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Abstract 

This paper addresses the shortcomings of traditional methods in distribution network 
fault diagnosis, such as insufficient capability to capture transient fault characteristics 
like high-impedance grounding and intermittent arcs, difficulties in multi-source 
heterogeneous data fusion, and limitations in real-time performance and accuracy. It 
proposes a fault diagnosis method based on a Deep Learning Fusion Network (DLCN). 
This method combines Autoencoders (AE) and Convolutional Neural Networks (CNN), 
utilizing a combination of unsupervised dimensionality reduction and supervised 
feature extraction to achieve efficient processing and accurate identification of massive 
high-dimensional fault data. Simulation results show that the DLCN model achieves an 
accuracy rate of 99.87% in diagnosing multiple types of faults in transmission and 
distribution networks, significantly outperforming traditional algorithms. It 
demonstrates stronger feature extraction capabilities and model convergence 
performance, providing an effective technical path for intelligent fault diagnosis and 
rapid self-healing in distribution networks. 
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1. Introduction 

With the large-scale integration of renewable energy and the increasing topological complexity 
of distribution networks, traditional fault diagnosis methods face severe challenges[1]. On one 
hand, traditional mechanisms relying on steady-state electrical quantity threshold judgments 
have limited ability to capture transient process characteristics such as high-impedance ground 
faults and intermittent arc faults; weak signals are easily submerged by background noise. On 
the other hand, current systems often use single communication channels, which are prone to 
data packet loss and timing disorders in areas with strong electromagnetic interference or 
dense nodes, leading to impaired integrity of fault characteristic information[2]. Furthermore, 
the spatiotemporal alignment of massive monitoring data in distribution networks is a 
prominent issue. Multi-source heterogeneous data with different sampling rates and 
transmission delays are difficult to fuse effectively, constraining the real-time performance and 
accuracy of fault location. Against this backdrop, artificial intelligence technology, relying on its 
powerful nonlinear modeling capability, spatiotemporal feature mining potential, and adaptive 
learning mechanism, has become the core driving force for breaking through traditional 
diagnostic bottlenecks, promoting the evolution of distribution network fault handling towards 
intelligence, high precision, and high reliability[3]. 

1.1.  Domestic Research Status 

Research in China in the field of integrating artificial intelligence with power systems exhibits 
characteristics of technological diversification and application scaling. At the algorithmic level, 
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multi-modal data fusion based on deep learning has become mainstream. For example, the 
"HPLC Multi-modal Communication Intelligent Positioning System" proposed by Dewei Baite 
Co., integrates HPLC, 5G slice networks, and low-orbit satellite communication through a 
dynamic optimization mechanism, combined with improved Kalman filtering to achieve 
spatiotemporal data alignment, significantly enhancing feature stability in high-noise 
environments[4]. In terms of model innovation, scholars like Nie Xianglun proposed converting 
three-phase current signals into RGB images, using a CNN-CBAM-LSTM hybrid model to 
simultaneously extract spatial local features (convolutional layers) and time series 
dependencies (bidirectional LSTM), and focusing on key fault information through an attention 
mechanism (CBAM), maintaining robust phase selection accuracy under topology change 
conditions[5]. In system integration, State Grid Wuhan Power Supply Company's "Virtual 
Dispatcher AI Platform" deeply integrates large models, constructing a closed-loop system of 
"full-source aggregation + bidirectional deduction + hierarchical response," reducing fault 
location time for non-automated switches from 47 minutes to 3 minutes, and improving power 
restoration efficiency by over 55%[6]; Luzhou Power Supply Company developed a low-voltage 
intelligent analysis tool based on the "One Map of the Grid," shortening traditional investigation 
work that took weeks to just a few days through cross-analysis of historical data and real-time 
status[7]. 

1.2. International Research Trends 

Global research focuses on three main directions: cross-modal perception, edge intelligence, 
and human-machine collaborative decision-making. In sensing technology, a team from 
Zhejiang University proposed combining domain prior knowledge (such as preset inspection 
paths) with deep learning, dynamically correcting pointer meter reading offsets via drones, 
achieving 99.4% AP50 detection accuracy under complex electromagnetic interference, solving 
misjudgment problems caused by light fluctuations and motion blur[8]. In edge computing 
optimization, Rockwell Electric's intelligent reclosing system adopts a multi-dimensional 
feature fusion strategy, dynamically formulating reclosing strategies through joint analysis of 
transient current waveforms and grid topology, effectively distinguishing transient from 
permanent faults, and reducing unnecessary power outage impacts[9]. Model light-weighting 
has become a key research focus. For example, Dongfang Electronic's "Dual AI Operator Model" 
defines substation power-voltage change patterns, combines expected electricity consumption 
with actual value comparison to achieve rapid preliminary fault screening, significantly 
reducing computational load[10]. Furthermore, a patent from a Guangzhou team uses the 
Sparrow Search Algorithm (SSA) to optimize CNN hyperparameters, improving model 
generalization under the premise of no local data sharing, accurately identifying partial 
discharge and insulation aging hazards[11]. Notably, international research still faces challenges 
in adapting to extreme working conditions, such as image feature degradation caused by strong 
noise, which has not been fully resolved. Innovations from Chinese teams in spatiotemporal 
fusion modeling and communication fault-tolerant mechanisms provide important references 
for the industry. 

In summary, the application of AI in distribution network fault diagnosis has moved from single 
algorithm exploration to full-stack technology integration of "communication--perception--
decision--safety." Domestic progress is significant in engineering implementation and system-
level innovation, while international research focuses more on underlying model optimization 
and cross-domain collaboration. Future efforts need to further break through core challenges 
like small-sample fault diagnosis and multi-agent collaborative reasoning to achieve the 
ultimate goal of "second-level self-healing" for domain-wide faults. 
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2. Distribution Network Equipment Fault State Assessment 

The operational level of the power system is directly related to national economic development 
and energy security. Since the second industrial revolution, humanity has entered the 
electrification era. The application of power systems has brought significant productivity 
progress and considerable socio-economic benefits to various industries. The scale of power 
systems has grown rapidly, voltage levels have continuously increased, and line lengths and 
substation capacities have grown leapfrog. However, this also brings issues of efficiency, 
reliability, and safety. With the development of information technology, computer technology, 
communication technology, and control technology, power systems have now moved into the 
era of large grids, digitalization, and intelligence[12]. For primary equipment, operation and 
maintenance have long adopted planned maintenance and post-fault maintenance methods. 
Planned maintenance is mainly based on equipment operating status and maintenance records, 
which is susceptible to incomplete information and differences in human technical experience, 
leading to difficulties in controlling the quality of maintenance plans and overlooking potential 
equipment risks. Post-fault maintenance usually occurs after equipment failure, when the 
equipment is already under repair or out of service. Due to tight repair times, unnecessary 
maintenance measures might be taken, bringing misoperations or other non-equipment issues, 
neglecting preventive maintenance of equipment, causing certain economic losses, aggravating 
equipment damage, shortening equipment lifespan, and a series of other problems, no longer 
meeting the requirements of safety and economic development[16]. By analyzing the 
characteristics of power systems, a comprehensive assessment method for power system 
dynamic stability based on continuous wavelet transform was proposed. Using wide-area 
measured data from actual grids and typical node test data, dynamic stability assessment was 
achieved[17]. Based on mining fault and defect texts recorded by power production enterprises, 
preprocessing and vectorizing text using the Markov method, a ratio-based state information 
fusion model was adopted to construct a life health state index for circuit breaker life state 
assessment[18]. By monitoring dynamic data and utilizing static data accumulated from 
operation and maintenance, weights were assigned based on expert experience, improving the 
existing state assessment method based on fuzzy comprehensive evaluation to achieve state 
assessment of operating grid equipment[20]. Based on the matter-element theory of Extenics, 
state parameters were defined from pre- and post-commissioning operation and maintenance 
conditions, and equipment operating status was assessed through difference evaluation[21]. 
Based on an existing fuzzy Petri net fault diagnosis model, Sequence of Events information from 
remote operations and measurement information based on wide-area measurement were 
collected, and their temporal characteristics were comprehensively utilized for assessment[22]. 
Considering multiple maintenance records of equipment, a time-varying decision model for 
grid equipment condition-based maintenance was established, optimizing the total grid 
operational risk considering relevant maintenance constraints, allowing decisions to adjust 
according to changes in equipment status. For secondary equipment, existing state assessment 
research mainly focuses on primary equipment, somewhat neglecting power secondary 
equipment. With the continuous development of power systems, the demand for secondary 
equipment state assessment is increasing. Power secondary equipment is equally crucial for 
the safe and stable operation of power systems. Research and application of secondary 
equipment state assessment need strengthening to ensure power system security and stability. 
In global blackout accidents, accidents related to secondary system operation account for about 
70%. State assessment for secondary equipment can lay a solid foundation for scientifically 
mastering equipment operating status, accident prevention, and guiding operation and 
maintenance. State assessment for secondary equipment needs to consider more complex 
factors than primary equipment, such as protection devices, control devices, measurement 
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devices, etc., requiring consideration of their function, performance, reliability, and other 
aspects. As the function and performance of secondary equipment are easily affected by various 
factors like electromagnetic interference, temperature, humidity, dust, etc., more precise and 
comprehensive methods are needed for state assessment. Based on State Grid Corporation's 
monitoring information standards, a state evaluation indicator set for smart substation 
secondary equipment was established. Combining communication parameters and hardware 
information of smart substation secondary equipment, a state evaluation system for grid 
secondary equipment was established using the Analytic Hierarchy Process (AHP) and fuzzy 
theory[23]. Based on fault maintenance records of power system relay protection devices, key 
information for monitoring was extracted, an evaluation model for relay protection devices was 
established, further quantitative evaluation was conducted on the device's historical records 
and online monitoring information, and finally, its operating state evaluation result was 
comprehensively derived. By fully mining power monitoring big data, a universal secondary 
equipment state evaluation model was established. Based on a two-layer structure machine 
learning algorithm, the upper layer uses partitioned data for k-fold validation of several base 
learners; the lower layer uses a fully connected cascaded neural network to fuse multiple base 
learners and employs an improved Levenberg-Marquardt algorithm to train this neural 
network to accelerate model convergence, providing guidance for the maintenance of smart 
substation secondary equipment[24]. A risk assessment method for secondary equipment 
operation status based on association rule mining and combined weighting-cloud model was 
proposed, using the AHP to calculate subjective weights of evaluation indicators and the anti-
entropy weight method to calculate objective weights, obtaining combined weights based on a 
cooperative game model to improve the scientific accuracy of evaluation results[25]. For relay 
protection equipment, a multi-layer, multi-level demand system was established at the macro 
level; at the micro level, macro indicator sets were decomposed, transformed, and quantified, 
forming an evaluation system including testability, security, reliability, etc.[26]. The link 
transmission methods of various monitoring information for smart substation relay protection 
equipment were analyzed, the transmission methods and required monitoring information 
were clarified, an online monitoring scheme for smart substation relay protection equipment 
was designed, and practical engineering application was conducted[27]. Using operation and 
maintenance mobile terminals, centering around the operation and maintenance management 
platform, intelligent analysis of secondary equipment monitoring information and operation 
and maintenance processes was conducted, achieving fault early warning, defect analysis, and 
full-process business management and control for secondary equipment[28]. A state evaluation 
method for relay protection based on a matter-element model was proposed. This method 
establishes a matter-element model for relay protection devices, improves the existing AHP, 
and combines the advantages of the information entropy weight method for combined 
weighting, enhancing the accuracy of indicator weights[29]. State parameters were defined from 
pre- and post-commissioning operation and maintenance conditions of smart substation 
secondary equipment, proposing an operational efficiency maximization strategy; research on 
secondary equipment state assessment for smart substations was conducted, establishing a 
secondary equipment utilization rate evaluation indicator system[30]. The main monitoring 
content for grid secondary equipment was discussed, providing reference for sorting out data 
sources. 

In equipment state assessment, existing added monitoring devices bring cost and safety risks. 
How to make good use of existing conditions for data mining and adopt advanced algorithms 
for scientific and effective assessment is particularly crucial. From the literature survey above, 
it is evident that, limited by the lack of investigation into the current status of equipment 
operational data, existing state assessment research for primary and secondary equipment is 
still mainly based on operational mechanisms, rarely combined with equipment operational 
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data. Some studies discussed sources of monitoring data and conducted state assessment 
research combining equipment operational data, but issues exist: numerous theoretical 
algorithms with poor engineering application feasibility, failure to fully utilize data resources, 
overly single data types difficult to fully describe equipment characteristics, weight allocation 
based on subjective judgment lacking consideration of objective factors, and weights obtained 
by evaluation methods difficult to adapt to indicator deterioration acceleration. 

3. Technical Introduction 

3.1. Model Construction 

Utilizing artificial intelligence technology and complex mathematical models to accurately 
determine fault points in the system. Therefore, a fault location prediction function needs to be 
determined first, as shown in Equation 1: 

𝑦̂ = 𝑓(𝑋; 𝜃)                                                                       (Eq. 1) 

Where: 𝑦̂  is the predicted value of the fault point location; 𝑋  is the input feature vector 
(including parameters such as voltage, current); θ represents the model parameters. 

This prediction function model aims to infer the fault location 𝑦̂  by analyzing the system's 
feature vector 𝑋, thereby achieving precise fault location. CNN, as an important deep learning 
architecture, are essentially a typical form of deep feedforward neural networks. Their core 
innovation lies in introducing convolutional computation into deep neural networks, forming a 
unique CNN structure. The design inspiration for CNN comes from the human visual perception 
mechanism, enabling them to efficiently perform feature extraction and representation 
learning on input data with spatial or temporal local correlations. This powerful feature 
extraction capability makes them very suitable for learning fault patterns from grid monitoring 
data. 

3.2. Feature Extraction and Selection 

Another key link in building a high-performance fault location model is feature extraction and 
selection. Accurate and discriminative features are the foundation for the model to effectively 
locate fault points. 

Feature Extraction: Focuses mainly on extracting key characteristics reflecting the system's 
fault state. Voltage Characteristics: When a system fault occurs, the voltage at relevant nodes 
usually experiences significant fluctuations (e.g., sag, distortion). The core of feature extraction 
is to capture the change patterns of voltage signals at each monitoring point before and after 
the fault occurs (such as rate of change of amplitude, specific harmonic content, waveform 
distortion degree, etc.). This information is the primary basis for fault location. Current 
Characteristics: Faults often cause abrupt changes in current signals (e.g., surge in amplitude, 
phase shift). By analyzing the abrupt change characteristics of current signals (such as surge 
amplitude, time of surge, zero-sequence current changes, etc.), key fault path information can 
be obtained. Frequency Characteristics: When a distribution network fault occurs, the system 
frequency may also show abnormal fluctuations (e.g., frequency deviation, oscillation). 
Detecting and extracting these frequency change features can provide important auxiliary 
information for fault location, especially in distinguishing fault types and judging the scope of 
impact. 

Feature Selection: It is crucial to filter out the most discriminative, highly robust, and low-
redundancy feature subset from the raw data or initially extracted large number of features. 
This can effectively improve model performance and reduce the risk of overfitting. Commonly 
used and reliable feature selection methods include: Principal Component Analysis (PCA): Uses 
linear transformation to project original features into a low-dimensional space, retaining the 
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main variation information of the data, achieving feature dimensionality reduction and 
removing correlations. Correlation Analysis: Evaluates the statistical correlation between each 
feature and the fault location target variable, prioritizing features highly correlated with the 
target or containing high information content. 

3.3. Model Training and Optimization 

Under the supervised learning framework, model training involves inputting a large amount of 
sample data labeled with fault locations into the model, driving the continuous adjustment and 
update of model parameters θ, ultimately minimizing the loss function, thereby achieving 
optimal model performance. Common supervised learning algorithms include: 

Support Vector Machine (SVM): Its core lies in constructing an optimal classification 
hyperplane in a high-dimensional feature space. It can effectively handle high-dimensional 
feature data, achieve precise classification and location of fault signals, and performs robustly 
especially in small sample situations. 

Random Forest (RF): Combines the prediction results of multiple decision trees through an 
ensemble learning strategy, using voting or averaging mechanisms for the final decision. This 
method significantly enhances the model's generalization ability and stability, effectively 
reducing the risk of overfitting. 

Through carefully designed training processes (including data preprocessing, batch training, 
learning rate adjustment, regularization, and other optimization strategies), the prediction 
error of the model (loss function value) can be significantly reduced, thereby greatly improving 
the accuracy, robustness, and overall reliability of fault location. 

3.4. Fault Diagnosis for Transmission and Distribution Networks Based on 
DLCN 

Faced with the massive data collected from large-scale simulation tests, traditional feature 
extraction methods encounter significant challenges: insufficient feature extraction capability, 
difficulty in fully mining effective information from high-dimensional data; simultaneously, the 
huge sample size also brings enormous pressure on model training efficiency and 
computational resources, severely restricting the learning speed and final performance of 
neural networks. To solve the above problems in complex fault diagnosis of transmission and 
distribution networks, this project proposes an innovative architecture design integrating the 
advantages of Deep Neural Networks (DNN) and CNN, with the core goal of achieving efficient 
training and high-precision recognition for transmission and distribution network fault 
diagnosis models. The specific technical route is as follows: 

Unsupervised Dimensionality Reduction: First, use an AE for unsupervised feature learning and 
dimensionality reduction of high-dimensional raw samples. The autoencoder learns a low-
dimensional dense representation of the data through the encoder, and then attempts to 
reconstruct the original data through the decoder. Its core lies in retaining the most critical 
information. This step aims to significantly reduce sample dimensionality, alleviate the 
computational burden on subsequent models, and simultaneously filter noise and redundant 
information. 

Feature Extraction and Identification: Input the dimensionally reduced low-dimensional 
feature data into a CNN. Leveraging its powerful local feature extraction and spatial pattern 
recognition capabilities, the CNN can efficiently further extract the most discriminative deep 
features from these low-dimensional representations for fault diagnosis, and complete the final 
fault type identification and location. 

This cascaded architecture design of "Autoencoder dimensionality reduction + CNN feature 
learning and identification" fully utilizes the advantages of unsupervised dimensionality 
reduction for complexity reduction and CNN efficient feature extraction, aiming to break 



International Journal of Science Volume 12 Issue 8, 2025 

ISSN: 1813-4890  
 

119 

through the processing bottleneck of massive high-dimensional data, ultimately achieving a 
significant improvement in the accuracy of transmission and distribution network fault 
diagnosis. 

3.4.1. Data Preprocessing 

During the transition operation period of transmission and distribution lines, the system 
collected time-domain sum data of voltage and current. These data completely cover the phase 
capacity parameters of AC and DC buses, accurately reflecting the dynamic operating state of 
the power system at specific moments[31]. Given the real-time requirements of fault diagnosis 
in engineering applications and the model's generalization ability needs, a 5 kHz high-
frequency sampling strategy was adopted, obtaining 100 continuous sample points within a 20 
ms time window. Although this method can be adapted to busbar monitoring at different 
voltage levels, differences in voltage levels lead to inconsistencies in data volume and 
dimensionality, which affect the reliability of simulation results. To address the impact of grid 
load changes on prediction accuracy, normalization processing is used to enhance network 
generalization performance and grid operation speed. Normalization converts data of different 
dimensions into dimensionless values, enhancing data comparability and consistency, thereby 
improving model accuracy and stability. This is crucial for building efficient and accurate 
transmission and distribution network fault diagnosis models. Normalization processing, as a 
method aimed at simplifying calculations, is a linear transformation operation performed on 
data. It can compress data into the interval [0, 1], making it decimal. In this process, the 
normalization operation plays an important role. This method can convert electrical 
parameters with dimensions into dimensionless electrical parameters, facilitating subsequent 
mathematical modeling. Normalization is a linear conversion that preserves the original data 
characteristics and numerical sequence. This characteristic is key during network convergence, 
helping the network converge more quickly to the optimal solution. In the data preprocessing 
stage, min-max normalization is a commonly used method. The min-max normalization 
conversion function is Ax=(An-Amin)/(Amax-Amin). Where: An is the nth sample containing 
the electrical quantity; Amax represents the maximum value of each sample; Amin represents 
the minimum value of each sample; Ax is the value after standardization. Secondly, based on 
12,000 typical error data points, they were randomly divided into a training set and a test set. 
Based on this, combined with the learning characteristics of deep learning, the randomness in 
the experiment was effectively avoided. 

3.4.2. Dataset Dimensionality Reduction Scheme 

The essence of dimensionality reduction is a preprocessing method achieved through 
hierarchical feature abstraction, its core lies in layered sparse representation. The feature 
dimension after reduction is directly determined by the number of hidden layer neurons in the 
final autoencoder. Extensive experimental verification shows that when a double-layer 
autoencoder architecture is used, the CNN exhibits significantly superior classification 
performance on the reduced-dimension dataset, with fault diagnosis accuracy improving by 
about 12-15% compared to a single-layer structure. This indicates that the double-layer 
autoencoder can learn more discriminative feature representations, achieving optimal 
dimensionality reduction effects under the current technical path. Thus, the local 
hyperparameter values for the autoencoder are listed in Table 1. This project builds upon this, 
using the deep neural network as the training sample, taking fault type as the research object, 
and using the deep neural network method to diagnose the fault line and fault type respectively. 
Using 64 and 81 dimensions respectively for fault line diagnosis, the results are shown in Table 
1: 
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Table 1 Main Hyperparameters for Dimensionality Reduction Training Process 

Hyperparameter For Fault Line Diagnosis For Fault Type Diagnosis 

Max Training Epochs 40 50 

L2 Regularization Coefficient 
Sparse Regularization Coefficient 

Sparsity Parameter 
1st Hidden Layer Neurons 
2nd Hidden Layer Neurons 

Activation Function 

0.0004 
4 

0.15 
500 
64 

Sigmoid 

0.0002 
4 

0.2 
600 
81 

Sigmoid 

4. Simulation Verification and Analysis 

This project plans to build a transmission and distribution network model based on the 
MATLAB/Simulink platform, use collected fault samples as training samples, and study the fault 
diagnosis accuracy of the transmission and distribution network based on DLCN. 

4.1. Evaluation Metrics and Visualization 

This project plans to use the test case set accuracy rate (%) as the main evaluation metric, 
employing cross-entropy loss function and the convergence degree of training accuracy during 
the learning process to assist the diagnosis process. Assuming there are Z test set samples, 
where the number of correctly diagnosed samples is Zy, and the number of incorrectly 
diagnosed samples is Zm, then the classification accuracy formula is: 

A𝑐𝑐 =
𝑍𝑦

𝑍𝑦+𝑍𝑚
× 100％                                                         (Eq. 2) 

For binary classification problems, the cross-entropy loss function (Loss function) can be 
expressed as: 

𝐿𝑜𝑠𝑠 = [𝛼ln𝛽 + (1 − 𝛼)ln(1 − 𝛽)]                                  (Eq. 3) 

Extending the binary classification Loss function to multi-class problems yields the multi-class 
cross-entropy loss function: 

𝐿𝑜𝑠𝑠 =
1

𝑍
∑ ∗𝑍
𝑛=1 ∑ (𝛼𝑛𝑘ln𝛽𝑛𝑘)

𝑁
𝑘=1                                               (Eq. 4) 

Where: β represents the predicted category value for the corresponding sample, α represents 
the actual label data, N represents the number of output categories for the multi-class task. The 
Loss function indicates that when the prediction result is close to the actual data, the output β 
tends towards 1, meaning the loss function value is low. Conversely, when β tends towards 0, it 
receives a larger "penalty." Its changing trend can directly reflect the changes of various 
parameters in the network [4]. Methods such as cross-entropy loss reduction function, 
recognition accuracy, and confusion matrix are planned to be used to visually evaluate the fault 
diagnosis. 

4.2. Result Analysis 

First, analysis based on fault diagnosis for multiple lines. Various types of fault states were 
divided into several categories, and the AI network was trained on them. The relationship 
between its accuracy and learning time was obtained, as shown in Figure 1: 
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(a) Accuracy Curve 

 

 

(b) Loss Value Curve 
Figure 1 Relationship between Accuracy/Loss and Learning Time 

As shown in Figure 1(a), the fault identification accuracy continuously improves with the 
training process, showing typical learning curve characteristics: 

Rapid Improvement Stage (0-5 epochs): Identification rate increases exponentially. 

Convergence Transition Stage (5-25 epochs): Growth rate significantly slows, the curve 
gradually flattens. 

Saturation Stable Stage (>25 epochs): Accuracy asymptotically approaches the 100% 
theoretical limit. 

The loss function curve in Figure 1(b) shows a complementary evolutionary pattern: 

Rapid Decline Stage (0-5 epochs): Loss value drops steeply with a decay rate >85%. 

Smooth Convergence Stage (5-25 epochs): Decline gradient reduces to 15%-20% of the initial 
value. 

Global Optimal State (>25 epochs): Loss function value stabilizes approaching zero, indicating 
network parameters have completed global optimization, and the model has reached the 
optimal convergence state. 
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5. Conclusion 

This paper focuses on the many problems existing in the current field of fault diagnosis and 
proposes a method specifically applied to transmission and distribution network fault 
diagnosis, based on a DLCN. Test results show that when diagnosing different fault lines in 
transmission and distribution networks based on the DLCN network, its accuracy can reach 
99.87%. Compared with traditional algorithms, the DLCN method has unique advantages. 
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