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Abstract

Accurate traffic prediction plays a vital role in improving the safety, stability, and
efficiency of intelligent transportation systems. However, existing methods often
construct graphs that inherently entangle spatial and temporal information, failing to
provide effective discriminative features. This limitation impairs the accurate
representation of dynamic node interactions, thereby restricting the model’s ability to
capture traffic flow trends and periodic characteristics. To overcome this challenge, this
paper introduces a novel Structure-Semantic Aware Multi-Graph Network (SSAMGN).
First, we propose a graph learning module that jointly learns both the structural and
semantic characteristics of the graph, adaptively generating sparse graphs to extract
distinctive node features. Second, we develop a self-sampling approach that efficiently
selects relevant historical sequences, coupled with a temporal-aware graph encoder that
integrates temporal information into graph learning, thereby capturing unique
temporal dependencies. Furthermore, we introduce an innovative temporal-aware
attention mechanism, which leverages local contextual information to facilitate
numerical sequence representation transformation, thereby enhancing the model’s
ability to learn traffic flow trends and periodic patterns. Extensive experiments on six
publicly available datasets demonstrate that SSAMGN effectively alleviates the
indistinguishability issue in graph representations and achieves state-of-the-art
performance in traffic prediction tasks.
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1. Introduction

In recent years, the rapid advancement of information technology and the continuous increase
in motor vehicle ownership have significantly driven the development of intelligent
transportation systems (ITS). Accurate traffic flow prediction plays a crucial role in reflecting
real-time traffic conditions and assisting urban management departments in making informed
scheduling decisions [1]. Moreover, various downstream tasks, such as travel time estimation,
heavily rely on the accuracy of traffic flow prediction. As a result, traffic flow prediction has
emerged as a key research focus in ITS.

Traffic flow data exhibit inherent time-series properties with complex temporal dependencies
and dynamic spatial correlations. Temporal dependencies mainly arise from periodic and trend
patterns, where traffic conditions at the same location show recurring similarities across days
or within a day. Meanwhile, dynamic spatial correlations reflect mutual influences among
different locations. As shown in Figure 1, relationships between nodes in a traffic network
evolve over time, making static graph structures inadequate for capturing real-world
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interactions. In practice, node connectivity should be dynamically updated based on real-time
data. For example, strong spatial correlations emerge between areas near schools and business
districts during morning rush hours, but weaken during off-peak periods. These observations
highlight the intricate and nonlinear spatiotemporal characteristics of traffic flow data.
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Fig.1 Complex spatiotemporal correlations. (a) A road network with loop detectors. (b) The
corresponding spatiotemporal correlations of the loop detectors in (a). Although sensor 2 and

sensor 4 are physically distant in the road network, at time step ¢+ & +1, sensor 2 and sensor

4 are closely correlated, illustrating the dynamic long- and short-term spatial relationships in
traffic flow. Furthermore, the traffic flow at sensor 4 during time step 7z +&+1 might be more
closely related to a distant time step (e.g., —1) than a nearby one (e.g. z + &), indicating the

presence of complex nonlinear temporal relationships in traffic flow.

Traditional traffic flow prediction methods, such as the historical average (HA) model [2] and
the autoregressive integrated moving average (ARIMA) model [3], rely heavily on idealized
mathematical assumptions and are limited to modeling linear relationships. However, real-
world traffic data are highly complex, dynamic, and nonlinear, making conventional approaches
insufficient for modeling intricate spatiotemporal dependencies and dynamic spatial
correlations in transportation networks. To overcome these limitations, grid-based methods
have been proposed to extract spatiotemporal features by partitioning urban areas into regular
grids [4][5]. Nevertheless, these methods impose linear structures on inherently nonlinear
spatial relationships and ignore the true road network topology, limiting their ability to capture
dynamic and nonlinear spatial features.

In recent years, with the rapid advancement of deep learning techniques, graph convolutional
networks (GCNs) [6] have been increasingly employed for modeling non-Euclidean data. By
aggregating information from neighboring nodes, GCNs enable deep spatial feature learning
and extraction. Numerous studies have integrated GCNs with recurrent neural networks (RNNs)
and convolutional neural networks (CNNs) to develop various traffic flow prediction models

[7]. However, these methods often struggle to explicitly distinguish the interaction

relationships of nodes across different time periods Figure 8. They typically classify graphs into
either static or dynamic categories, assuming that dynamic graphs contain more valuable
information than static ones [9][10], yet they overlook the fact that static and dynamic graphs
represent structural and semantic information, respectively. Structural information encodes
stable spatial correlations that form the foundation of graph topology, while semantic
information captures time-dependent interactions such as intensified connections during peak
hours. Overemphasizing either aspect limits the ability to learn rich and intrinsic
spatiotemporal characteristics of traffic networks.

In recent years, with the rapid progress of deep learning, graph convolutional networks (GCNs)

[6] have been increasingly employed for modeling non-Euclidean data. By aggregating

information from neighboring nodes, GCNs enable deep spatial feature learning and extraction.
Numerous studies have integrated GCNs with recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) to develop various traffic flow prediction models [7].
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However, these methods often struggle to explicitly differentiate the interaction relationships
of nodes across different time periods [8]. Existing approaches typically classify graphs as
either static or dynamic, assuming that dynamic graphs provide more valuable information
[9][10]. However, this assumption overlooks the complementary roles of static and dynamic
graphs. Static graphs encode stable structural correlations among nodes, while dynamic graphs
capture time-dependent semantic relationships, such as intensified interactions during peak
hours. Overemphasizing either aspect limits a model’s ability to learn rich and intrinsic
spatiotemporal characteristics of traffic networks.

Additionally, most existing methods lack a thorough exploration of multi-scale temporal
dependencies, limiting their capacity to represent complex temporal patterns in traffic flow.
Many contemporary models [11][12] primarily rely on recent historical sequences, making
them effective only for short-term dependencies [13] while failing to capture long-term
temporal patterns. Moreover, several existing methods [14][15][16] employ fully connected or
densely structured graphs, allowing unrestricted information propagation between nodes.
While such architectures enhance information exchange, they also exacerbate the over-
smoothing problem [17], where node embeddings become excessively similar, ultimately
diminishing the model's ability to capture critical relationships.

Long term trend with periodicity (2017-06-07 to 2017-06-14)
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Fig.2 Comparative illustration of historical sequences from sensors 400236 and 400240
(PEMS-BAY dataset).

Most existing models rely on short-term inputs and thus fail to capture rich temporal
characteristics in historical traffic data. As shown in Figure 2, predicting traffic flow after 06:00
using only six-hour historical data is challenging because short-term trends from different
sensors are highly similar and lack sufficient discriminative information. In contrast,
incorporating long-term historical sequences enables the model to exploit long-term trends
and periodic patterns, as illustrated by the distinct recurring patterns in the lower panel of
Figure 2. However, directly using all time steps of long historical sequences are computationally
inefficient and introduces redundancy due to temporal continuity. Therefore, efficiently
extracting key informative representations from long-term sequences is crucial for improving
both prediction accuracy and efficiency.

To address the aforementioned challenges, this study proposes a Structure Semantic Aware
Multi-Graph Network (SSAMGN). Specifically, a structure-semantic coupled graph learning
(SSCGL) module is introduced to capture structural information via graph convolutional layers
with shared structural parameters, while leveraging a graph attention mechanism to model
node semantic relationships. Furthermore, a temporal-aware graph encoder (TAG Encoder)
based on self-sampling is designed to effectively extract historical information that is highly
correlated with future sequences. This encoder constructs historical, transformation, and
future graphs to enable temporally-aware graph feature encoding. Additionally, to enhance the
model’s focus on critical dependency relationships, a sparse graph learning module is
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developed to constrain the spatial receptive field and highlight node feature disparities.
Moreover, a temporal trend-aware self-attention (TASAtt) module is incorporated to effectively
capture the dynamic trends and periodic characteristics of the data.

The primary contributions of this study are summarized as follows:

1. A novel traffic flow prediction model, SSAMGN, is proposed to jointly learn both structural
and semantic aspects of graphs, enabling the extraction of intrinsic graph characteristics and
trend-aware traffic flow features.

2. A temporal-aware graph encoder based on a self-sampling strategy is introduced to sample
relevant historical sequences and incorporate temporal information into graph learning,
thereby capturing time-dependent features.

3. A sparse graph learning module is designed to enforce the identification of crucial and explicit
connections while constraining the spatial receptive field to preserve the unique characteristics
of nodes. Additionally, a trend-aware self-attention module has been designed to enable self-
attention to perceive local contextual information.

4. Extensive experiments on six real-world datasets demonstrate that the proposed SSAMGN
significantly outperforms state-of-the-art methods.

2. Related Works

2.1. Traffic flow forecasting

With the rapid advancement of transportation systems, accurate traffic flow forecasting has
become increasingly crucial due to the intricate spatiotemporal dependencies inherent in
traffic sequences. Traditional statistical methods, such as the autoregressive integrated moving
average (ARIMA) model [18] and the vector autoregression (VAR) model [19], have been
widely employed to analyze intrinsic patterns and stochastic perturbations in sequential data.
However, these methods often struggle to capture complex nonlinear dependencies. In recent
years, deep learning techniques have demonstrated remarkable success in sequence modeling.
For instance, long short-term memory (LSTM) networks [20] utilize memory cells to retain
historical information effectively. However, while LSTM-based models excel at capturing
temporal dependencies, they primarily focus on individual time series and overlook crucial
spatial interactions.

To address this limitation, an increasing number of studies have explored the potential of graph
neural networks (GNNs) [21], incorporating techniques such as self-attention mechanisms [22]
and graph convolutional networks (GCNs) [23] to capture spatial relationships among traffic
nodes. Despite their promising performance, existing models mainly rely on short-term
historical data to model local spatiotemporal dependencies and extract spatial information
through graph structures, while largely ignoring the diversity of temporal patterns in traffic
flow. The lack of multi-scale temporal modeling in graph learning leads to limited temporal
awareness, which in turn causes graph indistinguishability and hinders the effective capture of
complex temporal dynamics. Recent studies [24][25] have attempted to mitigate this issue by
constructing static graphs using entire historical sequences, which remain unchanged
throughout the forecasting process. However, such approaches fail to fully integrate diverse
temporal dependencies into the graph-based learning framework. Additionally, models such as
ST-WA [26] and STAR [27] have sought to extend the receptive field of historical sequences to
mitigate short-term dependency limitations. However, these methods often incur high
computational cost and struggle to capture long-range dynamic patterns. Efficiently integrating
multi-scale temporal dependencies into graph-based learning therefore remains a key
challenge in traffic flow forecasting.
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2.2. Spatiotemporal graph neural networks

Spatiotemporal graph neural networks (STGNNs) effectively model spatial and temporal
dependencies by integrating graph neural networks with sequence-to-sequence architectures,
where graph construction plays a central role in characterizing latent spatiotemporal
correlations. Early STGNN methods mainly relied on predefined graphs derived from real-
world road networks. For example, DCRNN [8] and STGCN [9] leveraged graph convolution
techniques to extract inter-node relationships based on static road networks. However, such
predefined graphs may not accurately reflect the underlying spatial dependencies due to
dynamic changes in traffic conditions. Consequently, data-driven approaches for learning
adaptive graphs have gained significant attention. Graph WaveNet [14], for instance, integrates
adaptive graph learning with graph convolution to dynamically capture hidden spatial
dependencies, achieving state-of-the-art results. Building upon this foundation, models such as
MTGNN [28], AGCRN [15], and STG-NCDE [29] have further enhanced adaptive graph modeling
by incorporating node-specific and localized graph learning mechanisms. In addition, recent
studies have underscored the limitations of static graph structures in representing dynamic
traffic patterns, leading to the development of dynamic graph learning techniques. Methods
such as GMAN [30] and ST-WA [26] employ self-attention mechanisms to dynamically update
inter-node relationships, effectively overcoming the constraints of static graphs. Similarly,
STDE-DGCN [31] constructs dynamic correlation graphs to capture fine-grained temporal
dependencies between nodes.

However, a key challenge remains. Static graphs model topology, while dynamic graphs
capture evolving semantics, and neglecting either limits intrinsic graph representation learning.
Moreover, fully connected dynamic graphs often cause excessive information diffusion,
degrading node-level features. Balancing structural consistency and dynamic adaptability
therefore remains a core challenge in STGNN-based traffic forecasting.

3. Preliminary

3.1. Traffic Flow

Traffic sequences represent a specific type of multivariate time series that encapsulate traffic-
related attributes, such as traffic flow, and consist of numerous interrelated variables or nodes.
In this study, the traffic sequence is denoted as X,.,,,., €/ ", where N represents the number
of nodes and T denotes the number of time steps. The traffic sequence of node i is expressed
as X/, el’.

+

3.2. Structural graph

Nodes in traffic networks exhibit structural connectivity based on their physical proximity
within the road network. Consequently, the traffic network can be represented as a structural
graph G={V,E}, where ¥ ={v,v,,--,v,} is the set of N nodes, and E represents the set of
structural edges. The structural edge connecting nodes i and ; is denoted as
e :(vi,vj,Ai’j)eE, where 4;; is the weight of the edge and corresponds to an element of the

adjacency matrix 4. Notably, due to the relative stability of the structural configuration of
traffic systems, the structural graph remains unchanged over time.

3.3. Semantic graph

Nodes in a traffic system often exhibit semantic relationships even when they are not
structurally connected. For instance, nodes located in different suburban residential areas may
display similar traffic patterns during specific time periods. The semantic relationships
between nodes at a given time step ¢ can be modeled as a dynamic semantic graph G, ={V,E},
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where E denotes the set of semantic edges at time step ¢. The semantic edge connecting nodes
i and j at time step ¢ is defined as ¢, =(v.v,.4,,,), where 4, =4(x,x/) quantifies the
significance of the semantic relationship based on the traffic states of nodes i and ; at
timestamp . The function ¢ is employed to generate semantic edges. Furthermore, the
corresponding semantic adjacency matrix is denoted as 4 . Unlike the structural graph, the
semantic graph is dynamic and evolves over time.

3.4. Problem of traffic flow forecasting

The objective of traffic flow forecasting is to predict the future sequence v,,,., e0™" over the

next 7, time steps based on the historical sequence X, ,, e[ ™" observed over the past 7, time

steps. Additionally, an extended historical sequence of length § is sampled for node i, denoted
as X' with ¢’ <¢, where X’ e *" . This sequence is considered relevant to the future

'+t + Ty {1+ T,

sequence Y/ e of node i, and is incorporated as an additional input sequence.

t+1:t+Ty

4. Methodology

4.1. Overall architecture

Figure 3 presents the overall framework of SSAMGN. First, a self-sampling strategy extracts
extended historical sequences relevant to the future sequence, which are aggregated into self-
sampling embeddings, while the recent historical sequence is transformed into a recent
historical embedding. Based on these embeddings, the TAG Encoder constructs three types of
graphs, including historical, transition, and future graphs, to capture distinct temporal
characteristics. The TAG Encoder consists of multiple SSCGL blocks that jointly learn structural
and semantic information, with sparse graph propagation applied to extract diverse node
features. The resulting representations are then processed by a trend-aware self-attention
mechanism to incorporate local contextual information and enhance sequence representation.
Finally, the time-aware graph embeddings are concatenated with the recent historical
embeddings, self-sampling embeddings, and spatiotemporal features for traffic prediction.
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4.2. Self-sampling and Series Aggregation

To capture various temporal dependencies and incorporate time-related information into
graph learning, this study proposes an adaptive sampling method, referred to as self-sampling,
to select S historical fragments from past sequences that exhibit significant correlation with
the target sequence v.,,., 0" . The parameter § is optimized through experimental tuning.

However, directly computing the similarity between historical sequences and the target
sequence incurs a computational complexity of O(Lz), where L denotes the total length of the

historical sequences in the dataset. To mitigate this issue, a self-supervised predictor is
employed as a classifier to predict the labels of future sequences, enabling the selection of
historically relevant sequences that share the same labels. This approach significantly reduces
computational complexity to a more manageable O(L).

The Self-Sampling mechanism primarily operates through the collaborative function of an
encoder and a label generator, extracting spatiotemporal features and generating authentic
labels for each sequence. The predictor is then trained using the most recent historical

sequence X, , to predict the label of the target sequence Y thereby effectively sampling

t+Lt+T, 7
S historical sequences that share the same label as the target sequence. To ensure the selection
of relevant sequences, capturing spatiotemporal semantics prior to sampling is crucial. To this
end, an efficient and effective encoder is designed to extract spatiotemporal features. Initially,
the raw sequence is randomly masked at a ratio » and linearly projected into a latent space:

Hli+l:t+T/ = Fcembedding (Ylilzt+T,~ ) (1)

e " represents the masked sequence of node i, and H’ ell”, with D being

t+L1+T;

where ¥’

(+1+T,
the hidden dimension.
Subsequently, spatial and temporal identity information £, 7,"”, and 7" are appended to the
representation:

Z g = Hor, | E T T (2)

t+1:t+T

where E, T, and 7" are learnable parameters corresponding to node identity, daily time,
and weekly date, respectively. The symbol || denotes the concatenation operation between
vectors. Following the inclusion of identity information, encoding is performed through L
layers of residual multi-layer perceptron (MLP):

70— g (ReLU(Fc{(Zf<’> )))+Z"<’> (3)

t+1:+7; t+Lt+T; t+1:t+7T

Finally, the embedding vector Z;ﬁjm e * is transformed via a regression layer to reconstruct

the original sequence, ensuring that the embedding retains critical information:
Y[il:f‘FT/ = FCregression (ZtlErQJrTf ) (4)

After obtaining spatiotemporal embeddings, relevant sequences are identified via
unsupervised clustering. To avoid imbalance and the omission of rare temporal patterns, k-
means with Euclidean distance is used for binary partitioning. The label generator is trained
only on the training set and applied to both training and validation data to prevent information
leakage.

Furthermore, during prediction, the future sequence Y/ remains unseen, necessitating that

t+1it+7T;
its label be inferred solely from the most recent historical sequence X, ;. Using the label ¢’

generated by the label generator as the ground truth, the predictor is trained to predict the label
of the future sequence from the most recent historical sequence. The historical sequence X,

t=T),t
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is first processed by an embedding layer, generating the embedded vector Z;f%) el1*”. Given that

sequences are clustered by nodes in the clustering stage, an MLP layer is applied to transform
the output representation into the predicted label:

oy, =argma{ FC,(1anh(FC; (2, (5)
where FC/ and FC, denote the fully connected networks for node iii.

Following the label prediction for future sequences, the most recent S historical sequences that
share the same predicted label with the future sequence are considered dependency sequences

and are thus sampled as X’ (' <t)en ™ . The final sampled sequences are first

independently linearly transformed into high-dimensional representations, then flattened and
linearly aggregated to construct the self-sampling embedding:

Hti"fis:‘t'JrTf = FC_g_yiagg (ﬂatlen(FCssiemb ()zvti'+1:t'+7} ))) (6)

where H% = ell” represents the Self-Sampling embedding of node iii. Additionally, the most

'+ + T,
recent historical sequence of node i, X, ,,, is also linearly projected into the most recent

historical embedding X% e .

t=T,:t

4.3. Structure-Semantic-Coupled Graph Learning

The Structure-Semantic-Coupled Graph Learning (SSCGL) module is designed to enhance the
structural-semantic coupling in graph learning, thereby improving the intrinsic feature
extraction capability of graphs. The detailed structure is illustrated in Figure 4. The input graph
embeddings are represented as the source embedding 7 1" and the target embedding
H* el1™” , where N denotes the number of nodes. The SSCGL simulates information
propagation from source to target embeddings by jointly leveraging structural and semantic
graph information. To alleviate over-smoothing, it adopts sparse propagation to restrict
receptive field diffusion, preserve node distinctiveness, and emphasize truly important
connections.

First, information is propagated through a sparse graph convolution based on the graph
structure:

Hrere = Soﬁmax(Sparsifj/(El E!, k)) H (7)

where H™"ell™” , and E,E! ell"” are learnable parameters representing the graph
structure. The operation (k) sets all elements in each row to —«, except for the top-k
elements, preventing node features from becoming indistinguishable during infinite

propagation. Then, the propagation from source embedding to target embedding is performed
based on the graph structure:

Htgl(l) — LayerNOI’m( Htgt + Hstructure) (8)
H? = LayerNorm(H ) | FeedForward (H rei(1) )) (9)

where H*" H*® )™ | After structural propagation, a multi-head sparse attention
mechanism is applied to capture semantic relationships:

0, =Gy, (H¥).K, = FG,, (H")¥, = FC. (1" (10)

query

H*""" = Sparse _Multihead _ Attention(Q,,K ,V,) (11)

where QK ,V,,H*"" el1™" . Subsequently, semantic information is propagated from the
source embedding to the target embedding:
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ngt(S) — LayerNorm( Hz‘gt(Z) + Hsemantic) (12)
H*"Y = LayerNorm (H “C) y FeedForward (H (%) )) (13)

where H*®) g 1 ™? and H*" serves as the output embedding of the SSCGL module.

source

(SSCGL Block
E (m————f—————-
|
m Sparse Graph Sparse Graph
ﬁ Convolution Convolution
£,

Feed Forward
Add & Norm

xL | —
L

Graph Embedding
Fig.4 Structure of the SSCGL module.

4.4. Temporal-Aware Graphs Encoder

To overcome limited temporal receptive fields and overlooked temporal dependencies in graph
learning, we propose the temporal-aware graphs encoder (TAG Encoder), as shown in Figure 5.
By constructing historical, transition, and future graphs, the TAG Encoder simulates dynamic
traffic interactions and injects temporal dependencies into graph learning. Integrated with
semantic modeling through multiple SSCGL blocks, it effectively captures distinctive
spatiotemporal graph features and alleviates graph indistinguishability.

Specifically, a linear transformation is first applied to the recent historical embeddings and the
self-sampled embeddings of the nodes:

H5 Y = FC, (H57) (14)

t=T,:t
HSS(O) _ Fngz (HSS (1 5)

'+ 1t'+T; '+ 1t +T; )

where H"™0 g¥0) <P These embeddings are further processed during learning and

t=T, P+ T,
encoded using three types of graphs to extract comprehensive spatiotemporal features.

Historical Graph:The historical graph is inferred solely from recent historical embeddings to
capture short-term spatiotemporal dependencies. The recent historical embeddings serve as
both source and target embeddings and are transformed by the SSCGL block. Within the SSCGL
module, the same graph parameters £™ and E;* are shared to construct the adjacency matrix
in sparse graph convolution.

Hhisz‘wy(lﬂ) = SSCGL (Hhisz‘wy(l) , Hhistmy(l) ) (1 6)

t=T),:t t=T),t t=T,,:t

After applying B SSCGL blocks, the final graph embedding of the historical graph is denoted as
Hhistnry(B) .

t=T),t

Transition Graph:To model traffic flow transitions, a directed bipartite graph is constructed,
where information propagates from recent historical embeddings to self-sampled embeddings
to capture spatiotemporal dependencies during the transition process. Similar to the historical
graph, SSCGL blocks are employed to capture spatial-temporal dependencies in the transitions,
and the graph structure parameters E£* and E; are shared across these blocks.
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HSS (1+1) SSCGL( hlston(B) H?‘S(/)I ) (17)

r+lt+7" t=T),:t PN+ T,

After B SSCGL blocks, the final graph embedding of the transition graph is denoted as H®

t+lr+T "
Future Graph:Node embeddings in the transition graph encode both short-term spatial
dependencies and node-level temporal dependencies. To further propagate temporal
information across nodes, a future graph is constructed to capture potential spatiotemporal
dependencies under future traffic states, with its embeddings initialized from the transition
graph embeddings.

Hfutme(o) —H ( ) (18)

141147 t'+1:t' +1

Subsequently, B SSCGL blocks with shared graph structure parameters E* and E¥ are
applied:

H = sSCL(Hlw) 1) (19)
Finally, the future graph embeddings are transformed into TAG embeddings:
Y., = FeedForward (H ") (20)
where A7, el ™.
H:j;aj;'no:
Q000!
source target
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Fig.5 Temporal-Aware Graph Embedding Module.

4.5. Trend-Aware Self-Attention Mechanism

To model traffic flow trends and complexity, we design a trend-aware self-attention mechanism
(TASAtt) that incorporates local contextual information. Self-attention computes queries, keys,
and values from the same sequence, while multi-head self-attention extends this mechanism by
attending to multiple representation subspaces in parallel. Its fundamental operation is defined
as follows:

Attention(Q,K,V) = softmax{ oK JV (21)

\l dmodel

10
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where Q represents the query, K denotes the key, and V' corresponds to the value.

Multi-head self-attention first projects the queries, keys, and values into multiple
representation subspaces and applies the attention function in parallel. The resulting outputs
are then concatenated and linearly projected to produce the final representation, which is
formulated as follows:

Self — Atlention(Q,K,V) = @(head1 .-+, head, )W" (22)
head ; = Attenlion(QWjQ,QWjK ,QWjV ) (23)

where  represents the number of attention heads, W?, w' , and W are the projection

matrices for Q, K, and V', respectively, while W].O denotes the projection matrix for the final

output. The multi-head self-attention mechanism provides a flexible approach to capturing the
complex correlation dynamics in traffic data, thereby enabling accurate long-term forecasting.
However, standard multi-head self-attention is designed for discrete tokens and fails to capture
local trend information in continuous sequences, making it less suitable for traffic signal
modeling. To address this limitation, TASAtt introduces convolutional self-attention, where
convolution operations explicitly encode local contextual features, enabling effective modeling
of local variation trends in traffic data. Formally, TASAtt is defined as follows:

Trendhead ; = Attention (Q * QY K= DF,V D ) (24)
where ®¢ and ®° represent the convolutional kernel parameters.

The input #™¢ ., and after operations on all nodes, the output is obtained as 7% <",

t+Lt+T, ) t+L+Ty

4.6. Forecasting Module

The proposed model employs a simple yet efficient MLP to generate predictions by integrating
rich spatiotemporal information from multiple branches, including recent historical
embeddings, self-sampling embeddings, TAG embeddings, spatiotemporal features, and trend-
aware attention outputs. These multi-branch embeddings are first concatenated as follows:

Z e, =HZ N H e | HESS NE T T (25)
where Z;}mr/ €1 °?. The predicted sequence ¥’ is then obtained using Equations (3) and (4).

t+|:[+T/

5. Experiment

5.1. Datasets

Six publicly available traffic datasets were utilized in the experiments: METR-LA, PEMS-BAY,
PEMSO03, PEMS04, PEMS07, and PEMS08. These datasets were collected using loop detectors
deployed on highways to obtain traffic data for corresponding road segments. Among them,
METR-LA records traffic speed data from highways in Los Angeles, while PEMS-BAY contains
traffic speed data from the San Francisco Bay Area. PEMS03, PEMS04, PEMS07, and PEMS08
consist of real-time traffic data collected by the Performance Measurement System (PeMS) of
the California Department of Transportation at 30-second intervals. These datasets include
information such as detection locations, detection dates, and data types. Detailed information
on the experimental datasets is presented in Table 1.

Detailed information on the datasets. In the "Data Type" column, 'F' represents traffic flow, 'S’

Table 1 Denotes traffic speed, and 'O' indicates traffic occupancy.
Datasets Nodes Edges Time Steps Time interval Data type Time Range

METR-LA 207 1515 34272 5 min S 03/2012-06/2012
PEMS-BAY 325 2369 52116 5 min S 01/2017-05/2017
PeMS03 358 547 26208 5 min F 09/2018-11/2018
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PeMS04 307 340 16992 5 min FS,0 01/2018-02/2018
PeMS07 883 866 28224 5 min F 05/2017-08/2017
PeMS08 170 259 17856 5 min ES 0 07/2016-08/2016

5.2. Experimental settings and hyperparameters
Traffic flow for the next 60 minutes (7, =12). The PEMS03, PEMS04, PEMS07, and PEMS08

datasets were divided into training, validation, and test sets in a ratio of 6:2:2, while the METR-
LA and PEMS-BAY datasets were split in a 7:1:2 ratio. A self-sampling strategy was employed,
with the sampling number 5 set to 7, determined through sensitivity analysis. When the
historical sequence length was insufficient for sampling, the nearest historical sequence was
used as a supplement to ensure the completeness of the input sequence. The hidden dimension
D was set to 32, and the number of self-sampling encoding layers L was set to 4. To mitigate
the randomness of clustering, each k-means algorithm was executed ten times, and the result
with the smallest intra-cluster distance was selected. For the TAG Encoder, the number of
SSCGL Blocks per graph was set to 2, and the sparsity parameter was set to 10. The training
batch size was set to 32, and the Adam optimizer was used with a learning rate of 0.001. All
experiments were conducted on a computing platform equipped with a 22 vCPU AMD EPYC
7T83 64-Core Processor and an RTX 4090 GPU.

5.3. Baselines

A comprehensive comparison was conducted between SSAMGN and various baseline models
across different categories:

Traditional machine learning models: HA [18], ARIMA [18], VAR [19], and FC-LSTM [20].

Graph convolution-based models: GCRN [32], STGCN [9], STSGCN [33], DCRNN [8], Graph
WaveNet [14], MTGNN [28], AGCRN [15], Z-GCNETs [34], STGODE [35], and STG-NCDE [29].

Attention-based models: ASTGCN(r) [36], GMAN [30], ASTGNN [13], DSTAGNN [24], ST-WA
[26], and MSSTAT [25].

Non-graph-based models: STNorm [37] and STID [38].

5.4. Evaluation metrics

The performance of the model is evaluated using the Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and Mean Absolute Percentage Error (MAPE), which are defined as
follows:

1 K
MAE = E Z|Xtme(k) - Xpred(k)| (2 6)
k=1
1 LS Xtrue(k) _Xl"'ed(k)|
K ;| me(k) |
1 & 2
RMSE = \/zZ(me(k) - Xp’@d(k)) (28)
k=1

where X, , represents the actual values, x, , denotes the predicted values, and X is the
number of samples. Lower values of MAE, RMSE, and MAPE indicate better predictive

performance of the model.

5.5. Performance comparisons

In the traffic prediction experiments, the performance of the proposed SSAMGN model was
evaluated on two types of benchmark datasets: traffic speed datasets (METR-LA and PEMS-BAY)
and traffic flow datasets (PeMS03, PeMS04, PeMS07, and PeMS08). For METR-LA and PEMS-
BAY, traffic speed predictions were conducted for time horizons of 15, 30, and 60 minutes.
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Meanwhile, for PeMS03, PeMS04, PeMS07, and PeMS08, the experiments focused on predicting
the average traffic flow over the next hour. The results of different models are summarized in
Table 2Table 3 and Table 4, where the best performance is highlighted in bold, and the second-
best results are underlined.

Overall, SSAMGN consistently outperformed all baseline models across all datasets, particularly
in long-term forecasting tasks, demonstrating its strong ability to capture complex
spatiotemporal dependencies and traffic trends. Traditional methods such as HA, VAR, and FC-
LSTM exhibited inferior performance due to their limited capacity to model spatial
dependencies. Although GCN-based models (e.g., STGCN and DCRNN) improve spatial modeling
by incorporating predefined graphs, their reliance on fixed graph structures restricts their
ability to reflect real-world spatial relationships. Adaptive graph-based models, including
AGCRN and STG-NCDE, further enhance spatial representation but primarily focus on static
graph structures, making them less effective in capturing dynamic semantic relationships
among nodes. To address this, attention-based models such as GMAN and ST-WA introduce self-
attention mechanisms to model dynamic dependencies; however, their inability to learn precise
graph structures leads to suboptimal performance on datasets requiring fine-grained spatial
modeling, such as PeMS03.

Despite these advances, existing methods generally overlook the inseparability of graph
structures, as they tend to model either static topology or dynamic semantics independently. In
contrast, SSAMGN explicitly incorporates time-dependent graph structure learning, enabling
the joint modeling of traffic trends and complex spatiotemporal interactions, thereby achieving
more accurate predictions. To further validate its effectiveness, visualization experiments were
conducted on the PeMS04 and PeMS08 datasets, where SSAMGN was compared with STSGCN
and ASTGCN(r) for 12-step-ahead forecasting, as shown in Figure 6. The results indicate that
the prediction errors of STSGCN and ASTGCN(r) increase rapidly with longer horizons,
reflecting error accumulation and limited long-term modeling capability. In comparison,
SSAMGN exhibits more stable error growth across MAE, MAPE, and RMSE, highlighting its
superior performance in long-term traffic forecasting..
Table 2 Traffic speed prediction results of different methods on METR-LA and PEMS-BAY

15min 30min 60min
batasets  Methods  —yre Ry icE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)
HA 479 1000 1170 547 1145 1350 699 13.89 17.54
ARIMA 399 821 960 515 1045 1270 690 1323 17.40
VAR 442 789 1020 541 913 127 652 1011  15.80
FCLSTM 344 630 960 377 723 1090 437 869  14.00
GCRN 303 575 826 354 692 1011 432 848  13.05
STGCN 288 574 762 347 724 957 459 940 1270

STSGCN 331 7.62 8.06 413 9.77 10.29 506 1166 1291
DCRNN 2.77 5.38 7.30 3.15 6.45 8.80 3.60 7.59 10.50
Graph WaveNet 2.69 5.15 6.90 3.07 6.22 8.37 3.53 737 10.01

METR-  "MTGNN 269 518 6.88 305 617 819 349 723 987
LA AGCRN 285 553 763 320 652 900 359 745 1047
7-GCNETs 323 748 787 393 940 975 483 1157 12.04
STGODE 347 676 876 436 847 1114 550 1033 1432
STG-NCDE 377 947 854 484 1204 1063 635 1494 1349
ASTGCN(r) 486 927 921 543 1061 1013 651 1252 11.64

GMAN 280 555 741 302 649 873 344 735  10.07

STNorm 281 557 740 318 659 847 357 751 1024

STID 282 553 775 319 657 939 355 755 1095

SSAMGN (ours) 270 528 718 3.2 611 825 338 7.09 9.75
PEMS- HA 189 430 416 250 582 562 331 754  7.65
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BAY ARIMA 1.62 3.30 3.50 2.33 4.76 5.40 3.38 6.50 8.30
VAR 1.74 3.16 3.60 232 425 5.00 293 5.44 6.50

FC-LSTM 2.05 4.19 4.80 2.20 4.55 5.20 2.37 4.96 5.70

GCRN 146 3.06 3.22 1.88 4.17 434 240 5.36 5.89

STGCN 1.36 2.96 2.90 1.81 4.27 4.17 249 5.69 5.79

STSGCN 144 3.01 3.04 1.83 4.18 4.17 226 5.21 5.40
DCRNN 1.38 2.95 2.90 1.74 3.97 3.90 2.07 447 4.90
Graph WaveNet 1.30 2.74 2.73 1.63 3.70 3.67 195 4.52 4.63
MTGNN 1.32 2.79 2.77 1.65 3.74 3.69 194 449 4.53
AGCRN 1.37 2.87 2.94 1.69 3.85 3.87 1.96 4.54 4.64
Z-GCNETs 1.36 2.86 2.88 1.68 3.78 3.79 198 4.53 4.60
STGODE 143 2.88 2.99 1.84 3.90 3.84 2.30 4.89 4.61
STG-NCDE 1.38 2.93 291 1.71 3.84 391 2.03 4.58 4.82
ASTGCN(r) 1.52 3.13 3.22 2.01 4.27 448 2.61 542 6.00

GMAN 1.34 292 2.88 1.65 3.81 3.71 1.89 4.38 4.51
STNorm 1.33 2.82 2.76 1.65 3.77 3.66 192 445 4.46
STID 1.31 2.79 2.78 1.64 3.73 3.73 191 442 4.55

SSAMGN (ours) 1.30 2.72 2.73 1.59 3.62 3.57 1.85 4.36 4.35

Table 3 Traffic flow prediction results of different methods on PeMS03 and PeMS07

PeMS03 PeMS07
Methods
MAE RMSE MAPE (%) MAE RMSE MAPE (%)

HA 31.58 52.39 33.78 45.12 65.64 24.51
ARIMA 35.41 47.59 33.78 38.17 59.27 19.46
VAR 23.65 38.26 24.51 50.22 75.63 32.22
FC-LSTM 21.33 35.11 23.33 29.98 45.94 13.20
GCRN 19.88 33.20 19.71 31.03 48.70 15.67
STGCN 17.55 30.42 17.34 25.33 39.34 11.21
STSGCN 17.48 29.21 16.78 24.26 39.03 10.21
DCRNN 17.99 30.31 18.34 25.22 38.61 11.82
Graph WaveNet 19.12 32.77 18.89 26.39 41.50 11.97
MTGNN 14.85 25.23 14.55 21.01 34.14 8.92
AGCRN 16.03 28.52 14.65 22.37 35.70 9.55
Z-GCNETSs 16.64 28.15 16.39 21.77 35.17 9.25
STGODE 16.50 27.84 16.69 22.59 37.54 10.14
STG-NCDE 15.57 27.09 15.06 20.53 33.84 8.80
ASTGCN(r) 17.34 29.56 17.21 24.01 37.87 10.73
GMAN 16.87 27.92 18.23 20.43 33.30 8.69
ASTGNN 14.78 25.00 14.79 19.83 32.87 8.53
DSTAGNN 15.57 27.21 14.68 21.42 34,51 9.01
ST-WA 15.56 27.39 14.80 21.23 34.57 9.06
MSSTAT 15.35 25.39 15.66 19.78 32.85 8.73
STNorm 15.32 25.93 14.37 20.59 34.86 8.61
STID 15.33 27.40 16.40 19.54 32.85 8.25
SSAMGN (ours) 14.64 24.06 14.52 19.13 32.73 8.05
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Table 4 Traffic flow prediction results of different methods on PeMS04 and PeMS08

PeMS04 PeMS08
Methods
MAE RMSE MAPE (%) MAE RMSE MAPE (%)

HA 38.03 59.24 27.88 34.86 59.24 27.88
ARIMA 33.73 48.80 24.18 31.09 44.32 22.73
VAR 24.54 38.61 17.24 19.19 29.81 13.10
FC-LSTM 26.77 40.65 18.23 23.09 35.17 14.99
GCRN 26.73 41.56 19.20 21.28 33.46 14.15
STGCN 21.16 34.89 13.83 17.50 27.09 11.29
STSGCN 21.19 33.65 13.90 17.13 26.80 10.96
DCRNN 21.22 33.44 14.17 16.82 26.36 10.92
Graph WaveNet  24.89 39.66 17.29 18.28 30.05 12.15
MTGNN 19.13 31.03 13.22 15.25 24.22 10.66
AGCRN 19.89 32.86 13.37 16.13 25.52 10.21
Z-GCNETs 19.50 31.61 12.78 15.76 25.11 10.01
STGODE 20.84 32.82 13.77 16.81 25.97 10.62
STG-NCDE 19.21 31.09 12.76 15.45 24.81 9.92
ASTGCN(r) 22.93 35.33 16.56 18.25 28.06 11.64
GMAN 18.83 30.93 13.21 14.81 24.19 9.69
ASTGNN 18.60 29.97 12.63 14.97 23.51 9.49
DSTAGNN 19.30 31.46 12.70 15.67 24.77 9.94
ST-WA 19.30 30.83 12.67 16.06 25.03 10.39
MSSTAT 18.57 30.37 12.23 14.03 23.44 9.34
STNorm 19.21 32.30 13.05 15.39 24.80 9.91
STID 18.29 29.82 12.49 14.20 23.49 9.28
SSAMGN (ours) 18.26 29.77 12.49 14.08 23.36 9.24

To provide a more intuitive evaluation of the proposed method, a 12-step-ahead prediction
visualization was conducted on the PeMS04 and PeMS08 datasets, comparing SSAMGN with
STSGCN and ASTGCN(r), as shown in Figure 6. As the forecasting horizon extends to 12 steps,
STSGCN and ASTGCN(r) exhibit a pronounced increase in prediction errors, indicating their
limited ability to capture long-term traffic flow trends. This suggests that most existing methods
struggle to model long-term patterns and periodic characteristics of traffic data, resulting in
error accumulation and degraded predictive accuracy. In contrast, SSAMGN consistently
achieves lower MAE, MAPE, and RMSE, while maintaining a more stable error growth as the
prediction horizon increases, demonstrating its superior long-term forecasting capability.
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Fig.6 Comparison of prediction results for different methods across various horizons

5.6. Ablation experiments

The SSAMGN model consists of four core components with distinct functionalities: the SSCGL
block jointly captures structural and semantic information from traffic graphs; the temporal-
aware graph (TAG) module enables multi-scale temporal dependency modeling during graph
learning; the Sparse Information Propagation mechanism improves interpretability and
supports explicit graph structure learning; and the trend-aware self-attention (TASAtt)
mechanism captures contextual sequence patterns to enhance long-term forecasting accuracy.
The definitions of each variant are as follows:

w/o Structure Learning:The graph convolutional layers responsible for learning structural
information in the SSCGL block were removed.

w/o Semantic Learning:The graph attention layers responsible for capturing semantic
relationships in the SSCGL block were removed.

w/o Temporal-Aware Graphs: Only historical graphs were retained, while the transformation
and future graphs in the TAG encoder were removed. Additionally, the historical graphs were
constructed solely based on the most recent historical sequences.

w/o Sparsity:The learned graphs were fully connected and dense, where all nodes were
completely connected.
w/o TASAtt:The trend-aware self-attention mechanism was removed from the model.

As shown in Table 5 and Figure 7, SSAMGN consistently outperforms all variants,
demonstrating the effectiveness of each proposed component. Notably, removing structural
learning causes more severe performance degradation than removing semantic learning,
highlighting the fundamental role of structural information in traffic prediction. This suggests
that structural graph connectivity provides the basis for semantic relationship modeling, as
nodes with stronger structural connections tend to exhibit stronger semantic correlations.
Moreover, the inferior performance of the w/o Temporal-Aware Graphs variant indicates that
incorporating temporal dependencies substantially enhances spatial graph discrimination by
expanding the temporal receptive field through the self-sampling strategy. The performance
drop observed in the w/o Sparsity variant further confirms the importance of maintaining
appropriate graph sparsity, since overly dense graphs dilute node-level attention and weaken
critical relationships. Finally, the degradation in the w/o TASAtt variant verifies the essential
role of trend-aware self-attention in capturing contextual information for long-term traffic
forecasting.
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Table 6. Traffic flow prediction results of different methods on PeMS04 and PeMS08

Architecture PeM503 PeM504
MAE RMSE MAPE (%) MAE RMSE  MAPE (%)

w/o Structure Learning 1491 25.35 15.13 18.51 30.15 13.24
w/o Semantic Learning 14.66 24.76 15.08 18.46 30.13 12.89
w/o Temporal-Aware Graphs 14.82 26.59 15.10 18.48 30.10 12.84
w/o Sparsity 14.72 2481 15.05 18.53  30.16 13.13
w/o TASAtt 14.68 24.79 15.06 1848  30.11 12.78
SSAMGN (ours) 14.64 24.06 14.52 18.26  29.77 12.49

Specifically, compared to the "w/o Structure Learning” model, SSAMGN shows improvements
of 1.81%, 5.09%, and 4.04% in MAE, RMSE, and MAPE, respectively, on the PeMS03 dataset. On
the PeMS04 dataset, it achieves improvements of 1.35%, 1.26%, and 5.67%, respectively.
Similarly, when compared to the "w/o Semantic Learning”" model, SSAMGN demonstrates
improvements of 0.14%, 2.83%, and 3.72% on the PeMS03 dataset, and 1.08%, 1.19%, and 3.11%
on the PeMS04 dataset. Although comparisons with other variants are omitted for brevity, the
proposed modules significantly contribute to the overall performance improvement of
SSAMGN.
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5.7. Visualization

Fig.7 Component analysis of SSAMGN

To further evaluate SSAMGN, a comparative visualization analysis between ground-truth traffic
flow and predicted values was conducted across multiple datasets. As shown in Figure 8, both
short-term forecasting with a prediction horizon of 3 and long-term forecasting with a horizon
of 12 were analyzed. The results demonstrate that SSAMGN maintains strong consistency with
actual traffic flows over different time spans and effectively captures peak-hour patterns and
overall traffic trends, indicating a solid understanding of traffic dynamics and strong
generalization ability.

On the PeMS03, PeMS04, and PeMS07 datasets, SSAMGN accurately captures sharp fluctuations
during peak traffic periods, where many existing methods often fail. Although prediction errors
increase slightly during highly volatile intervals, especially in long-term forecasting, the model
still achieves reliable accuracy. Overall, these results confirm that SSAMGN can precisely model
periodic traffic patterns while remaining robust to non-periodic variations and anomalous
fluctuations across diverse traffic conditions.

]
|
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MAPE (%)
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Fig.8 Visualization of actual and predicted values across different datasets

5.8. Spatial complexity study

Table 6 provides a summary of the total number of parameters for each model, while Figure 9
visualizes the relationship between parameter size and RMSE on the PeMS08 dataset. Notably,
the SSAMGN model has a parameter size of only 1,120,174 bytes, which is significantly smaller
than traditional models such as ASTGCN(r) and STGCN and even slightly more compact than
DCRNN. As depicted in Figure 9, SSAMGN maintains a competitive balance between a relatively
small parameter size and high predictive accuracy, underscoring its advantage in spatial
complexity. These findings validate that the proposed model can achieve superior predictive
performance while maintaining computational efficiency, making it well-suited for deployment
in resource-constrained environments.

Table 6. Traffic flow prediction results of different methods on PeMS04 and PeMS08
Methods ASTGCN(r) DCRNN STGCN SSAMGN
Total Parameters (Byte) 2,251,496 1,187,844 2,171,140 1,120,174
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Spatial Complexity vs RMSE
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Fig.9 Comparison of the total number of model parameters and RMSE

6. Conclusion

This study presents SSAMGN, a novel traffic flow prediction model designed to address graph
indistinguishability in traffic forecasting. By integrating graph structural information with
semantic features through joint learning, the model enhances the representation of network
characteristics. SSAMGN employs an adaptive sampling strategy and a temporal-aware graph
encoder to capture multi-scale temporal dependencies while leveraging a constrained spatial
receptive field to mitigate over-smoothing, ensuring more refined node feature extraction.
Additionally, the trend-aware multi-head attention mechanism improves the capture of local
contextual information, enhancing the model’s ability to identify complex temporal trends in
traffic data. Experiments on six real-world datasets demonstrate that SSAMGN consistently
outperforms state-of-the-art baselines, achieving superior prediction accuracy.

Future work will focus on optimizing spatiotemporal graph construction and incorporating
external factors such as weather, traffic incidents, and holidays to further improve prediction
robustness.
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