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Abstract 

Accurate traffic prediction plays a vital role in improving the safety, stability, and 
efficiency of intelligent transportation systems. However, existing methods often 
construct graphs that inherently entangle spatial and temporal information, failing to 
provide effective discriminative features. This limitation impairs the accurate 
representation of dynamic node interactions, thereby restricting the model’s ability to 
capture traffic flow trends and periodic characteristics. To overcome this challenge, this 
paper introduces a novel Structure-Semantic Aware Multi-Graph Network (SSAMGN). 
First, we propose a graph learning module that jointly learns both the structural and 
semantic characteristics of the graph, adaptively generating sparse graphs to extract 
distinctive node features. Second, we develop a self-sampling approach that efficiently 
selects relevant historical sequences, coupled with a temporal-aware graph encoder that 
integrates temporal information into graph learning, thereby capturing unique 
temporal dependencies. Furthermore, we introduce an innovative temporal-aware 
attention mechanism, which leverages local contextual information to facilitate 
numerical sequence representation transformation, thereby enhancing the model’s 
ability to learn traffic flow trends and periodic patterns. Extensive experiments on six 
publicly available datasets demonstrate that SSAMGN effectively alleviates the 
indistinguishability issue in graph representations and achieves state-of-the-art 
performance in traffic prediction tasks. 

Keywords 

Traffic flow forecasting; Graph neural networks; Temporal-aware graphs; Attention 
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1. Introduction 

In recent years, the rapid advancement of information technology and the continuous increase 
in motor vehicle ownership have significantly driven the development of intelligent 
transportation systems (ITS). Accurate traffic flow prediction plays a crucial role in reflecting 
real-time traffic conditions and assisting urban management departments in making informed 
scheduling decisions [1]. Moreover, various downstream tasks, such as travel time estimation, 
heavily rely on the accuracy of traffic flow prediction. As a result, traffic flow prediction has 
emerged as a key research focus in ITS. 

Traffic flow data exhibit inherent time-series properties with complex temporal dependencies 
and dynamic spatial correlations. Temporal dependencies mainly arise from periodic and trend 
patterns, where traffic conditions at the same location show recurring similarities across days 
or within a day. Meanwhile, dynamic spatial correlations reflect mutual influences among 
different locations. As shown in Figure 1, relationships between nodes in a traffic network 
evolve over time, making static graph structures inadequate for capturing real-world 
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interactions. In practice, node connectivity should be dynamically updated based on real-time 
data. For example, strong spatial correlations emerge between areas near schools and business 
districts during morning rush hours, but weaken during off-peak periods. These observations 
highlight the intricate and nonlinear spatiotemporal characteristics of traffic flow data. 
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Fig.1 Complex spatiotemporal correlations. (a) A road network with loop detectors. (b) The 

corresponding spatiotemporal correlations of the loop detectors in (a). Although sensor 2 and 
sensor 4 are physically distant in the road network, at time step , sensor 2 and sensor 

4 are closely correlated, illustrating the dynamic long- and short-term spatial relationships in 
traffic flow. Furthermore, the traffic flow at sensor 4 during time step  might be more 

closely related to a distant time step (e.g., ) than a nearby one (e.g., ), indicating the 

presence of complex nonlinear temporal relationships in traffic flow. 

Traditional traffic flow prediction methods, such as the historical average (HA) model [2] and 
the autoregressive integrated moving average (ARIMA) model [3], rely heavily on idealized 
mathematical assumptions and are limited to modeling linear relationships. However, real-
world traffic data are highly complex, dynamic, and nonlinear, making conventional approaches 
insufficient for modeling intricate spatiotemporal dependencies and dynamic spatial 
correlations in transportation networks. To overcome these limitations, grid-based methods 
have been proposed to extract spatiotemporal features by partitioning urban areas into regular 
grids [4][5]. Nevertheless, these methods impose linear structures on inherently nonlinear 
spatial relationships and ignore the true road network topology, limiting their ability to capture 
dynamic and nonlinear spatial features. 

In recent years, with the rapid advancement of deep learning techniques, graph convolutional 
networks (GCNs) [6] have been increasingly employed for modeling non-Euclidean data. By 
aggregating information from neighboring nodes, GCNs enable deep spatial feature learning 
and extraction. Numerous studies have integrated GCNs with recurrent neural networks (RNNs) 
and convolutional neural networks (CNNs) to develop various traffic flow prediction models 
[7]. However, these methods often struggle to explicitly distinguish the interaction 
relationships of nodes across different time periods Figure 8. They typically classify graphs into 
either static or dynamic categories, assuming that dynamic graphs contain more valuable 
information than static ones [9][10], yet they overlook the fact that static and dynamic graphs 
represent structural and semantic information, respectively. Structural information encodes 
stable spatial correlations that form the foundation of graph topology, while semantic 
information captures time-dependent interactions such as intensified connections during peak 
hours. Overemphasizing either aspect limits the ability to learn rich and intrinsic 
spatiotemporal characteristics of traffic networks. 

In recent years, with the rapid progress of deep learning, graph convolutional networks (GCNs) 
[6] have been increasingly employed for modeling non-Euclidean data. By aggregating 
information from neighboring nodes, GCNs enable deep spatial feature learning and extraction. 
Numerous studies have integrated GCNs with recurrent neural networks (RNNs) and 
convolutional neural networks (CNNs) to develop various traffic flow prediction models [7]. 

1t + +

1t + +

1t − t +
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However, these methods often struggle to explicitly differentiate the interaction relationships 
of nodes across different time periods [8]. Existing approaches typically classify graphs as 
either static or dynamic, assuming that dynamic graphs provide more valuable information 
[9][10]. However, this assumption overlooks the complementary roles of static and dynamic 
graphs. Static graphs encode stable structural correlations among nodes, while dynamic graphs 
capture time-dependent semantic relationships, such as intensified interactions during peak 
hours. Overemphasizing either aspect limits a model’s ability to learn rich and intrinsic 
spatiotemporal characteristics of traffic networks. 

Additionally, most existing methods lack a thorough exploration of multi-scale temporal 
dependencies, limiting their capacity to represent complex temporal patterns in traffic flow. 
Many contemporary models [11][12] primarily rely on recent historical sequences, making 
them effective only for short-term dependencies [13] while failing to capture long-term 
temporal patterns. Moreover, several existing methods [14][15][16] employ fully connected or 
densely structured graphs, allowing unrestricted information propagation between nodes. 
While such architectures enhance information exchange, they also exacerbate the over-
smoothing problem [17], where node embeddings become excessively similar, ultimately 
diminishing the model's ability to capture critical relationships. 

 
Fig.2 Comparative illustration of historical sequences from sensors 400236 and 400240 

(PEMS-BAY dataset). 

Most existing models rely on short-term inputs and thus fail to capture rich temporal 
characteristics in historical traffic data. As shown in Figure 2, predicting traffic flow after 06:00 
using only six-hour historical data is challenging because short-term trends from different 
sensors are highly similar and lack sufficient discriminative information. In contrast, 
incorporating long-term historical sequences enables the model to exploit long-term trends 
and periodic patterns, as illustrated by the distinct recurring patterns in the lower panel of 
Figure 2. However, directly using all time steps of long historical sequences are computationally 
inefficient and introduces redundancy due to temporal continuity. Therefore, efficiently 
extracting key informative representations from long-term sequences is crucial for improving 
both prediction accuracy and efficiency. 

To address the aforementioned challenges, this study proposes a Structure Semantic Aware 
Multi-Graph Network (SSAMGN). Specifically, a structure-semantic coupled graph learning 
(SSCGL) module is introduced to capture structural information via graph convolutional layers 
with shared structural parameters, while leveraging a graph attention mechanism to model 
node semantic relationships. Furthermore, a temporal-aware graph encoder (TAG Encoder) 
based on self-sampling is designed to effectively extract historical information that is highly 
correlated with future sequences. This encoder constructs historical, transformation, and 
future graphs to enable temporally-aware graph feature encoding. Additionally, to enhance the 
model’s focus on critical dependency relationships, a sparse graph learning module is 



International Journal of Science Volume 13 Issue 1, 2026 

ISSN: 1813-4890  
 

4 

developed to constrain the spatial receptive field and highlight node feature disparities. 
Moreover, a temporal trend-aware self-attention (TASAtt) module is incorporated to effectively 
capture the dynamic trends and periodic characteristics of the data. 

The primary contributions of this study are summarized as follows: 

1. A novel traffic flow prediction model, SSAMGN, is proposed to jointly learn both structural 
and semantic aspects of graphs, enabling the extraction of intrinsic graph characteristics and 
trend-aware traffic flow features. 

2. A temporal-aware graph encoder based on a self-sampling strategy is introduced to sample 
relevant historical sequences and incorporate temporal information into graph learning, 
thereby capturing time-dependent features. 

3. A sparse graph learning module is designed to enforce the identification of crucial and explicit 
connections while constraining the spatial receptive field to preserve the unique characteristics 
of nodes. Additionally, a trend-aware self-attention module has been designed to enable self-
attention to perceive local contextual information. 

4. Extensive experiments on six real-world datasets demonstrate that the proposed SSAMGN 
significantly outperforms state-of-the-art methods. 

2. Related Works 

2.1. Traffic flow forecasting 

With the rapid advancement of transportation systems, accurate traffic flow forecasting has 
become increasingly crucial due to the intricate spatiotemporal dependencies inherent in 
traffic sequences. Traditional statistical methods, such as the autoregressive integrated moving 
average (ARIMA) model [18] and the vector autoregression (VAR) model [19], have been 
widely employed to analyze intrinsic patterns and stochastic perturbations in sequential data. 
However, these methods often struggle to capture complex nonlinear dependencies. In recent 
years, deep learning techniques have demonstrated remarkable success in sequence modeling. 
For instance, long short-term memory (LSTM) networks [20] utilize memory cells to retain 
historical information effectively. However, while LSTM-based models excel at capturing 
temporal dependencies, they primarily focus on individual time series and overlook crucial 
spatial interactions. 

To address this limitation, an increasing number of studies have explored the potential of graph 
neural networks (GNNs) [21], incorporating techniques such as self-attention mechanisms [22] 
and graph convolutional networks (GCNs) [23] to capture spatial relationships among traffic 
nodes. Despite their promising performance, existing models mainly rely on short-term 
historical data to model local spatiotemporal dependencies and extract spatial information 
through graph structures, while largely ignoring the diversity of temporal patterns in traffic 
flow. The lack of multi-scale temporal modeling in graph learning leads to limited temporal 
awareness, which in turn causes graph indistinguishability and hinders the effective capture of 
complex temporal dynamics. Recent studies [24][25] have attempted to mitigate this issue by 
constructing static graphs using entire historical sequences, which remain unchanged 
throughout the forecasting process. However, such approaches fail to fully integrate diverse 
temporal dependencies into the graph-based learning framework. Additionally, models such as 
ST-WA [26] and STAR [27] have sought to extend the receptive field of historical sequences to 
mitigate short-term dependency limitations. However, these methods often incur high 
computational cost and struggle to capture long-range dynamic patterns. Efficiently integrating 
multi-scale temporal dependencies into graph-based learning therefore remains a key 
challenge in traffic flow forecasting. 
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2.2. Spatiotemporal graph neural networks 

Spatiotemporal graph neural networks (STGNNs) effectively model spatial and temporal 
dependencies by integrating graph neural networks with sequence-to-sequence architectures, 
where graph construction plays a central role in characterizing latent spatiotemporal 
correlations. Early STGNN methods mainly relied on predefined graphs derived from real-
world road networks. For example, DCRNN [8] and STGCN [9] leveraged graph convolution 
techniques to extract inter-node relationships based on static road networks. However, such 
predefined graphs may not accurately reflect the underlying spatial dependencies due to 
dynamic changes in traffic conditions. Consequently, data-driven approaches for learning 
adaptive graphs have gained significant attention. Graph WaveNet [14], for instance, integrates 
adaptive graph learning with graph convolution to dynamically capture hidden spatial 
dependencies, achieving state-of-the-art results. Building upon this foundation, models such as 
MTGNN [28], AGCRN [15], and STG-NCDE [29] have further enhanced adaptive graph modeling 
by incorporating node-specific and localized graph learning mechanisms. In addition, recent 
studies have underscored the limitations of static graph structures in representing dynamic 
traffic patterns, leading to the development of dynamic graph learning techniques. Methods 
such as GMAN [30] and ST-WA [26] employ self-attention mechanisms to dynamically update 
inter-node relationships, effectively overcoming the constraints of static graphs. Similarly, 
STDE-DGCN [31] constructs dynamic correlation graphs to capture fine-grained temporal 
dependencies between nodes. 

 However, a key challenge remains. Static graphs model topology, while dynamic graphs 
capture evolving semantics, and neglecting either limits intrinsic graph representation learning. 
Moreover, fully connected dynamic graphs often cause excessive information diffusion, 
degrading node-level features. Balancing structural consistency and dynamic adaptability 
therefore remains a core challenge in STGNN-based traffic forecasting. 

3. Preliminary 

3.1. Traffic Flow 

Traffic sequences represent a specific type of multivariate time series that encapsulate traffic-
related attributes, such as traffic flow, and consist of numerous interrelated variables or nodes. 
In this study, the traffic sequence is denoted as 1:

N T

t t TX 

+ +  , where N  represents the number 

of nodes and T  denotes the number of time steps. The traffic sequence of node i  is expressed 
as 1:

i T

t t TX + +  . 

3.2. Structural graph 

Nodes in traffic networks exhibit structural connectivity based on their physical proximity 
within the road network. Consequently, the traffic network can be represented as a structural 
graph  ,G V E= , where  1 2, , , NV v v v=  is the set of N  nodes, and E  represents the set of 

structural edges. The structural edge connecting nodes i  and j  is denoted as 

( ), ,, ,i j i j i je v v A E=  , where ,i jA  is the weight of the edge and corresponds to an element of the 

adjacency matrix A . Notably, due to the relative stability of the structural configuration of 
traffic systems, the structural graph remains unchanged over time. 

3.3. Semantic graph 

Nodes in a traffic system often exhibit semantic relationships even when they are not 
structurally connected. For instance, nodes located in different suburban residential areas may 
display similar traffic patterns during specific time periods. The semantic relationships 
between nodes at a given time step t  can be modeled as a dynamic semantic graph  ,t tG V E= , 
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where 
tE  denotes the set of semantic edges at time step t . The semantic edge connecting nodes 

i  and j  at time step t  is defined as ( ), , , ,, ,i j t i j i j te v v A= , where ( ), , ,i j

i j t t tA x x=  quantifies the 

significance of the semantic relationship based on the traffic states of nodes i  and j  at 

timestamp t . The function   is employed to generate semantic edges. Furthermore, the 

corresponding semantic adjacency matrix is denoted as 
tA . Unlike the structural graph, the 

semantic graph is dynamic and evolves over time. 

3.4. Problem of traffic flow forecasting 

The objective of traffic flow forecasting is to predict the future sequence 
1:

f

f

N T

t t TY


+ +   over the 

next 
fT  time steps based on the historical sequence :

h

h

N T

t T tX


−   observed over the past 
hT  time 

steps. Additionally, an extended historical sequence of length S  is sampled for node i , denoted 

as 
1: f

i

t t TX  + +
 with t t  , where 

1:
f

f

S Ti

t t TX


 + +  . This sequence is considered relevant to the future 

sequence 
1:

f

f

Ti

t t TY + +   of node i , and is incorporated as an additional input sequence. 

4. Methodology 

4.1. Overall architecture 

Figure 3 presents the overall framework of SSAMGN. First, a self-sampling strategy extracts 
extended historical sequences relevant to the future sequence, which are aggregated into self-
sampling embeddings, while the recent historical sequence is transformed into a recent 
historical embedding. Based on these embeddings, the TAG Encoder constructs three types of 
graphs, including historical, transition, and future graphs, to capture distinct temporal 
characteristics. The TAG Encoder consists of multiple SSCGL blocks that jointly learn structural 
and semantic information, with sparse graph propagation applied to extract diverse node 
features. The resulting representations are then processed by a trend-aware self-attention 
mechanism to incorporate local contextual information and enhance sequence representation. 
Finally, the time-aware graph embeddings are concatenated with the recent historical 
embeddings, self-sampling embeddings, and spatiotemporal features for traffic prediction. 

 
Fig.3 The overall framework of SSAMGN. 
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4.2. Self-sampling and Series Aggregation 

To capture various temporal dependencies and incorporate time-related information into 
graph learning, this study proposes an adaptive sampling method, referred to as self-sampling, 
to select S  historical fragments from past sequences that exhibit significant correlation with 

the target sequence 
1:

f

f

Ti

t t TY + +  . The parameter S  is optimized through experimental tuning. 

However, directly computing the similarity between historical sequences and the target 

sequence incurs a computational complexity of ( )2O L , where L  denotes the total length of the 

historical sequences in the dataset. To mitigate this issue, a self-supervised predictor is 
employed as a classifier to predict the labels of future sequences, enabling the selection of 
historically relevant sequences that share the same labels. This approach significantly reduces 
computational complexity to a more manageable ( )O L . 

The Self-Sampling mechanism primarily operates through the collaborative function of an 
encoder and a label generator, extracting spatiotemporal features and generating authentic 
labels for each sequence. The predictor is then trained using the most recent historical 

sequence 
:h t

i

t TX −  to predict the label of the target sequence 
1: f

i

t t TY + +
, thereby effectively sampling 

S  historical sequences that share the same label as the target sequence. To ensure the selection 
of relevant sequences, capturing spatiotemporal semantics prior to sampling is crucial. To this 
end, an efficient and effective encoder is designed to extract spatiotemporal features. Initially, 
the raw sequence is randomly masked at a ratio r  and linearly projected into a latent space: 

 ( )1: 1:f f

i i

t t T embedding t t TH FC Y


+ + + +=  (1) 

where 
1:

f

f

Ti

t t TY


+ +  represents the masked sequence of node i , and 
1: f

i D

t t TH + +  , with D  being 

the hidden dimension. 

Subsequently, spatial and temporal identity information 
iE , TiD

tT , and TiW

tT  are appended to the 

representation: 

 ( )0

1: 1: || || ||
f f

i i TiD TiW

t t T t t T i t tZ H E T T+ + + +=  (2) 

where 
iE , TiD

tT , and TiW

tT  are learnable parameters corresponding to node identity, daily time, 

and weekly date, respectively. The symbol ||  denotes the concatenation operation between 

vectors. Following the inclusion of identity information, encoding is performed through L  
layers of residual multi-layer perceptron (MLP): 

 ( ) ( )( )( )( ) ( )1

1: 2 1 1: 1:f f f

i l i l i ll l

t t T t t T t t TZ FC ReLU FC Z Z
+

+ + + + + += +  (3) 

Finally, the embedding vector ( ) 4

1: f

i L D

t t TZ + +   is transformed via a regression layer to reconstruct 

the original sequence, ensuring that the embedding retains critical information: 

 ( )( )1: 1:
ˆ

f f

i Li

t t T regression t t TY FC Z+ + + +=  (4) 

After obtaining spatiotemporal embeddings, relevant sequences are identified via 
unsupervised clustering. To avoid imbalance and the omission of rare temporal patterns, k-
means with Euclidean distance is used for binary partitioning. The label generator is trained 
only on the training set and applied to both training and validation data to prevent information 
leakage. 

Furthermore, during prediction, the future sequence 1: f

i

t t TY + +  remains unseen, necessitating that 

its label be inferred solely from the most recent historical sequence :h

i

t T tX − . Using the label iC  

generated by the label generator as the ground truth, the predictor is trained to predict the label 

of the future sequence from the most recent historical sequence. The historical sequence :h

i

t T tX −  
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is first processed by an embedding layer, generating the embedded vector ( ) 4

h

i L D

t TZ −  . Given that 

sequences are clustered by nodes in the clustering stage, an MLP layer is applied to transform 
the output representation into the predicted label: 

 ( )( )( )( )( )1: 2 1 :
ˆ

f h

i Li i i

t t T t T tC argmax FC tanh FC Z+ + −=  (5) 

where 
1

iFC  and 
2

iFC  denote the fully connected networks for node iii. 

Following the label prediction for future sequences, the most recent S  historical sequences that 
share the same predicted label with the future sequence are considered dependency sequences 

and are thus sampled as ( )1:
f

f

S Ti

t t TX t t


 + +
   . The final sampled sequences are first 

independently linearly transformed into high-dimensional representations, then flattened and 
linearly aggregated to construct the self-sampling embedding: 

( )( )( ),

1: _ _ 1:f f

i SS i

t t T ss agg ss emb t t TH FC flatten FC X   + + + +=  (6) 

where ,

1: f

i SS D

t t TH  + +   represents the Self-Sampling embedding of node iii. Additionally, the most 

recent historical sequence of node i , :h

i

t T tX − , is also linearly projected into the most recent 

historical embedding ,

:h

i history D

t T tX −  . 

4.3. Structure-Semantic-Coupled Graph Learning 

The Structure-Semantic-Coupled Graph Learning (SSCGL) module is designed to enhance the 
structural-semantic coupling in graph learning, thereby improving the intrinsic feature 
extraction capability of graphs. The detailed structure is illustrated in Figure 4. The input graph 
embeddings are represented as the source embedding src N DH   and the target embedding 

tgt N DH  , where N  denotes the number of nodes. The SSCGL simulates information 
propagation from source to target embeddings by jointly leveraging structural and semantic 
graph information. To alleviate over-smoothing, it adopts sparse propagation to restrict 
receptive field diffusion, preserve node distinctiveness, and emphasize truly important 
connections. 

First, information is propagated through a sparse graph convolution based on the graph 
structure: 

 ( )( )1 2 ,structure T srcH Softmax sparsify E E k H=  (7) 

where structure N DH  , and 1 2, T N DE E   are learnable parameters representing the graph 

structure. The operation ( ),k  sets all elements in each row to − , except for the top- k  

elements, preventing node features from becoming indistinguishable during infinite 
propagation. Then, the propagation from source embedding to target embedding is performed 
based on the graph structure: 

 ( ) ( )1tgt tgt structureH LayerNorm H H= +  (8) 

( ) ( ) ( )( )( )2 1 1tgt tgt tgt
H LayerNorm H FeedForward H= +  (9) 

where ( ) ( )1 2
,

tgt tgt N DH H  . After structural propagation, a multi-head sparse attention 

mechanism is applied to capture semantic relationships: 
( )( ) ( ) ( )2

, ,
tgt src src

s query s key s valueQ FC H K FC H V FC H= = =  (10) 

( )_ _ , ,semantic

s s sH Sparse Multihead Attention Q K V=  (11) 

where , , , semantic N D

s s sQ K V H  . Subsequently, semantic information is propagated from the 

source embedding to the target embedding: 
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 ( ) ( )( )3 2tgt tgt semanticH LayerNorm H H= +  (12) 

( ) ( ) ( )( )( )4 3 3tgt tgt tgt
H LayerNorm H FeedForward H= +  (13) 

where ( ) ( )3 4
,

tgt tgt N DH H  , and ( )4tgt
H  serves as the output embedding of the SSCGL module. 

 
Fig.4 Structure of the SSCGL module. 

4.4. Temporal-Aware Graphs Encoder 

To overcome limited temporal receptive fields and overlooked temporal dependencies in graph 
learning, we propose the temporal-aware graphs encoder (TAG Encoder), as shown in Figure 5. 
By constructing historical, transition, and future graphs, the TAG Encoder simulates dynamic 
traffic interactions and injects temporal dependencies into graph learning. Integrated with 
semantic modeling through multiple SSCGL blocks, it effectively captures distinctive 
spatiotemporal graph features and alleviates graph indistinguishability. 

Specifically, a linear transformation is first applied to the recent historical embeddings and the 
self-sampled embeddings of the nodes: 

 ( ) ( )0

: :h h

history history

t T t src t T tH FC H− −=  (14) 

 ( ) ( )0

1: 1:f f

SS SS

t t T tgt t t TH FC H   + + + +=  (15) 

where ( ) ( )0 0

1:,
h f

history SS N D

t T t t TH H 

 − + +  . These embeddings are further processed during learning and 

encoded using three types of graphs to extract comprehensive spatiotemporal features. 

Historical Graph:The historical graph is inferred solely from recent historical embeddings to 
capture short-term spatiotemporal dependencies. The recent historical embeddings serve as 
both source and target embeddings and are transformed by the SSCGL block. Within the SSCGL 
module, the same graph parameters 1

srcE  and 2

srcE  are shared to construct the adjacency matrix 

in sparse graph convolution. 

 ( ) ( ) ( )( )1

: : :,
h h h

history l history l history l

t T t t T t t T tH C HSS G HL
+

− − −=  (16) 

After applying B  SSCGL blocks, the final graph embedding of the historical graph is denoted as 
( )

:h

history B

t T tH − . 

Transition Graph:To model traffic flow transitions, a directed bipartite graph is constructed, 
where information propagates from recent historical embeddings to self-sampled embeddings 
to capture spatiotemporal dependencies during the transition process. Similar to the historical 
graph, SSCGL blocks are employed to capture spatial-temporal dependencies in the transitions, 
and the graph structure parameters 1

tgtE  and 2

srcE  are shared across these blocks. 

Sparse Graph 
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Add & Norm

Feed Forward
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target
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Q
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 ( ) ( ) ( )( )1

1: : 1:,
f h f

SS l history B SS l

t t T t T t t t TH H HSSCGL
+

   + + − + +=  (17) 

After B  SSCGL blocks, the final graph embedding of the transition graph is denoted as ( )
1: f

SS B

t t TH  + +
. 

Future Graph:Node embeddings in the transition graph encode both short-term spatial 
dependencies and node-level temporal dependencies. To further propagate temporal 
information across nodes, a future graph is constructed to capture potential spatiotemporal 
dependencies under future traffic states, with its embeddings initialized from the transition 
graph embeddings. 

 ( ) ( )0

1: 1:f f

future SS B

t t T t t TH H  + + + +=  (18) 

Subsequently, B  SSCGL blocks with shared graph structure parameters 
1

tgtE  and 
2

tgtE  are 

applied: 

 ( ) ( ) ( )( )1

1: 1: 1:,
f f f

future l future l future l

t t T t t T t t TH S H HS CGL
+

+ + + + + +=  (19) 

Finally, the future graph embeddings are transformed into TAG embeddings: 

 ( )( )1: 1:f f

future BTAG

t t T t t TH FeedForward H+ + + +=  (20) 

where 
1: f

TAG N D

t t TH 

+ +  . 

 

 
Fig.5 Temporal-Aware Graph Embedding Module. 

4.5. Trend-Aware Self-Attention Mechanism 

To model traffic flow trends and complexity, we design a trend-aware self-attention mechanism 
(TASAtt) that incorporates local contextual information. Self-attention computes queries, keys, 
and values from the same sequence, while multi-head self-attention extends this mechanism by 
attending to multiple representation subspaces in parallel. Its fundamental operation is defined 
as follows: 

 ( , , )
T

model

QK
Attention Q K V softmax V

d

 
=  

 
 

 (21) 

SSCGL Blocks for the 

History Graph

SSCGL Blocks for the 

Transition Graph

SSCGL Blocks for the 

Future Graph

source target

source target

source target
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where Q  represents the query, K  denotes the key, and V  corresponds to the value. 

Multi-head self-attention first projects the queries, keys, and values into multiple 
representation subspaces and applies the attention function in parallel. The resulting outputs 
are then concatenated and linearly projected to produce the final representation, which is 
formulated as follows: 

( ) ( )1, , , , o

hSelf Attention Q K V head head W− =  (22) 

 ( ), ,Q K V

j j j jhead Attention QW QW QW=  (23) 

where h  represents the number of attention heads, Q

jW , K

jW , and V

jW  are the projection 

matrices for Q , K , and V , respectively, while O

jW  denotes the projection matrix for the final 

output. The multi-head self-attention mechanism provides a flexible approach to capturing the 
complex correlation dynamics in traffic data, thereby enabling accurate long-term forecasting. 

However, standard multi-head self-attention is designed for discrete tokens and fails to capture 
local trend information in continuous sequences, making it less suitable for traffic signal 
modeling. To address this limitation, TASAtt introduces convolutional self-attention, where 
convolution operations explicitly encode local contextual features, enabling effective modeling 
of local variation trends in traffic data. Formally, TASAtt is defined as follows: 

( ), ,Q K V

j j j jTrendhead Attention Q K V=     (24) 

where Q

j  and Q

j  represent the convolutional kernel parameters. 

The input 
1: f

TAG

t t TH + +
, and after operations on all nodes, the output is obtained as 

1: f

TASAtt N D

t t TH 

+ +  . 

4.6. Forecasting Module 

The proposed model employs a simple yet efficient MLP to generate predictions by integrating 
rich spatiotemporal information from multiple branches, including recent historical 
embeddings, self-sampling embeddings, TAG embeddings, spatiotemporal features, and trend-
aware attention outputs. These multi-branch embeddings are first concatenated as follows: 

, ,

1: : 1: 1:|| || || || ||
f h f f

i i history i SS TASAtt TiD TiW

t t T t T t t t T t t T i t tZ H H H E T T + + − + + + +=  (25) 

where 6

1: f

i D

t t TZ + +  . The predicted sequence 
1:

ˆ
f

i

t t TY + +
 is then obtained using Equations (3) and (4). 

5. Experiment 

5.1. Datasets 

Six publicly available traffic datasets were utilized in the experiments: METR-LA, PEMS-BAY, 
PEMS03, PEMS04, PEMS07, and PEMS08. These datasets were collected using loop detectors 
deployed on highways to obtain traffic data for corresponding road segments. Among them, 
METR-LA records traffic speed data from highways in Los Angeles, while PEMS-BAY contains 
traffic speed data from the San Francisco Bay Area. PEMS03, PEMS04, PEMS07, and PEMS08 
consist of real-time traffic data collected by the Performance Measurement System (PeMS) of 
the California Department of Transportation at 30-second intervals. These datasets include 
information such as detection locations, detection dates, and data types. Detailed information 
on the experimental datasets is presented in Table 1. 
Detailed information on the datasets. In the "Data Type" column, 'F' represents traffic flow, 'S' 

Table 1 Denotes traffic speed, and 'O' indicates traffic occupancy. 
Datasets Nodes Edges Time Steps Time interval Data type Time Range 

METR-LA 207 1515 34272 5 min S 03/2012-06/2012 
PEMS-BAY 325 2369 52116 5 min S 01/2017-05/2017 
PeMS03 358 547 26208 5 min F 09/2018-11/2018 
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PeMS04 307 340 16992 5 min F, S, O 01/2018-02/2018 
PeMS07 883 866 28224 5 min F 05/2017-08/2017 

PeMS08 170 259 17856 5 min F, S, O 07/2016-08/2016 

5.2. Experimental settings and hyperparameters 

Traffic flow for the next 60 minutes ( 12fT = ). The PEMS03, PEMS04, PEMS07, and PEMS08 

datasets were divided into training, validation, and test sets in a ratio of 6:2:2, while the METR-
LA and PEMS-BAY datasets were split in a 7:1:2 ratio. A self-sampling strategy was employed, 
with the sampling number S  set to 7, determined through sensitivity analysis. When the 
historical sequence length was insufficient for sampling, the nearest historical sequence was 
used as a supplement to ensure the completeness of the input sequence. The hidden dimension 
D  was set to 32, and the number of self-sampling encoding layers L  was set to 4. To mitigate 
the randomness of clustering, each k -means algorithm was executed ten times, and the result 
with the smallest intra-cluster distance was selected. For the TAG Encoder, the number of 
SSCGL Blocks per graph was set to 2, and the sparsity parameter was set to 10. The training 
batch size was set to 32, and the Adam optimizer was used with a learning rate of 0.001. All 
experiments were conducted on a computing platform equipped with a 22 vCPU AMD EPYC 
7T83 64-Core Processor and an RTX 4090 GPU. 

5.3. Baselines 

A comprehensive comparison was conducted between SSAMGN and various baseline models 
across different categories: 

Traditional machine learning models: HA [18], ARIMA [18], VAR [19], and FC-LSTM [20]. 

Graph convolution-based models: GCRN [32], STGCN [9], STSGCN [33], DCRNN [8], Graph 
WaveNet [14], MTGNN [28], AGCRN [15], Z-GCNETs [34], STGODE [35], and STG-NCDE [29]. 

Attention-based models: ASTGCN(r) [36], GMAN [30], ASTGNN [13], DSTAGNN [24], ST-WA 
[26], and MSSTAT [25]. 

Non-graph-based models: STNorm [37] and STID [38]. 

5.4. Evaluation metrics 

The performance of the model is evaluated using the Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE), and Mean Absolute Percentage Error (MAPE), which are defined as 
follows: 

 
( ) ( )

1

1
MAE

K

true k pred k

k

X X
K =

= −  (26) 

 ( ) ( )

1 ( )

1
MAPE = 

K
true k pred k

k true k

X X

K X=

−
  (27) 

 ( )
2

( ) ( )

1

1
RMSE

K

true k pred k

k

X X
K =

= −  (28) 

where trueX  represents the actual values, 
predX  denotes the predicted values, and K  is the 

number of samples. Lower values of MAE, RMSE, and MAPE indicate better predictive 

performance of the model. 

5.5. Performance comparisons 

In the traffic prediction experiments, the performance of the proposed SSAMGN model was 
evaluated on two types of benchmark datasets: traffic speed datasets (METR-LA and PEMS-BAY) 
and traffic flow datasets (PeMS03, PeMS04, PeMS07, and PeMS08). For METR-LA and PEMS-
BAY, traffic speed predictions were conducted for time horizons of 15, 30, and 60 minutes. 
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Meanwhile, for PeMS03, PeMS04, PeMS07, and PeMS08, the experiments focused on predicting 
the average traffic flow over the next hour. The results of different models are summarized in 
Table 2Table 3 and Table 4, where the best performance is highlighted in bold, and the second-
best results are underlined. 

Overall, SSAMGN consistently outperformed all baseline models across all datasets, particularly 
in long-term forecasting tasks, demonstrating its strong ability to capture complex 
spatiotemporal dependencies and traffic trends. Traditional methods such as HA, VAR, and FC-
LSTM exhibited inferior performance due to their limited capacity to model spatial 
dependencies. Although GCN-based models (e.g., STGCN and DCRNN) improve spatial modeling 
by incorporating predefined graphs, their reliance on fixed graph structures restricts their 
ability to reflect real-world spatial relationships. Adaptive graph-based models, including 
AGCRN and STG-NCDE, further enhance spatial representation but primarily focus on static 
graph structures, making them less effective in capturing dynamic semantic relationships 
among nodes. To address this, attention-based models such as GMAN and ST-WA introduce self-
attention mechanisms to model dynamic dependencies; however, their inability to learn precise 
graph structures leads to suboptimal performance on datasets requiring fine-grained spatial 
modeling, such as PeMS03. 

Despite these advances, existing methods generally overlook the inseparability of graph 
structures, as they tend to model either static topology or dynamic semantics independently. In 
contrast, SSAMGN explicitly incorporates time-dependent graph structure learning, enabling 
the joint modeling of traffic trends and complex spatiotemporal interactions, thereby achieving 
more accurate predictions. To further validate its effectiveness, visualization experiments were 
conducted on the PeMS04 and PeMS08 datasets, where SSAMGN was compared with STSGCN 
and ASTGCN(r) for 12-step-ahead forecasting, as shown in Figure 6. The results indicate that 
the prediction errors of STSGCN and ASTGCN(r) increase rapidly with longer horizons, 
reflecting error accumulation and limited long-term modeling capability. In comparison, 
SSAMGN exhibits more stable error growth across MAE, MAPE, and RMSE, highlighting its 
superior performance in long-term traffic forecasting.. 

Table 2 Traffic speed prediction results of different methods on METR-LA and PEMS-BAY 

Datasets Methods 
15min 30min 60min 

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) 

METR-
LA 

HA 4.79 10.00 11.70 5.47 11.45 13.50 6.99 13.89 17.54 
ARIMA 3.99 8.21 9.60 5.15 10.45 12.70 6.90 13.23 17.40 
VAR 4.42 7.89 10.20 5.41 9.13 12.7 6.52 10.11 15.80 

FC-LSTM 3.44 6.30 9.60 3.77 7.23 10.90 4.37 8.69 14.00 

GCRN 3.03 5.75 8.26 3.54 6.92 10.11 4.32 8.48 13.05 
STGCN 2.88 5.74 7.62 3.47 7.24 9.57 4.59 9.40 12.70 
STSGCN 3.31 7.62 8.06 4.13 9.77 10.29 5.06 11.66 12.91 
DCRNN 2.77 5.38 7.30 3.15 6.45 8.80 3.60 7.59 10.50 

Graph WaveNet 2.69 5.15 6.90 3.07 6.22 8.37 3.53 7.37 10.01 
MTGNN 2.69 5.18 6.88 3.05 6.17 8.19 3.49 7.23 9.87 
AGCRN  2.85 5.53 7.63 3.20 6.52 9.00 3.59 7.45 10.47 

Z-GCNETs  3.23 7.48 7.87 3.93 9.40 9.75 4.83 11.57 12.04 
STGODE 3.47 6.76 8.76 4.36 8.47 11.14 5.50 10.33 14.32 
STG-NCDE 3.77 9.47 8.54 4.84 12.04 10.63 6.35 14.94 13.49 

ASTGCN(r) 4.86 9.27 9.21 5.43 10.61 10.13 6.51 12.52 11.64 
GMAN 2.80 5.55 7.41 3.02 6.49 8.73 3.44 7.35 10.07 

STNorm 2.81 5.57 7.40 3.18 6.59 8.47 3.57 7.51 10.24 
STID 2.82 5.53 7.75 3.19 6.57 9.39 3.55 7.55 10.95 

SSAMGN (ours) 2.70 5.28 7.18 3.02 6.11 8.25 3.38 7.09 9.75 

PEMS- HA 1.89 4.30 4.16 2.50 5.82 5.62 3.31 7.54 7.65 
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BAY ARIMA 1.62 3.30 3.50 2.33 4.76 5.40 3.38 6.50 8.30 
VAR 1.74 3.16 3.60 2.32 4.25 5.00 2.93 5.44 6.50 

FC-LSTM 2.05 4.19 4.80 2.20 4.55 5.20 2.37 4.96 5.70 

GCRN 1.46 3.06 3.22 1.88 4.17 4.34 2.40 5.36 5.89 
STGCN 1.36 2.96 2.90 1.81 4.27 4.17 2.49 5.69 5.79 
STSGCN 1.44 3.01 3.04 1.83 4.18 4.17 2.26 5.21 5.40 
DCRNN 1.38 2.95 2.90 1.74 3.97 3.90 2.07 4.47 4.90 

Graph WaveNet 1.30 2.74 2.73 1.63 3.70 3.67 1.95 4.52 4.63 
MTGNN 1.32 2.79 2.77 1.65 3.74 3.69 1.94 4.49 4.53 
AGCRN  1.37 2.87 2.94 1.69 3.85 3.87 1.96 4.54 4.64 

Z-GCNETs  1.36 2.86 2.88 1.68 3.78 3.79 1.98 4.53 4.60 
STGODE 1.43 2.88 2.99 1.84 3.90 3.84 2.30 4.89 4.61 
STG-NCDE 1.38 2.93 2.91 1.71 3.84 3.91 2.03 4.58 4.82 

ASTGCN(r) 1.52 3.13 3.22 2.01 4.27 4.48 2.61 5.42 6.00 
GMAN 1.34 2.92 2.88 1.65 3.81 3.71 1.89 4.38 4.51 

STNorm 1.33 2.82 2.76 1.65 3.77 3.66 1.92 4.45 4.46 
STID 1.31 2.79 2.78 1.64 3.73 3.73 1.91 4.42 4.55 

SSAMGN (ours) 1.30 2.72 2.73 1.59 3.62 3.57 1.85 4.36 4.35 

 
Table 3 Traffic flow prediction results of different methods on PeMS03 and PeMS07 

Methods 
PeMS03 PeMS07 

MAE RMSE MAPE (%) MAE RMSE MAPE (%) 

HA 31.58 52.39 33.78 45.12 65.64 24.51 

ARIMA 35.41 47.59 33.78 38.17 59.27 19.46 

VAR 23.65 38.26 24.51 50.22 75.63 32.22 

FC-LSTM 21.33 35.11 23.33 29.98 45.94 13.20 

GCRN 19.88 33.20 19.71 31.03 48.70 15.67 

STGCN 17.55 30.42 17.34 25.33 39.34 11.21 

STSGCN 17.48 29.21 16.78 24.26 39.03 10.21 

DCRNN 17.99 30.31 18.34 25.22 38.61 11.82 

Graph WaveNet 19.12 32.77 18.89 26.39 41.50 11.97 

MTGNN 14.85 25.23 14.55 21.01 34.14 8.92 

AGCRN  16.03 28.52 14.65 22.37 35.70 9.55 

Z-GCNETs  16.64 28.15 16.39 21.77 35.17 9.25 

STGODE 16.50 27.84 16.69 22.59 37.54 10.14 

STG-NCDE 15.57 27.09 15.06 20.53 33.84 8.80 

ASTGCN(r) 17.34 29.56 17.21 24.01 37.87 10.73 

GMAN 16.87 27.92 18.23 20.43 33.30 8.69 

ASTGNN 14.78 25.00 14.79 19.83 32.87 8.53 

DSTAGNN 15.57 27.21 14.68 21.42 34.51 9.01 

ST-WA 15.56 27.39 14.80 21.23 34.57 9.06 

MSSTAT 15.35 25.39 15.66 19.78 32.85 8.73 

STNorm 15.32 25.93 14.37 20.59 34.86 8.61 

STID 15.33 27.40 16.40 19.54 32.85 8.25 

SSAMGN (ours) 14.64 24.06 14.52 19.13 32.73 8.05 
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Table 4 Traffic flow prediction results of different methods on PeMS04 and PeMS08 

Methods 
PeMS04 PeMS08 

MAE RMSE MAPE (%) MAE RMSE MAPE (%) 

HA 38.03 59.24 27.88 34.86 59.24 27.88 

ARIMA 33.73 48.80 24.18 31.09 44.32 22.73 

VAR 24.54 38.61 17.24 19.19 29.81 13.10 

FC-LSTM 26.77 40.65 18.23 23.09 35.17 14.99 

GCRN 26.73 41.56 19.20 21.28 33.46 14.15 

STGCN 21.16 34.89 13.83 17.50 27.09 11.29 

STSGCN 21.19 33.65 13.90 17.13 26.80 10.96 

DCRNN 21.22 33.44 14.17 16.82 26.36 10.92 

Graph WaveNet 24.89 39.66 17.29 18.28 30.05 12.15 

MTGNN 19.13 31.03 13.22 15.25 24.22 10.66 

AGCRN  19.89 32.86 13.37 16.13 25.52 10.21 

Z-GCNETs  19.50 31.61 12.78 15.76 25.11 10.01 

STGODE 20.84 32.82 13.77 16.81 25.97 10.62 

STG-NCDE 19.21 31.09 12.76 15.45 24.81 9.92 

ASTGCN(r) 22.93 35.33 16.56 18.25 28.06 11.64 

GMAN 18.83 30.93 13.21 14.81 24.19 9.69 

ASTGNN 18.60 29.97 12.63 14.97 23.51 9.49 

DSTAGNN 19.30 31.46 12.70 15.67 24.77 9.94 

ST-WA 19.30 30.83 12.67 16.06 25.03 10.39 

MSSTAT 18.57 30.37 12.23 14.03 23.44 9.34 

STNorm 19.21 32.30 13.05 15.39 24.80 9.91 

STID 18.29 29.82 12.49 14.20 23.49 9.28 

SSAMGN (ours) 18.26 29.77 12.49 14.08 23.36 9.24 

 

To provide a more intuitive evaluation of the proposed method, a 12-step-ahead prediction 
visualization was conducted on the PeMS04 and PeMS08 datasets, comparing SSAMGN with 
STSGCN and ASTGCN(r), as shown in Figure 6. As the forecasting horizon extends to 12 steps, 
STSGCN and ASTGCN(r) exhibit a pronounced increase in prediction errors, indicating their 
limited ability to capture long-term traffic flow trends. This suggests that most existing methods 
struggle to model long-term patterns and periodic characteristics of traffic data, resulting in 
error accumulation and degraded predictive accuracy. In contrast, SSAMGN consistently 
achieves lower MAE, MAPE, and RMSE, while maintaining a more stable error growth as the 
prediction horizon increases, demonstrating its superior long-term forecasting capability. 
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Fig.6 Comparison of prediction results for different methods across various horizons 

5.6. Ablation experiments 

The SSAMGN model consists of four core components with distinct functionalities: the SSCGL 
block jointly captures structural and semantic information from traffic graphs; the temporal-
aware graph (TAG) module enables multi-scale temporal dependency modeling during graph 
learning; the Sparse Information Propagation mechanism improves interpretability and 
supports explicit graph structure learning; and the trend-aware self-attention (TASAtt) 
mechanism captures contextual sequence patterns to enhance long-term forecasting accuracy. 
The definitions of each variant are as follows: 

w/o Structure Learning:The graph convolutional layers responsible for learning structural 
information in the SSCGL block were removed. 

w/o Semantic Learning:The graph attention layers responsible for capturing semantic 
relationships in the SSCGL block were removed. 

w/o Temporal-Aware Graphs: Only historical graphs were retained, while the transformation 
and future graphs in the TAG encoder were removed. Additionally, the historical graphs were 
constructed solely based on the most recent historical sequences. 

w/o Sparsity:The learned graphs were fully connected and dense, where all nodes were 
completely connected. 

w/o TASAtt:The trend-aware self-attention mechanism was removed from the model. 

As shown in Table 5 and Figure 7, SSAMGN consistently outperforms all variants, 
demonstrating the effectiveness of each proposed component. Notably, removing structural 
learning causes more severe performance degradation than removing semantic learning, 
highlighting the fundamental role of structural information in traffic prediction. This suggests 
that structural graph connectivity provides the basis for semantic relationship modeling, as 
nodes with stronger structural connections tend to exhibit stronger semantic correlations. 
Moreover, the inferior performance of the w/o Temporal-Aware Graphs variant indicates that 
incorporating temporal dependencies substantially enhances spatial graph discrimination by 
expanding the temporal receptive field through the self-sampling strategy. The performance 
drop observed in the w/o Sparsity variant further confirms the importance of maintaining 
appropriate graph sparsity, since overly dense graphs dilute node-level attention and weaken 
critical relationships. Finally, the degradation in the w/o TASAtt variant verifies the essential 
role of trend-aware self-attention in capturing contextual information for long-term traffic 
forecasting. 
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Table 6. Traffic flow prediction results of different methods on PeMS04 and PeMS08 

Architecture 
PeMS03 PeMS04 

MAE RMSE MAPE (%) MAE RMSE MAPE (%) 

w/o Structure Learning  14.91 25.35 15.13 18.51 30.15 13.24 
w/o Semantic Learning  14.66 24.76 15.08 18.46 30.13 12.89 

w/o Temporal-Aware Graphs 14.82 26.59 15.10 18.48 30.10 12.84 
w/o Sparsity  14.72 24.81 15.05 18.53 30.16 13.13 
w/o TASAtt 14.68 24.79 15.06 18.48 30.11 12.78 

SSAMGN (ours) 14.64 24.06 14.52 18.26 29.77 12.49 

 

Specifically, compared to the "w/o Structure Learning" model, SSAMGN shows improvements 
of 1.81%, 5.09%, and 4.04% in MAE, RMSE, and MAPE, respectively, on the PeMS03 dataset. On 
the PeMS04 dataset, it achieves improvements of 1.35%, 1.26%, and 5.67%, respectively. 
Similarly, when compared to the "w/o Semantic Learning" model, SSAMGN demonstrates 
improvements of 0.14%, 2.83%, and 3.72% on the PeMS03 dataset, and 1.08%, 1.19%, and 3.11% 
on the PeMS04 dataset. Although comparisons with other variants are omitted for brevity, the 
proposed modules significantly contribute to the overall performance improvement of 
SSAMGN. 

 
Fig.7 Component analysis of SSAMGN 

5.7. Visualization 

To further evaluate SSAMGN, a comparative visualization analysis between ground-truth traffic 
flow and predicted values was conducted across multiple datasets. As shown in Figure 8, both 
short-term forecasting with a prediction horizon of 3 and long-term forecasting with a horizon 
of 12 were analyzed. The results demonstrate that SSAMGN maintains strong consistency with 
actual traffic flows over different time spans and effectively captures peak-hour patterns and 
overall traffic trends, indicating a solid understanding of traffic dynamics and strong 
generalization ability. 

On the PeMS03, PeMS04, and PeMS07 datasets, SSAMGN accurately captures sharp fluctuations 
during peak traffic periods, where many existing methods often fail. Although prediction errors 
increase slightly during highly volatile intervals, especially in long-term forecasting, the model 
still achieves reliable accuracy.  Overall, these results confirm that SSAMGN can precisely model 
periodic traffic patterns while remaining robust to non-periodic variations and anomalous 
fluctuations across diverse traffic conditions. 
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Fig.8 Visualization of actual and predicted values across different datasets 

5.8. Spatial complexity study 

Table 6 provides a summary of the total number of parameters for each model, while Figure 9 
visualizes the relationship between parameter size and RMSE on the PeMS08 dataset. Notably, 
the SSAMGN model has a parameter size of only 1,120,174 bytes, which is significantly smaller 
than traditional models such as ASTGCN(r) and STGCN and even slightly more compact than 
DCRNN. As depicted in Figure 9, SSAMGN maintains a competitive balance between a relatively 
small parameter size and high predictive accuracy, underscoring its advantage in spatial 
complexity. These findings validate that the proposed model can achieve superior predictive 
performance while maintaining computational efficiency, making it well-suited for deployment 
in resource-constrained environments. 

 
Table 6. Traffic flow prediction results of different methods on PeMS04 and PeMS08 

Methods ASTGCN(r) DCRNN STGCN SSAMGN 

Total Parameters (Byte) 2,251,496 1,187,844 2,171,140 1,120,174 
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Fig.9 Comparison of the total number of model parameters and RMSE 

6. Conclusion 

This study presents SSAMGN, a novel traffic flow prediction model designed to address graph 
indistinguishability in traffic forecasting. By integrating graph structural information with 
semantic features through joint learning, the model enhances the representation of network 
characteristics. SSAMGN employs an adaptive sampling strategy and a temporal-aware graph 
encoder to capture multi-scale temporal dependencies while leveraging a constrained spatial 
receptive field to mitigate over-smoothing, ensuring more refined node feature extraction. 
Additionally, the trend-aware multi-head attention mechanism improves the capture of local 
contextual information, enhancing the model’s ability to identify complex temporal trends in 
traffic data. Experiments on six real-world datasets demonstrate that SSAMGN consistently 
outperforms state-of-the-art baselines, achieving superior prediction accuracy.  

Future work will focus on optimizing spatiotemporal graph construction and incorporating 
external factors such as weather, traffic incidents, and holidays to further improve prediction 
robustness. 
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