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1. Introduction 

Let us study the linear regression model with measurement error 

0 , , 1,2,...,t t t t t tY x e X x u t n                                                                                        (1) 

Where 0 shows the intercept term,  shows the unknown parameters,  1 ,...,t t ptx x x


 , 

 1 ,...,t t ptx x x


  and measurement error  1 ,...,t t ptu u u


 consist with  1 ,...,t t ptX X X


 , itu is the 

measurement error, te stands for the error. Suppose that  

      2 1, , ~ ,0,0 , , ,t t t p x xx ee uux e u N u Blockdiag 
                                                                                  (2) 

For  1,...,x x xpu u u


 ee shows the variance of te xx and uu present the variance matrix of 

tx and tu . Then  ,t tY X   follows a normal distribution with mean vector  0 ,x xu u    and 

covariance matrix 

    

                

ee xx xx

xx xx uu

   



    
 
   

                                                                                                                 (3) 

Based on this we get 

  0t t tE Y X X                                                                                                                                       (4) 

 For  0 0 p xx xI K u      xxK   
11

XXxx xx xx uu xxK
       . 

Suppose that the unknown parameter statisfy the following restrictions: 

H h                                                                                                                                                          (5) 

Where H denotes a q p  matrix is a vector of 1q . 

For the linear model with no measurement error, when the statistician suspect the linear restrictions, 

many authors have studied the preliminary test estimator which is based on Wald(W),Likelihood 

Ration(LR) and Varangian Multiplier (LM)  test-statistic ,such as Yang and Xu [1], Chang and Yang 

[2-3] et al. For the linear model with measurement error, when the statistician suspect the linear 

restrictions, we consider the following test. Null hypothesis: 0 :H H h   , alternative 
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hypothesis  
1 :H H h  . Saleh and Shalabh [4] discuss the preliminary test ridge estimator best on 

W teste-statistic, and the also discussed the properties of the new estimator. In this paper we propose 

an almost unbiased ridge estimator based on W statistics and almost unbiased ridge estimator, we also 

discuss the properties of the new estimator. 

2. The new estimator 

For model (1), one problem is to estimate  . When uu  is known: Glaser [5] discuss the estimator 

of 0 , , zz   : 

0n nY X   1

n XX XYS S  And    0 0

1
1 1zz n n n n n nY X Y X

n
                                                (6) 

1 0ee zz n xx uu nK                                                                                                                               (7) 

Where 

  

  

YY YX

XY XX

S S
S

S S

 
  
 

 

1( 1 ) ( 1 ), ( ,..., ) ',1 (1,...,1)YY p p n nS Y Y Y Y Y Y Y       

 ( ) , ( 1 ) ( 1 )
i i i iXX X X X X i i n i i nS S S x X x X     

     
1

1 1 , ,...,
i pX Y i i n i i n XY X Y X YS X X Y Y S S S

     

1 1

1 1
,

n n

i it ti i
X X Y Y

n n 
    

When uu and  
11

XXxx xx xx uu xxK
       are unknown, we use the following estimator to 

estimate xxK : 

 1ˆ
xx XX XX uuK S S n                                                                                                                              (8) 

Where
1

XXS
n

presents the maximum likelihood estimator of xx uu  . 

In this case the estimators of 0 1, , ee   are defined as follows 

  1

0 0
ˆ ˆ ˆ,  ,  n n n p xx n xx n ee zz n uu xx nI K x K K                                                                          (9) 

Where 

 
1

n XX uu XYS n S


    

By Fuller [6], we have the variance of n is zzC where xx XX xx xx XX xxC K K       Then an 

estimator of C is; 

ˆ ˆ
n xx XX xxC K K   

In order to deal with multicollinearity, Saleh and Shalabh [4] proposed the ridge estimator to 

improve n  

    
11

ˆ ˆ
n p xx XX xx nk I k K K 



                                                                                                          (10) 

In this paper we use the almost unbiased method and propose an almost unbiased ridge estimator 

which is defined as follows:  

    
2

2 ˆ ˆ
nAURE P p xx XX xx nk I k I kK K 
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Define        
2 2

2 2ˆ ˆ
n P p xx XX xx P p nA k I k kI K K I k kI C

 

       , then we can write 

 nAURE k  as follows: 

   nAURE n nk A k                                                                                                                             (11) 

Consider model (1) and linear restrictions (5), we get the restricted estimator of   

   
1

1 1ˆ
n n n n nC H HC H H h  


                                                                                                          (12) 

When we suspect the linear restrictions, we consider the following W test-statistics, which is 

defined as 

     
1

1

n n n nL n H h HC H H h 



                                                                                            (13) 

When null hypothesis 0 :H H h  is right 2D

n qL  . 

Saleh and Shalabh [4] based on W test-statistics and propose the following estimator: 

    2ˆ ˆPT

n n n n n qI L                                                                                                              (14) 

In this paper we propose a preliminary test almost unbiased ridge estimator based on W 

test-statistics: 

   ˆ ˆPT PT

nAURE n nk A k                                                                                                                           (15) 

In next section, we will discuss the properties of the new estimator. 

3. The properties of the new estimator 

In this section we will discuss the comparison of preliminary test almost unbiased ridge estimator 

and preliminary test estimator under the mean squared error criterion. 

By (15), we have: 

             2 2

2
ˆ ˆ ;PT PT

nAURE n q qE k A k E A k A k H                                                        (16) 

Where     2
2

P pA k I k kI C


   ,   2 2

2 ;q qH    denote q degree, non-centrality parameter 

2  non-central chi square distribution function, and    
1

1 1C H HC H H h 


    . 

          2 2 2 2 2 2

2
ˆ ;PT

nAURE q qBias k k C k I k C k H     

      

           1 2 2 2 2

2
ˆ ;PT

nAURE zz zz q qRisk k tr C A k tr RA k H    

    

       2 2 2 2 2

2 42 ; ;q q q qA k H H      
    
 

 

          
22 2

22 ;q qA k I A k H A k I     
                                                                  (17) 

Where  
1

1 1 1R C H HC H HC


    . 

3.1 MSE analysis as a function of   

By (17), we have 

        1 2 2

2
ˆ ;PT

n zz zz q qRisk tr C tr R H    

                                                                               (18) 

Consider the following difference: 
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          1 2 2 2 2

2

ˆ ˆ    

;

PT PT

n nAURE

zz zz q q

Risk Risk k

tr C I A k tr R I A k H

 

   





    
 

       

          

2 2 2 2 2

2 4

22 2

2

2 ; ;

2 ;

q q q q

q q

A k H H

A k I A k H A k I

     

     

 



    
 

     
                                                   (19) 

Observe that             
2

2 2 0pI A k I A k I A k k I kC I A k


        , so when 1    

preliminary test almost unbiased ridge estimator is better than preliminary test estimator, where 

 

         
1 2 2 2 2 1 2

2 42 ; ;q q q q p

f k

H H C I A k     

 

 
    
 

 

          

          

2
2 2 2 4

2

2
2 2 2 1 2

2

;

          2 ;

zz q q p

p q q zz

f k tr R I A k H k I kC

k I kC A k H tr C I A k

    

    










    

    

 

When 2   , preliminary test estimator is better than preliminary test almost unbiased ridge 

estimator, where 

 

         
2 2 2 2 2 1 2

2 4 12 ; ;q q q q

f k

H H C I A k     

 

 
    
 

 

So we have the following thoerem 

Theorem 1: Under the MSE criterion when 1       ˆ ˆPT PT

n nAURERisk Risk k  ; 

when 20         ˆ ˆPT PT

n nAURERisk Risk k  . 

3.2 MSE analysis as a function of k 

When 0C  , there exists a nonorthogonal matrix P, such that  1,..., pP CP diag    , so by (17) 

we have; 

  
     

 

22 4 2

4
1

2 2ˆ
p

i i i i i i zz iPT

nAURE

i i

t k k k g k f
Risk k

k

    




    



                                                 (20) 

Where t P  ,  iia diag P RP , P  . 

        2 2 2 2 2 2 2

2 2 4; 2 ; ;i zz ii i q q i q q q qf a H H H          
      
 

 

  2 2

22 ;i i i q qg t H     

Differentiating the risk function of (20) with respect to k: 

    

 
5

1

ˆ PT
p

nAURE i

i i

Risk k h k

k k








 
                                                                                                        (21) 

Where         2 22 2 2 2 2i i i i i i zz i i i i zz ih k k t g k g f k g f                   . 

When 10 k k  ,
  ˆ

0

PT

nAURERisk k

k





, when 2k k ,

  ˆ

0

PT

nAURERisk k

k





. Where 

     2

1
1

2 2
min

2

i i i i zz i i i zz i

i p
i i

q g t f g f
k

t g
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     2

2
1

2 2
max

2

i i i i zz i i i zz i

i p
i i

q g t f g f
k

t g

   

 

           
  

 
 

 

So we have; 

Theorem 2: Under the MSE criterion, when 10 k k  , preliminary test almost unbiased ridge 

estimator is better than preliminary test estimator. When 2k k , preliminary test estimator is better 

than preliminary test almost unbiased ridge estimator. 
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