

The Role of Mind Mapping in Enhancing Teachers' Instructional Design Skills

Na Zhuo

Graduate University of Mongolia, Ulaanbaatar 999097, Mongolia

Abstract

Against the background of ongoing educational reform, higher vocational education faces increasing demands for instructional quality, making teachers' instructional design skills a critical component of professional competence. In practice, many vocational teachers experience difficulties in clarifying instructional objectives, organizing practice-oriented content coherently, and maintaining logical alignment among teaching activities. Traditional linear planning methods often fail to address the multidimensional nature of vocational instruction, which requires the integration of theoretical knowledge, operational skills, and workplace standards. Mind mapping, systematically proposed by Tony Buzan, is a visual cognitive tool that supports knowledge organization and cognitive externalization, demonstrating strong potential for teacher professional development. Grounded in cognitive learning theories, instructional design theories, and the Technological Pedagogical Content Knowledge (TPACK) framework, this study constructs an integrated instructional skill development framework based on mind mapping. Using a practice-oriented qualitative approach, instructional design artifacts, reflective teaching records, and classroom observations are analyzed. The findings indicate that mind mapping enhances objective clarity, reduces extraneous cognitive load during planning, strengthens instructional coherence, and promotes deep reflective practice. This study provides theoretical support and practical implications for instructional reform in higher vocational education.

Keywords

Mind Mapping; Instructional Design Skills; Teacher Professional Development; TPACK.

1. Introduction

1.1. Research Background

In the context of ongoing global educational reform and rapid technological development, higher vocational education has evolved into a strategic pillar of modern education systems, aiming to cultivate skilled professionals who can adapt to dynamic industry demands. Unlike general higher education, vocational education is characterized by a dual focus: it must impart theoretical foundations while simultaneously developing practical operational skills. This "theory-practice integration" imposes high cognitive demands on teachers, who must possess not only disciplinary expertise but also sophisticated instructional design skills to orchestrate complex learning experiences.

Recent educational reforms have increasingly emphasized competency-based education and the meaningful integration of digital technologies into teaching practice. Under these reform trends, the teacher's role has shifted from a transmitter of static knowledge to a designer of holistic learning environments. Instructional design in this context is not merely about listing content; it involves the intricate coordination of learning objectives, operational procedures, safety standards, digital resources, and assessment criteria. Consequently, the quality of a

teacher's instructional design directly determines the coherence of the curriculum and the effectiveness of student skill acquisition.

However, in practice, many vocational teachers face substantial challenges in instructional planning. Lesson plans are frequently constructed using linear text based on personal experience or rigid textbook chapters, rather than systematic design principles. This linear approach often leads to "fragmentation," where instructional objectives are disconnected from assessment methods, and theoretical concepts are isolated from practical tasks. When teachers struggle to visualize the logical relationships between these interacting elements, the resulting instruction can lack coherence. These challenges highlight an urgent need for instructional tools that can support teachers in visualizing instructional structure, clarifying design logic, and reducing the cognitive burden of planning. Mind mapping, proposed by Buzan (2018), offers a potent solution as a visual cognitive tool that externalizes thinking processes, enabling teachers to overcome the limitations of linear planning through structured, radiant visualization.

1.2. Research Status

International research on mind mapping has primarily examined its effectiveness in student learning contexts. Empirical studies demonstrate that mind mapping facilitates comprehension, memory retention, and conceptual understanding by making complex knowledge structures visually explicit. From the perspective of cognitive load theory, Sweller, Ayres, and Kalyuga (2019) argue that effective instructional representations should reduce extraneous cognitive load by clearly presenting relationships among elements, which supports the use of visual tools in instructional contexts.

It is important to distinguish mind mapping from other visual mapping tools. Davies (2019) systematically differentiates concept mapping, mind mapping, and argument mapping, noting that mind mapping emphasizes associative and hierarchical structures and is particularly suited for creative planning and structural organization. This feature makes mind mapping especially appropriate for instructional design tasks that require iterative planning and flexible adjustment.

In teacher professional development research, the integration of technology, pedagogy, and content has been widely discussed through the Technological Pedagogical Content Knowledge (TPACK) framework proposed by Mishra and Koehler (2006). Although the framework provides a comprehensive conceptual model, teachers often experience difficulties in translating abstract TPACK relationships into concrete instructional design practices. Koehler, Mishra, and Cain (2013) further that TPACK is highly context-dependent and must be operationalized through practical instructional tools. Existing studies rarely explore mind mapping as a mediating tool to support teachers' visualization and construction of TPACK-informed lesson designs, particularly in higher vocational education. This gap provides a clear research space for the present study.

1.3. Research Significance

The theoretical significance of this study lies in its extension of mind mapping research from the learner to the teacher. By adopting a reform-oriented perspective, it redefines mind mapping not as a simple note-taking technique, but as a cognitive externalization tool that aligns with advanced instructional design theories such as Constructive Alignment (Biggs, 2014) and Understanding by Design (Wiggins & McTighe, 2005).

Practically, this study addresses the "theory-practice gap" in vocational teacher training. By integrating the associative nature of human thinking described by Buzan (1993) with systematic instructional design, the study provides concrete strategies for teachers to improve instructional coherence. It offers a pathway for teachers to move from intuitive teaching to evidence-based design, ultimately enhancing the quality of vocational education.

2. Theoretical Basis of Mind Mapping Facilitating Teachers' Instructional Design Skills

2.1. Core Concepts of Mind Mapping and Radiant Thinking

Mind mapping was systematically advocated by Tony Buzan based on the principle of "radiant thinking." Buzan (2018) posits that the human brain does not naturally process information in linear lists but rather in associative networks that radiate from central focal points. A mind map reflects this natural cognitive architecture by organizing information around a central theme (e.g., a lesson topic) and extending outward through hierarchical branches. Buzan (1993) emphasize that the integration of keywords, colors, images, and spatial organization in mind maps activates the brain's full cortical skills, enhancing both creativity and structural memory. In the context of instructional design, this "radiant" structure is theoretically significant. A vocational lesson plan is a complex system involving the interaction of objectives, resources, time constraints, and student activities. When teachers rely on linear text to plan, they force a multidimensional network into a one-dimensional sequence, often obscuring the logical connections between elements. Mind mapping allows the instructional design to remain visible as a holistic structure. As Davies (2019) elucidates, the flexibility and associative focus of mind mapping make it an ideal workspace for the iterative process of lesson planning, allowing teachers to "see" the lesson's architecture before implementation.

2.2. Cognitive Foundations: Dual Coding and Cognitive Load

The application of mind mapping in instructional design is strongly supported by cognitive learning theories. First, Paivio's (1991) Dual Coding Theory posits that the human cognitive system consists of two distinct subsystems: one for processing verbal information (logogens) and another for non-verbal/visual objects (imagens). Learning and recall are significantly enhanced when information is encoded in both systems simultaneously. Traditional text-based lesson plans rely almost exclusively on the verbal system. In contrast, a mind map utilizes both spatial/visual arrangement and verbal keywords. This dual encoding helps teachers build a more robust mental model of the instructional flow, facilitating easier recall and smoother delivery during the high-pressure environment of the classroom.

Second, Cognitive Load Theory provides a compelling argument for visual planning. Sweller, Ayres, and Kalyuga (2019) explain that human working memory is limited, and instructional tasks involving high element interactivity impose a heavy intrinsic cognitive load. For a vocational teacher, designing a theory-practice integrated lesson involves managing complex interactions between abstract concepts, safety protocols, equipment manipulation, and student feedback. Trying to hold all these elements in working memory while writing a linear plan can overwhelm the teacher's cognitive capacity. Mind mapping functions as a mechanism for "cognitive offloading." By externalizing these relationships onto paper or screen in a structured manner, the mind map reduces extraneous cognitive load (Sweller et al., 2019). This frees up the teacher's cognitive resources for higher-order thinking, such as refining pedagogical strategies or anticipating student misconceptions.

Furthermore, Mayer (2020) outlines the cognitive theory of multimedia learning, emphasizing the processes of selecting relevant information, organizing it into coherent representations, and integrating it with prior knowledge. While Mayer focuses on student learning, these processes are equally applicable to teachers during the design phase. Creating a mind map forces the teacher to actively select key instructional points, organize them hierarchically, and integrate them into a cohesive narrative. Thus, mind mapping is not just a display tool; it is a cognitive strategy that engages the teacher in active design thinking.

2.3. Instructional Design Theories: Alignment and Backward Design

Effective instructional design depends on the logical alignment of all teaching components. Biggs (2014) introduced "Constructive Alignment," arguing that intended learning outcomes (ILOs), teaching and learning activities (TLAs), and assessment tasks (ATs) must be mutually reinforcing. In non-aligned curriculum planning, teachers might lecture on theory but test on practical skills, creating a disjointed learning experience. Mind mapping supports constructive alignment by allowing teachers to visually trace the branches from objectives to activities and assessments. If a branch representing a learning objective lacks a corresponding sub-branch for assessment, the misalignment becomes visually obvious and can be corrected immediately. This visual verification supports the "Backward Design" framework proposed by Wiggins and McTighe (2005). They argue that effective design begins with identifying desired results (objectives), then determining acceptable evidence (assessment), and only then planning learning experiences. McTighe and Wiggins (2012) further emphasize that this process requires a clear logic of "understanding." Mind mapping facilitates backward design by allowing teachers to place "Desired Results" at the center or main branches, extending directly to "Evidence" and then to "Learning Plan." This visual hierarchy prevents the common error of planning "activity-oriented" teaching that lacks clear purpose.

2.4. Teacher Knowledge Integration: The TPACK Framework

Instructional design in modern vocational education must also integrate technology. Mishra and Koehler (2006) developed the TPACK framework to describe the complex interaction between Content Knowledge (CK), Pedagogical Knowledge (PK), and Technological Knowledge (TK). They argue that true integration is not about adding tools to a lesson but about the emergent "Technological Pedagogical Content Knowledge." Koehler, Mishra, and Cain (2013) clarify that this knowledge is context-bound and requires teachers to make intentional connections between the three domains.

Mind mapping serves as a practical tool to visualize and operationalize TPACK. A teacher can create a mind map where specific content topics (CK) are explicitly linked to teaching strategies (PK) and supported by specific digital tools (TK). By visually mapping these connections, teachers move from abstract theoretical understanding to concrete design decisions, ensuring that technology is used to enhance pedagogy rather than as a distraction.

3. Construction of an Integrated Framework for Teachers' Instructional Skills Based on Mind Mapping

3.1. Integration of the Instructional Target System

Based on the theoretical foundations, this study proposes an integrated framework that utilizes mind mapping to connect the three core dimensions of teaching: Instructional Design (Planning), Classroom Implementation (Enacting), and Reflective Practice (Improving).

Instructional Design Targets: The goal is structural coherence. Drawing on Biggs (2014), the target is to use mind mapping to ensure every planned activity aligns with a learning outcome. The map acts as a blueprint validating the logical progression from concepts to skills. By organizing content hierarchically (Buzan, 2018), teachers ensure the volume of content matches instructional time, preventing cognitive overload.

Classroom Teaching Targets: The goal is navigational clarity. Vocational lessons often involve complex procedures. A mind map acts as an "advance organizer," ensuring delivery follows a logical path. This supports Mayer's (2020) principle of signaling, helping teachers guide students' attention without getting lost in details.

Reflective Practice Targets: The goal is systematic reflection. Schön (1983) distinguishes between "reflection-in-action" and "reflection-on-action." Mind mapping supports reflection-on-action by providing a record of the original plan. Teachers can annotate the map post-class to mark successes and failures. Farrell (2019) emphasizes that reflective practice requires evidence; the annotated mind map becomes a concrete artifact of professional growth.

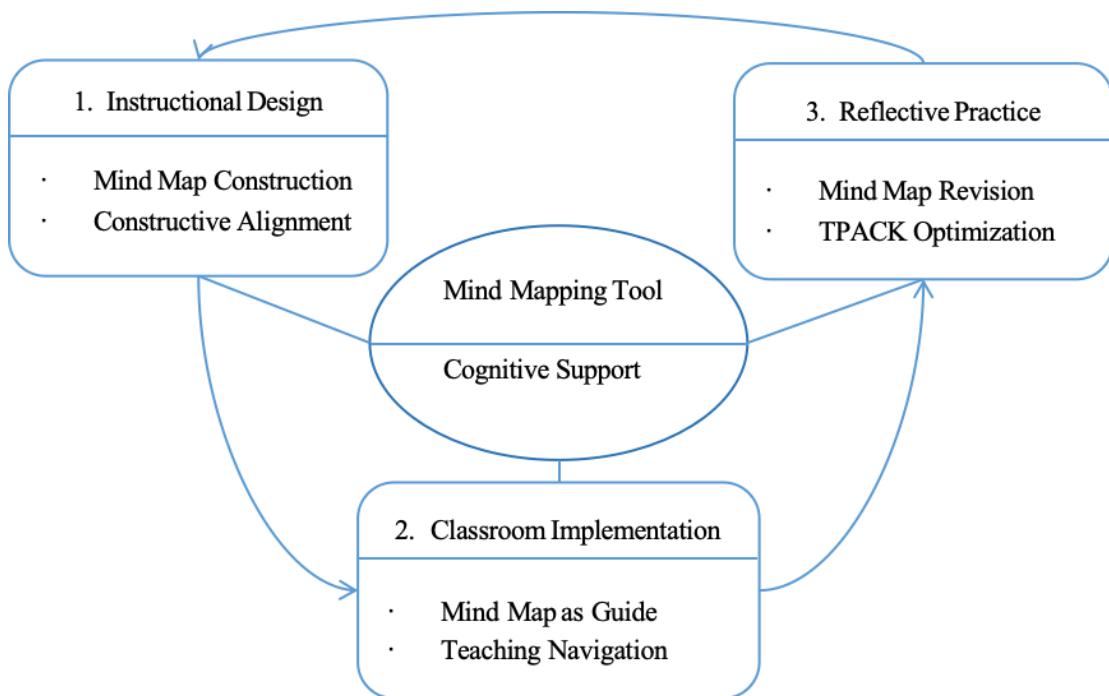


Figure The Integrated Instructional Skill Development Framework Based on Mind Mapping

Table 1 Caption: Comparison of Traditional Linear Planning and Mind Mapping-Based Planning.

Dimension	Traditional Linear Planning	Mind Mapping-Based Planning
Structure	Sequential & Linear (Text-based lists)	Radiant & Associative (Networked branches)
Cognitive Load	High (Requires holding logic in memory)	Low (Externalizes logic, reduces load)
Modification Flexibility	Difficult (Rigid structure, hard to insert)	Flexible (Easy to add/move branches)
Alignment Visibility	Implicit (Hard to see objective-task links)	Explicit (Visual connections are obvious)
Theoretical Basis	Verbal Processing (Single channel)	Dual Coding (Visual & Verbal channels)

3.2. Content Integration Strategy within the Framework

To operationalize this framework, specific strategies for integrating content within the mind map structure are required.

Strategy 1: The "Objective-Evidence" Branching Logic: Following the Backward Design model (Wiggins & McTighe, 2005), teachers should structure the map starting with "End Goals." The first level of branches represents core competencies. The second level represents "Evidence" (assessment criteria). Only tertiary branches detail teaching activities. This structural rule compels teachers to prioritize assessment evidence over content delivery, ensuring a results-oriented design.

Strategy 2: Visualizing Theory-Practice Integration: Vocational education often struggles with the "theory-practice gap." Mind mapping allows parallel processing. A main branch can represent a practical task (e.g., "Circuit Welding"), while sub-branches simultaneously display "Operational Steps" (Practice) alongside "Physical Principles" (Theory) and "Safety Regulations" (Ethics). This juxtaposition helps teachers design lessons where theory and practice are interwoven, reducing split-attention effects (Sweller et al., 2019).

Strategy 3: Explicit TPACK Nodes: To ensure effective technology use, the framework suggests using specific visual markers for Technology nodes. Following Mishra and Koehler (2006), every Technology node must connect to a Pedagogy node. For instance, a "Virtual Simulation" node must branch off a "Problem-Based Learning" node, forcing the teacher to justify the pedagogical purpose of the technology during the design phase.

3.3. Implementation Path: The Design-Enact-Reflect Cycle

The implementation follows a cyclical path transforming abstract theories into daily routines.

Phase 1: Generative Design (Pre-Class): The teacher brainstorms the lesson topic using a central image (Buzan, 1993). Utilizing dual coding (Paivio, 1991), they combine keywords and images to sketch the lesson scope. They apply hierarchical ordering to structure content modules and check for Constructive Alignment (Biggs, 2014) by verifying objective-assessment links. This phase reduces intrinsic cognitive load by externalizing complex requirements.

Phase 2: Navigational Delivery (In-Class): The mind map serves as a roadmap. Teachers share the map with students to provide a holistic view, helping students organize their knowledge structures (Mayer, 2020). The hierarchical nature allows zooming in on details and zooming out to the big picture, creating a coherent narrative flow essential for complex vocational tasks.

Phase 3: Reconstructive Reflection (Post-Class): After the lesson, the teacher engages in reflective practice (Farrell, 2019). Instead of vague journal entries, the teacher modifies the original map. If an activity failed, the branch is visually pruned or expanded. This "re-mapping" integrates experience with design structure, building a repository of refined designs embodying the teacher's growing PCK.

4. Empirical Practice and Observed Effect Analysis

4.1. Instructional Practice Context

To examine the practical validity of the proposed framework, this study analyzes instructional practice cases from higher vocational education. The focus is on vocational teachers who adopted mind mapping as their primary instructional design tool over one semester. These teachers were responsible for theory-practice integrated courses, such as mechanical engineering and information technology basics. The context was characterized by the need to transform rigid textbook content into competency-based modular instruction, a common challenge in vocational education reforms.

4.2. Analysis of Instructional Design Artifacts

The primary evidence consists of lesson plans produced by teachers before and after adopting mind mapping.

Before Mind Mapping: Analysis of traditional text-based plans revealed a linear, often disjointed structure. Instructional objectives were listed at the top but rarely referenced in "process" sections. Assessment methods were generic (e.g., "ask questions") and lacked alignment with specific skill objectives. This reflects the practical difficulty of operationalizing Biggs' (2014) constructive alignment using linear text.

After Mind Mapping: The mind maps demonstrated a significant shift in structural logic.

Objective Clarity: Teachers placed learning objectives as main branches. Following Wiggins and McTighe (2005), sub-branches immediately identified learning evidence, ensuring objectives were actionable.

Content Organization: The maps showed clear hierarchy (Davies, 2019), breaking complex tasks into manageable chunks. This aligns with Sweller et al.'s (2019) recommendations for managing element interactivity. Maps integrated theoretical concepts directly onto branches of practical steps, visually bridging the theory-practice gap.

TPACK Integration: Maps displayed specific branches for digital resources attached to learning tasks, providing evidence of intentional TPACK integration (Koehler et al., 2013).

4.3. Analysis of Reflective Teaching Records

Reflective records provided insight into teachers' internal cognitive shifts. Following Schön's (1983) framework, records were analyzed for evidence of reflection-on-action.

Enhanced Logical Awareness: Teachers reported that drawing the map forced them to detect logical gaps invisible in text plans. One teacher noted, "When I couldn't connect the 'safety check' branch to the 'assessment' branch, I realized I hadn't planned a way to grade it." This indicates mind mapping functions as a diagnostic tool for instructional logic.

Cognitive Offloading: Teachers frequently mentioned the map helped them "clear their heads." Externalizing complex details reduced anxiety about forgetting steps. This subjective report corroborates Sweller et al.'s (2019) theory regarding the reduction of extraneous cognitive load.

Depth of Reflection: Revised maps served as markers of professional growth. Teachers used color-coding to mark improvement areas (Farrell, 2019). Unlike text notes often discarded, revised maps became living documents facilitating continuous improvement.

4.4. Observed Changes in Teaching Behavior

Classroom observations indicated improved design skills translated into coherent teaching behavior.

Table 2 Observed Improvements in Instructional Performance

Instructional Dimension	Pre-Intervention Observation	Post-Intervention Observation
Delivery Fluency	Teacher frequently checked notes; frequent pauses to recall the next step.	Smoother flow; Teacher used the map only as a quick navigation guide.
Response to Issues	Rigid adherence to plan; ignored student confusion to finish on time.	Adaptive teaching; Jumped to review branches when students showed confusion.
Student Engagement	Passive listening; students lost track of the "big picture."	Active tracking; Students could see where the current task fit into the whole skill.
Theory-Practice Link	Theory and practice were taught as separate segments.	Integrated delivery; Teacher explicitly pointed to connections on the map.

Coherence and Flow: Teachers used mind maps to demonstrate smoother transitions between lesson segments. They frequently referred to the map to orient students, ensuring the instructional narrative remained cohesive.

Flexibility: Because the map represents the lesson as a network rather than a fixed sequence (Buzan, 2018), teachers showed greater flexibility. If students struggled, teachers navigated to related branches for review without losing the overall thread.

Student Engagement: Visual structures helped students understand the "big picture," leading to more focused practice. This aligns with Mayer's (2020) assertions that organized visual representations support deep learning.

5. Summary

This study explored the role of mind mapping in enhancing teachers' instructional design skills in higher vocational education from an educational reform perspective. Grounded in Buzan's (2018) theory of radiant thinking, Paivio's (1991) Dual Coding Theory, and Sweller et al.'s (2019) Cognitive Load Theory, the study established mind mapping as a potent tool for cognitive externalization. By visualizing complex relationships between objectives, content, and assessment, mind mapping supports the principles of Constructive Alignment (Biggs, 2014) and Backward Design (Wiggins & McTighe, 2005).

The study constructed an integrated framework connecting instructional design, classroom implementation, and reflective practice. Analysis of practice cases demonstrated that mind mapping helps teachers clarify instructional logic, integrate theory and practice, and operationalize the TPACK framework (Mishra & Koehler, 2006). Specifically, mind mapping transformed instructional design from a linear, fragmented task into a holistic, systemic process. It enabled teachers to conduct effective reflective practice (Schön, 1983; Farrell, 2019) by providing structured artifacts for analysis.

In conclusion, mind mapping is not merely a graphical technique but a fundamental cognitive strategy aligning with the professional demands of modern vocational education. It empowers teachers to manage curriculum complexity, integrate technology meaningfully, and continuously improve instructional design skills, thereby contributing to broader educational quality goals.

References

- [1] Biggs, J. (2014). Constructive alignment in university teaching. *HERDSA Review of Higher Education*, 1, 5–22.
- [2] Buzan, T., & Buzan, B. (1993). *The mind map book*. BBC Books.
- [3] Davies, M. (2019). Concept mapping, mind mapping and argument mapping. *Higher Education*, 78(2), 213–229.
- [4] Farrell, T. S. C. (2019). *Reflective practice in ESL teacher development*. Routledge.
- [5] Koehler, M. J., Mishra, P., & Cain, W. (2013). What is TPACK? *Journal of Education*, 193(3), 13–19.
- [6] Mayer, R. E. (2020). *Multimedia learning* (3rd ed.). Cambridge University Press.
- [7] McTighe, J., & Wiggins, G. (2012). *Understanding by Design framework*. ASCD.
- [8] Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge. *Teachers College Record*, 108(6), 1017–1054.
- [9] Paivio, A. (1991). Dual coding theory. *Canadian Journal of Psychology*, 45(3), 255–287.
- [10] Schön, D. A. (1983). *The reflective practitioner*. Basic Books.
- [11] Sweller, J., Ayres, P., & Kalyuga, S. (2019). *Cognitive load theory* (2nd ed.). Springer.
- [12] Wiggins, G., & McTighe, J. (2005). *Understanding by design* (Expanded ed.). ASCD.