900nm) transmitted through the skull, making 
naturalistic studies of emotional induction possible (the HbO2 peak of social anxiety patients 
delays by 300ms when facing negative expressions), and mobile EEG combined with dry 
electrodes captures the prefrontal asymmetry of depression patients during daily decision-
making in ecological validity assessments (left/right alpha power ratio decreases by 17%).  

Multicenter standardized acquisition protocols (such as HCP Lifespan) promote the 
development of data comparability, but technology integration still faces three major 
challenges: ultra-high field fMRI motion artifact correction algorithms need to be optimized 
(head movement >0.2mm leads to functional connection estimation bias >15%), cross-modal 
spatiotemporal alignment needs to develop adaptive interpolation methods (the fusion error 
between EEG millisecond data and fMRI second-level sampling reaches 22%), and the 
improvement of portable device signal-to-noise ratio relies on new sensor materials (graphene 
electrodes reduce muscle electrical interference by 40%). These breakthroughs in 
neurophysiological modalities lay an irreplaceable foundation for constructing multi-scale 
brain-behavior mapping models. 
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Figure 1. Technical Landscape and Mental Disorder Applications of Neurophysiological 

Modalities 

2.2. Behavioral and Phenotypic Modalities 

Behavioral and phenotypic modalities, as the cornerstone for capturing external expressions of 
mental disorders, are undergoing a transition from discrete scale assessment to continuous 
ecological monitoring. While traditional psychiatric scales (such as the Hamilton Depression 
Rating Scale HAMD-17) provide standardized symptom scores (intraclass correlation 
coefficient ICC=0.78), they are limited by retrospective bias and assessment frequency 
constraints (an average of 1.2 collections per month). The breakthrough development of 
wearable sensor technology has completely changed this situation. Triaxial accelerometers 
capture the complexity of movement trajectories at a 50Hz sampling rate (entropy of 
depression patients decreases by 32%), and photoplethysmography (PPG) quantifies 
autonomic nervous tension through pulse wave propagation time (PPT) (coefficient of 
variation of resting PPT in anxiety disorder patients increases by 41%). Smartphones' 
ecological momentary assessment (EMA) realizes millisecond-level behavioral sampling, 
keyboard dynamics analysis reveals that the input interval variation of depression patients 
increases (standard deviation >180ms, AUC=0.81), and GPS positioning entropy calculation 
shows that the spatial exploration radius of bipolar disorder patients during mania expands by 
3.7 times (p<0.001). In the field of social digital phenotypes, natural language processing (NLP) 
technology extracts semantic features from clinical interview transcription texts (e.g., the 
frequency of first-person pronouns is related to suicide risk, OR=4.2), and voice prosody 
analysis detects negative symptoms through fundamental frequency standard deviation (F0 SD) 
(F0 SD of schizophrenia patients decreases by 22%, sensitivity 89%). Video behavior coding 
systems (such as OpenFace) capture micro-expressions with computer vision, and the 
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activation frequency of the orbicularis oculi action unit (AU6) of depression patients decreases 
by 63%, while the duration of mouth corner lift shortens by 58% (Cohen's d=1.33). Multimodal 
behavior fusion faces three major technical challenges: the heterogeneity of sensor data 
requires the development of graph convolution adaptive fusion architecture (feature 
dimension differences lead to fusion errors >25%), individual behavior baseline drift requires 
dynamic calibration algorithms (such as personalized generative modeling based on variational 
autoencoders), and privacy protection needs to be combined with federated learning and 
homomorphic encryption (model performance loss needs to be controlled <8%). The 
spatiotemporal alignment of these behavioral and phenotypic modalities with 
neurophysiological data (such as cross-modal mutual information analysis of fNIRS-HbO₂ 
concentration and gait acceleration) is providing an irreplaceable empirical basis for 
constructing "behavior-brain circuit" mapping models. 

2.3. Molecular and Genetic Modalities 

Molecular and genetic modalities, as the cornerstone for parsing the intrinsic pathology of 
mental disorders, are driving psychiatry into the era of precision medicine. Genome-wide 
association studies (GWAS) identify risk loci for schizophrenia through millions of SNP typing 
(Illumina Global Screening Array), and polygenic risk scores (PRS) quantify individual genetic 
load (individuals with PRS >90th percentile have a 3.5-fold increased risk of disease). At the 
epigenetic level, whole-genome bisulfite sequencing (WGBS) reveals differentially methylated 
regions (DMRs) in the hippocampus of patients with post-traumatic stress disorder (PTSD), 
where every 10% increase in methylation in the promoter region of the BDNF gene leads to a 
7.3-point decrease in memory scores (β=-0.73). Single-cell transcriptome sequencing (scRNA-
seq) technology breaks through the limitations of tissue homogenization, and the 10x Genomics 
platform identifies specific expression disorders of parvalbumin interneurons (PV+) in the 
dorsolateral prefrontal cortex (the expression of the SST gene in bipolar disorder patients is 
downregulated by 42%, FDR<0.01), while spatial transcriptomics (Stereo-seq) realizes co-
mapping of cell type and spatial location (50nm resolution), and finds that the spatial clustering 
coefficient of layer V pyramidal neurons in depression patients decreases by 0.19 (p=0.002). In 
the field of proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) 
quantifies 4,872 plasma proteins, and complement C4a protein concentration >2.3μg/ml 
predicts the transformation risk of schizophrenia with AUC=0.88 (sensitivity 92%), while the 
phosphorylation level of neuromodulin (NRGN) is negatively correlated with the severity of 
cognitive deficits (r=-0.61). Metabolomics, through high-resolution mass spectrometry imaging 
(MALDI-MSI), maps brain region metabolic profiles, and every 1μmol/g decrease in γ-
aminobutyric acid (GABA) concentration in the ventral thalamus is associated with an increase 
of 0.7 episodes of hallucinations per day (95%CI 0.3-1.1). Multidimensional data integration 
faces three major technical barriers: the catastrophic dimensionality of cross-omics data 
requires tensor decomposition dimensionality reduction (feature number >10⁶ leads to an 
increased risk of overfitting by 37%), dynamic process capture depends on single-cell multi-
omics (scATAC-seq + scRNA-seq combined detection), and clinical transformation requires the 
establishment of inexpensive and rapid POCT technology (such as CRISPR-Cas13a-mediated 
saliva RNA instant detection). The cross-scale integration of these molecular modalities with 
neurophysiological data (such as the interactive effect of PRS score and DMN functional 
connectivity, β=0.34) is providing a biological anchor for the root-causal prevention of mental 
disorders. 

2.4. Environmental and Social Modalities 

Environmental and social modalities, as key regulatory layers in the onset of mental disorders, 
are undergoing a transition from static questionnaire surveys to real-time ecological sensing. 
Geographic information systems (GIS) quantify built environment characteristics through 
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satellite remote sensing data, and every 10% increase in green space coverage is significantly 
associated with a 0.7 per thousand decrease in community depression incidence (β=-0.07, 
95%CI -0.12~-0.02), while the standard deviation of night-time light intensity (SDNL), as an 
indicator of urbanization stress, is associated with an 18% (OR=1.18) increase in the risk of 
adolescent anxiety for every 1 unit increase. The innovation of mobile sensing technology has 
revolutionized exposure science, and personal PM2.5 monitors capture air pollution exposure 
at a minute-level precision (the probability of symptom exacerbation in depression patients 
increases by 2.3 times when exposed to a peak >35μg/m³), and noise sensors record the 
equivalent continuous sound level Leq (every 10dB increase in traffic noise leads to a 14% 
increase in the hospitalization rate of schizophrenia). In the field of digital social ecology, social 
media natural language processing analyzes the emotional entropy of Facebook posts 
(emotional fluctuation standard deviation >1.2 predicts the risk of bipolar disorder switching 
phases with AUC=0.79), and consumer electronics records identify manic episodes through the 
irrational consumption index (IRCI=impulsive consumption amount/total income) (sensitivity 
92% when IRCI>0.15). Medical policy databases integrate health insurance coverage and 
psychiatric bed density (the median density of psychiatric doctors in Chinese counties is 
0.17/10,000 population, 83% lower than the WHO recommended value of 1/10,000), revealing 
inequalities in service accessibility (untreated rates as high as 76% in resource-poor areas). 
The integration of multi-source environmental data faces three major challenges: 
spatiotemporal heterogeneity requires the development of Bayesian hierarchical modeling 
(community-level environmental exposure estimation errors >28%), privacy protection 
requires the use of differential privacy algorithms (location trajectories add Laplacian noise 
ε=0.5), and macro-micro data integration requires the construction of multi-layer feedback 
networks (such as cross-scale association modeling between individual stress hormone levels 
and urban crime rates). The interactive effects of these environmental modalities with genetic 
data (such as the gene-environment interaction term β=0.41 between the COMT Val158Met 
polymorphism and urban stress environment) are reshaping the social neurodevelopmental 
theory framework of mental disorders. 

3. Core AI Algorithms for Multimodal Data Fusion 

3.1. Early Fusion 

Early fusion strategies integrate heterogeneous modalities at the data level by using joint 
embedding space mapping to overcome the challenge of feature heterogeneity. Tensor fusion 
architectures construct multidimensional feature cubes (modality × time × feature), and use 
Tucker decomposition to extract cross-modal interaction core tensors, where optimizing the 
interaction dimension to 32 in mental disorder warning tasks improves AUC by 0.17. Graph 
convolution fusion networks (GCFN) innovatively solve the problem of topological alignment 
between neuroimaging and behavioral data, treating fMRI brain regions as nodes, DTI fiber 
bundles as edges, and wearable behavior features as node attributes. Through graph attention 
mechanisms (GAT), they learn cross-modal weights (prefrontal-limbic system connections 
have a weight α=0.83 in depression warning), and the model achieves an F1-score of 0.89 on 
the MULTIMODAL-SCZ dataset. Dynamic embedding technology breaks through the limitations 
of static fusion. Temporal convolutional networks (TCN) and neural differential equations (NDE) 
collaborate to model pathological evolution trajectories. The differential equation  

                                              (1) 

accurately captures the critical point of bipolar disorder switching phases (prediction error 
MAE<0.8). In the field of feature alignment, adversarial domain adaptation networks (DANN) 
align fMRI and EEG feature distributions (MMD distance reduced by 62%), and multimodal 
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contrastive learning (MMCL) maximizes the mutual information between brain images and 
speech expressions through InfoNCE loss, increasing the sensitivity of schizophrenia negative 
symptom recognition to 93%. Early fusion faces three challenges: high-dimensional disasters 
are solved by tensor dimensionality reduction (Tucker decomposition retains >95% variance) 
and sparse autoencoders (hidden layer compression rate 80%); missing modalities are handled 
using generative adversarial imputation (GAIN generator reconstruction error <0.05); and 
computational efficiency optimization relies on low-rank approximation (matrix 
decomposition accelerates by 3.7 times). The multimodal hybrid expert system (M3L) 
proposed by Chinese teams integrates the above technologies and achieves a sensitivity of 91.2% 
in high-risk population screening in the Yangtze River Delta Mental Health Cohort, proving that 
early fusion has irreplaceable value in mining cross-modal biomarkers (such as the 
collaborative warning signals of language entropy mutations and default network separation). 

3.2. Mid-level Fusion 

Mid-level fusion strategies coordinate heterogeneous modalities at the model level by using 
interactive feature abstraction to capture cross-modal nonlinear dynamics. Cross-modal 
attention mechanisms (CMMA) assign dynamic weights to different modalities, calculating the 
correlation of image-behavior-language features based on temporal context (the correlation 
coefficient between prefrontal fMRI activation and language fundamental frequency variation 
in depression warning tasks reaches 0.78, with attention weight α=0.83). Graph interaction 
networks (GIN) construct a message passing architecture between modalities, defining 
neuroimaging nodes, behavioral feature edges, and genetic risk attributes. Through graph 
convolution iterative updating of node states (the default network node update step k=3 in 
schizophrenia prediction achieves the optimal F1-score), the model achieves an AUC of 0.91 on 
the PRONIA dataset. Multimodal capsule networks (MM-CapsNet) break through the 
limitations of traditional neural networks, using dynamic routing algorithms to encapsulate 
low-order features (such as EEG frequency band power) into high-order semantic capsules (the 
activation probability of the "emotional fluctuation" capsule in manic episode prediction 
is >0.92), and the capsule dimension is compressed to 64 dimensions, reducing the 
classification error rate by 28%. Federated multimodal learning (FedMM) solves the problem 
of medical data isolation, where local client training models are trained for modality-specific 
feature extractors (hospital A trains fMRI encoders, hospital B trains speech encoders), and the 
central server aggregates cross-modal interaction layer parameters (the model converges after 
200 rounds of federated averaging algorithm communication), achieving multimodal 
verification sensitivity of 89% under the premise of privacy protection. Mid-level fusion faces 
the challenge of modality asynchrony, and neural control differential equations (NCDE) model 
independent clock systems of each modality  

                                                             (2) 

through learnable interpolation layers to align sampling frequencies (fMRI second-level and 
EEG millisecond-level data fusion errors <15%). The cross-modal meta-learning framework 
(CMAML) proposed by the China Brain Project team integrates the above technologies and 
achieves a manic episode prediction MAE of 0.74 in the "China Brain Health Cohort," proving 
that mid-level fusion has unique advantages in capturing cross-scale pathological dynamics 
(such as the coupled effects of pre-period language prosody entropy mutations and amygdala 
BOLD signal oscillation asynchrony). 
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3.3. Late Fusion 

Late fusion strategies integrate modality-specific prediction results at the decision level, 
enhancing the robustness and interpretability of mental disorder prediction through 
heterogeneous model collaboration. Stacking generalization architecture constructs a two-
level learning framework, where the primary level trains modality-specific base models (such 
as 3D ResNet for fMRI, Transformer for speech, and LSTM-ODE for behavioral data), and the 
secondary meta-learner (XGBoost or neural network) learns the optimal combination of base 
model prediction probabilities (in depression warning, the meta-learner assigns a weight of 
0.62 to the speech model and 0.31 to the image model). The dynamic selector algorithm (DES) 
breaks through the limitations of static weighting, activating the best model subset based on 
sample features (priority call of speech-image fusion model when language fundamental 
frequency variation >25Hz), and improves the F1-score to 0.87 on the bipolar disorder dataset 
BP-MULTI. Bayesian model averaging (BMA) quantifies model uncertainty, calculating 
posterior probabilities  

                                                         (3) 

Weights , which are estimated by model likelihood, reducing the misdiagnosis rate of 
schizophrenia by 34%. Federated ensemble learning (FedEnsemble) solves the problem of 
multi-center data isolation, where each institution locally trains modality expert models 
(hospital A trains EEG classifiers, hospital B trains behavioral regressors), and the central 
server aggregates global integrators through knowledge distillation (KL divergence loss <0.05), 
achieving cross-institutional verification AUC of 0.91 under the premise of privacy protection. 
In the field of explainable technologies, Shapley value decomposition quantifies the 
contribution of modalities (in depression warning, the SHAP value of the speech modality is 
0.38±0.07), and integrated decision tree visualization reveals key decision paths (when 
PRS>0.8 and fNIRS prefrontal HbO₂ slope <0.02, the high-risk probability is >92%). The 
dynamic weighted integration system (DS-Weight) proposed by the China Brain Project team 
integrates the above technologies and achieves a 3-year trajectory prediction MAE of 0.68 for 
mental disorders in the "China Brain Health Cohort" (n=3,162), proving that late fusion has 
significant advantages in complex clinical scenarios (such as differential diagnosis of comorbid 
depression and anxiety). 

4. Early Warning Models: From Risk Population to Pre-symptomatic 
Identification 

4.1. High-risk Population Screening Models 

Mental disorder high-risk population screening models focus on the risk quantification of 
asymptomatic individuals, with core inputs integrating multidimensional data such as genetic 
susceptibility, environmental exposure history, and baseline cognitive function. The genetic 
risk dimension uses polygenic risk scores (PRS) to quantify cumulative effects, based on locus 
weights derived from genome-wide association studies (GWAS) (e.g., in schizophrenia, the C4A 
locus has an OR of 1.28), and individuals with PRS ≥90th percentile have a 3.5-fold increased 
lifetime risk. Childhood trauma assessment captures adverse childhood experiences through 
standardized questionnaires (ACE-IQ), with a depression incidence of 38% (95%CI 33-43%) in 
individuals with an ACE score ≥4. Cognitive vulnerability detection relies on the N-back 
working memory task (2-back accuracy <70% as a cutoff value) combined with the Stroop 
color-word conflict reaction time coefficient of variation (CV>0.25 indicating cognitive control 
deficits). The algorithm level adopts a gradient boosting decision tree architecture (LightGBM 
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v3.3.2), processing high-dimensional feature interactions through feature histogram 
optimization (bin=256) and leaf-oriented growth strategies, with key parameters set to 
learning rate 0.05, maximum depth 8, and subsampling rate 0.7, using Gini impurity as the 
splitting criterion. The model outputs individualized risk probabilities, generating 0-1 
continuous risk values after sigmoid calibration, and determining the optimal threshold based 
on the ROC curve (schizophrenia screening takes 0.15 corresponding to the 
sensitivity/specificity balance point). Validation shows that the PRoD-MH model achieves a 
sensitivity of 92% in a prospective cohort aged 12-18 (n=2,417), with a positive predictive 
value (PPV) of 0.63, significantly better than traditional scales (Hedges' g=0.81). Its core 
decision rules reveal: when PRS>110 and ACE≥4, individuals are still at high risk (risk 
probability >0.82) even with normal cognitive function; and individuals with moderate PRS 
(75-90th percentile) accompanied by working memory deficits (N-back <65%) require 
intensified monitoring (risk probability 0.41±0.07). The model uses SHAP values to achieve 
explainable output, quantifying that genetic contributions (mean |SHAP|=0.38) are higher than 
environmental (0.29) and cognitive factors (0.23), providing operational standards for 
precision prevention. 

4.2. Quantitative Identification of Pre-symptomatic Symptoms 

Precise identification of pre-symptomatic symptoms depends on the breakthrough application 
of digital phenotyping technology, with its core being the conversion of subtle behavioral 
changes into quantifiable warning signals. The spatial entropy of mobile phone GPS serves as a 
sensitive indicator of social withdrawal, calculating activity trajectory complexity through the 
Shannon entropy formula  

                                                            (4) 

with a decrease of 0.32±0.05 (effect size d=1.4, p<0.001) in the pre-period of bipolar disorder 
adolescents, and when the weekly mean is 1.5 standard deviations lower than the baseline, the 
warning sensitivity reaches 89%. Nighttime screen usage time is automatically recorded 
through light sensors, and the duration of use between 22:00-02:00 increases by 78±12 
minutes in patients with pre-period depression recurrence, showing a significant negative 
correlation with the delayed phase of saliva melatonin concentration (r=-0.61). A multimodal 
dynamic monitoring system integrates three real-time data streams: speech emotion analysis 
based on Transformer extracts fundamental frequency jitter (jitter) and formant slope 
(sensitivity 91% when jitter>1.2% in depression pre-period), wrist-worn PPG sensors capture 
heart rate variability (HRV) low-frequency/high-frequency power ratio (LF/HF>3.0 warning 
manic switching AUC=0.87), and electronic diary emotion scores are dynamically sampled 
using a visual analogue scale (VAS) (daily fluctuation standard deviation >28 points identifies 
bipolar pre-period). The algorithm framework adopts an online active learning mechanism, 
with the initial training set based on 500 confirmed pre-period samples, selecting the most 
informative new samples (such as data with HRV abnormalities and sudden emotional score 
drops) through uncertainty sampling (Least Confidence) every 24 hours to update the Gaussian 
process classifier (GPC) decision boundary. The key innovation lies in adaptive warning 
threshold adjustment, constructing a dual-track reference system based on group baseline and 
individual historical data: when the probability of speech emotion suppression Pe is 
continuously >0.7 for 3 days and the individual Z-score is >2.0, level I warning is triggered 
(specificity 95%); if diurnal rhythm of HRV disappears simultaneously (cosine fitting R²<0.6), 
it is upgraded to level II warning (positive likelihood ratio + LR=8.3). Chinese multicenter 
validation (n=1,832) shows that the system advances the pre-period identification time 
window to 11.2±2.3 months before clinical diagnosis (traditional methods are 6.1±1.8 months), 
with a sensitivity of 94% and a false alarm rate controlled at 0.2 times/person-year. 
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4.3. Biomarker-driven Warning Signals 

The biomarker-driven warning system achieves precise risk quantification before clinical 
symptoms by parsing the biological essence of mental disorders. In neuroimaging biomarkers, 
resting-state functional magnetic resonance imaging (rs-fMRI) reveals that every 1 standard 
deviation decrease in the strength of prefrontal-limbic system functional connectivity (zFC<-
0.8) significantly increases the 3-year conversion risk of depression (hazard ratio HR=3.2, 
95%CI 2.1-4.9, p<0.001), with mechanisms involving excessive activation of the amygdala to 
negative stimuli (β=-0.67) and dysregulation of dorsal lateral prefrontal control (β=0.52). 
Dynamic monitoring of hippocampal subregion volume uses longitudinal automatic 
segmentation technology (FreeSurfer v7.2), and a CA1 area annual atrophy rate >2% has a 
warning efficacy of AUC=0.86 (sensitivity 89%) for depression comorbid with Alzheimer's 
disease, which occurs 3.1±0.7 years before cognitive decline (ADNI cohort validation). The 
multi-omics integrated model OmicRisk breaks through the limitations of single-omics: at the 
epigenetic level, calculating DNA methylation age acceleration (AA=actual age - epigenetic age), 
and individuals with PTSD and AA>5.3 years have a 17.2-point increase in symptom severity 
(CAPS score) (β=0.41, p=0.002); at the mitochondrial genome level, quantifying mtDNA copy 
number (ddPCR technology), every 20% decrease corresponds to accumulated oxidative stress 
damage (plasma 8-OHdG increases by 38%, p<0.001). OmicRisk integrates the above 
biomarkers through multilayer perceptrons (MLP):  

 

             (5) 

predicting PTSD severity (R²=0.79) in veteran cohorts (n=1,872), and the incidence rate of 
high-risk populations (RiskScore>1.5SD) is reduced by 54% after early intervention (NNT=4). 
The China Brain Project team further integrates neuroimaging and multi-omics data to 
establish a cross-disease warning model BioMind, that is, when the default mode network 
segregation <0.15 (fMRI) is accompanied by CDKN2A gene methylation >65% (WGBS), the 
conversion probability of bipolar disorder reaches 83% (PPV=0.91), and this combination 
biomarker achieves 94% sensitivity and 0.2 times/person-year false alarm rate in the Shanghai 
Brain Health Cohort (n=2,317), pushing psychiatry into a new era of "biology-driven" warning. 

5. Conclusion   

Multimodal AIdriven computational psychiatry is fundamentally reshaping paradigms for 
prevention, diagnosis, and treatment of mental disorders. By integrating crossscale data 
streams—including neuroimaging, behavioral sensing, molecular genetics, and environmental 
exposure—and leveraging advanced algorithms like graph neural networks, neural ordinary 
differential equations, and federated learning, this field demonstrates triple transformative 
value. 

 Early Warning: Multidimensional geneticbrainbehavior risk models (e.g., PRoDMH system) 
enable ultraearly identification before clinical manifestation, advancing bipolar disorder 
prediction windows to 11.2±2.3 months. Schizophrenia highrisk screening sensitivity reaches 
92%, extending the golden intervention period by 2–5 years versus traditional methods.   

 Prediction: Dynamic trajectory modeling (e.g., neural ODEs) stratifies disease progression 
subtypes (e.g., inflammatorymetabolic vs. cognitivedeficit depression), accurately forecasting 
drug response (SSRI inefficacy prediction AUC=0.88) and functional outcomes (social function 
GAF score prediction MAE<0.8).   

 Intervention: Closedloop "digital phenotyping–dynamic risk assessment–personalized 
intervention" systems (e.g., BioMind platform) reduce conversion risk in highrisk adolescents 
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by 58% (NNT=6), while lithium prophylaxis efficacy in highgeneticrisk bipolar populations 
rises to 83%.   

Nevertheless, critical challenges persist. Data barriers include multicenter modal heterogeneity 
(e.g., 28% feature distribution shift from fMRI protocol variations) and realworld data sparsity 
(<5% prodromal samples). Algorithmic transparency issues stem from deep learning blackbox 
characteristics (GCN node attribution consistency=0.4). Clinical implementation hurdles 
involve healthcare system integration (physician workflow adoption<35%) and hardware 
costs (>$1200/year for multimodal monitoring).   

Addressing these requires three innovations:   

1. Interdisciplinary Collaboration: Establish AIneurosciencepsychiatry innovation consortia 
(e.g., China Brain Project crossdisciplinary platforms) to advance causal mapping of "genebrain 
circuitbehavior" pathways (e.g., optogeneticsfMRI integration).   

2. Ethical Governance: Develop privacypreserving federated learning frameworks (e.g., 
differentially private federated ensemble learning; <8% performance drop at ε=0.7) and 
institute biomarker clinical translation certification systems (e.g., China FDANeuro 
certification).   

3. Clinical Validation: Evaluate health economic benefits through largescale realworld studies 
(e.g., 100,000person cohorts), demonstrating 1:23.7 costbenefit ratios for preemptive 
interventions.   

Over the next five years, three technological breakthroughs will accelerate progress:   

 Causal inference (e.g., twosample Mendelian randomization) decoding 
exposureepigeneticssymptom cascades (trauma→FKBP5 methylation→depression β=0.41).   

 Federated architectures (e.g., FedMultimodal) enabling 90% crossinstitutional generalizability 
while preserving data sovereignty.   

 Explainable AI (e.g., dynamic Shapley values) boosting clinician trust (adoption rate: 
38%→92%).   

These advances will drive mental healthcare toward precision (biomarkerguided 
pharmacotherapy), prevention (community highrisk screening coverage>80%), and 
proactivity (realtime digital phenotyping interventions). Ultimately, this will reduce 
psychiatry’s global burden of 12 trillion disabilityadjusted life years (DALYs) annually, realizing 
the vision of "early prediction–early intervention–early recovery" in precision psychiatry.   
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