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Abstract 

The existing image fusion methods can be classified into the spatial domain and the transform 

domain techniques. Every type of techniques has its advantages and shortcomings. In this 

paper, we intend to carry forward their advantages and overcome their shortcomings by 

combining the fusion techniques of the spatial domain and the transform domain, and a 

combined sparse-spatial representation method is proposed. Our method seeks a sparse 

representation (SR) for each patch of all source images, and then uses the sparse coefficients 

and the composite dictionary to generate the fused image. Other than the existing SR-based 

fusion methods, our method considers the atoms of dictionaries as the image features, instead 

of the coefficients. The atoms of dictionary represent the essence elements of the images and the 

dimension of dictionary is usually less than that of coefficient matrix, so our method can 

combine the essence elements of the images while could offer a reduction in the computational 

complexity. Since SR has stronger ability to remove noise, our method is naturally robust to 

noise. Experiment results show that the performance of the proposed method is better than 

that of other methods in terms of several metrics, as well as in the visual quality. 
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1. Introduction 

Image fusion integrates redundant as well as complementary information present in source images in 

such a manner that the fused image describes the true source better than any of the individual image. 

The exploitation of redundant and complementary information improves the accuracy, reliability and 

interpretability of the images. Image fusion has been used widely in various areas of image 

processing, such as remote sensing for combining high-resolution panchromatic and low-resolution 

multispectral images, medical diagnosis for obtaining images having both soft issue and hard issue 

information, and target recognition for combining visible and infrared images [1], [2], [3]. 

From the 1980s to now, the image fusion technology has aroused extensively interests and resulted in 

plenty of achievements. Nikolov et al. propose a classification of image fusion algorithms into the 

spatial domain and the transform domain techniques [4]. The spatial domain techniques use the 

source image itself (or partial image) as image features, and combine the features with the fusion rule. 

Aslantas et al. [5] propose a spatial domain multi-focus image fusion algorithm and choose the 

sharper image blocks within the source images to construct the fused image. Maruthi et al. [6] use the 

measure of fuzziness to determine the activity indicator, and select the image blocks with the largest 

activity indicator. Stathaki and Mitianoudis in [7] propose two spatial domain methods: the 

Dispersion Minimisation Fusion (DMF) and Kurtosis Maximisation Fusion (KMF) techniques. They 

solve the cost functions based on two statistical parameters, i.e., the dispersion and the kurtosis, to 

estimate the weights. The conventional spatial domain fusion techniques based on spatial frequency, 

variance, energy of image gradient, information entropy, etc., are found in the works [8]-[11]. As far 

as the transform domain fusion techniques are concerned, the source images are first transformed into 

a new domain, then fused and the result is finally converted back by an inverse transform. Mahbubur 

Rahman et al. [3] calculate the weighted mean of wavelet coefficients of the source image for image 
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fusion, and the weights depend on the ratio of the local standard deviations of the detail and 

approximate coefficients. Cvejic et al. [12] calculate the weights by the mean absolute values of the 

Independent Component Analysis (ICA) coefficients, and then the weighted mean of the ICA 

coefficients for image fusion. Yang et al. [13] present an image fusion algorithm based on SR, and the 

sparse coefficients with maximum value of 
1L -norm are chosen. From the above description, the 

image patches and the transform coefficients are combined respectively according to their activity 

indicator.  

In the spatial domain techniques, the activity indicator of image patches is determined by some 

physical characteristics. So the spatial domain techniques are very intuitive and have the explicit 

physical meanings. According to the activity indicator, the image patches are combined with some 

rule. The fused image with the “choose-max” rule tends to be oversharp and less smooth, and the 

“weight average” rule is prone to make the fused image blurry [14]. It is a serious drawback to the 

spatial domain fusion techniques. The multiresolution image fusion methods overcome this problem 

well [15]. In the Discrete Wavelet Transformation (DWT) based fusion method, the low frequency 

coefficients considered as the activity of background are combined with the “weight average” rule, 

and the high frequency coefficients considered as the activity of foreground are chosen with the 

“choose-max” rule [16]. Since the measures of physical characteristics are subjected to noise 

disturbances, the performance of the spatial domain techniques will degrade drastically if the images 

to be fused contain noise. Some transformations such as DWT, ICA and SR have been significantly 

successful in the development of image denoising algorithms, so the transform domain fusion 

techniques are less influenced by noise. The activity indicator of the transformation coefficients are 

usually determined by some characteristic of the coefficients. The mathematic methods to express the 

characteristics of the coefficients are very limited and lack the explicit physical meanings. The spatial 

domain and the transform domain fusion techniques are remarkably complementary to one another in 

nature. A detailed state is given in Section II. Intuitively, the appropriate combined use of the two 

types of techniques can achieve better effect. 

In this paper, we propose a combined sparse-spatial representation image fusion method. By 

combining the fusion techniques of the spatial domain and the transform domain, we carry forward 

the advantages and overcome the shortcomings of the two types of techniques. Our method first seeks 

an SR for each patch of all source images. Secondly, according to the input conditions, we adopt the 

appropriate spatial domain techniques to combine the dictionaries of the source images. Finally, the 

fused image can be reconstructed by the composite dictionary and the sparse coefficients. Since SR 

has strong ability to denoise, the proposed method can simultaneously carry out denoising and fusion 

of the images. The image patches can be represented as the linear combinations of some atoms in 

dictionary. The atoms are the essence elements of the image patches, so our method can combine the 

essence elements of the image patches. Furthermore, usually, since the number of atoms of dictionary 

is less than the dimension of coefficient matrix, our method has a potential to reduce the 

computational complexity. The rest of the paper is organized as follows. Section II gives a detailed 

state of image fusion in spatial domain and transform domain. Section III presents the description of 

the proposed image fusion method, whereas Section IV contains experimental results obtained by 

using the proposed method and a comparison with the state-of-the-art algorithms. The paper is 

concluded in section V. 

2. Image fusion in spatial domain and transform domain 

The image fusion process consists of three main steps: extracting image features, fusing these features 

with a certain rule, and constructing a fused image. The spatial domain techniques use the source 

image itself (or partial image) as image features, and combine the features with some rule. In the 

spatial domain techniques, some physical characteristics, such as the fuzziness [6], spatial frequency, 

variance, energy of image gradient, information entropy, etc., are applied to determine the activity 

indicator of image patches. So the spatial domain techniques often have the characteristics of less 

calculation, intuition and explicit physical meanings. According to the activity indicator, the image 
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patches are combined with some rule. Every image patch includes the foreground features (high 

activity level) and background features (low activity level). With the “choose-max” rule, the fused 

image will tend to be oversharp and less smooth. With the “weight average” rule, the foreground 

features in the fused image will be more blurred than in the source images. The above conclusions 

have been proven in detail in our previous work [14]. Moreover, in practice, the source images often 

contain the noise, and the measures of physical characteristics are subjected to noise disturbances, 

such that the fusion performance will degrade severely.       

In the transform domain fusion methods, the source images are first transformed into a new domain 

and then fused. Finally, the result is converted back by an inverse transform. The activity indicator is 

often determined by some characteristics of the coefficients. The mathematic methods to express the 

characteristics of the coefficients are limited, lack explicit physical meanings, and mainly include 

2L -norm, 
1L -norm and the absolute value of the coefficients. The forward transform and backward 

transform increase the calculated amount, so the transform domain methods often have higher 

computational complexity than the spatial domain methods. However, the transform domain methods 

can overcome some drawbacks of the spatial domain methods. The DWT based image fusion method 

considers the low frequency coefficients of image patches as the background feature and the high 

frequency coefficients as the foreground feature, and combines them with the “weight average” rule 

and the “choose-max” rule respectively. Some transformations, such as DWT, ICA and SR, have 

strong ability to denoise, so there are fewer noises in their transformation coefficients. Thus, some 

transform domain fusion methods are less influenced by noise. Through the analysis above, we can 

get the conclusion that the spatial domain and the transform domain fusion methods have their special 

characteristics respectively and can compensate for each other.  

3. Image fusion with a combined sparse-spatial representation method 

  In previous works [12] [13] and [16], the transform domain image fusion methods transfer the 

source images into a new domain, and combine the coefficients with the fusion rule. In this paper, a 

novel strategy is proposed. Instead of the coefficients, we adopt the appropriate spatial domain 

techniques to combine the dictionaries of the source images. The fused image can be constructed by 

the sparse coefficients and the combined dictionary. Sparse representation is a method that can 

describe most or all information of an image with a linear combination of a small number of atoms 

from dictionary. The atoms are considered as the essence elements of source images. Our method 

separates the elements into the common components and innovative components, and then combines 

them respectively. Furthermore, SR has stronger ability to remove noise. So our method is expected 

to overcome the drawbacks in the spatial domain fusion methods. The dictionaries are combined with 

the spatial domain techniques, such that our method has advantages of specific sense of physics. The 

number of atoms of dictionary is less than the dimension of coefficient matrix, so our method could 

reduce the computational complexity. Thus, our method has a potential to overcome the weakness of 

the transform domain fusion methods. Vinje and Gallant in [17] indicate that the primary visual 

cortex (area V1) uses a sparse code to efficiently represent natural scenes. Fusing image based on SR 

is appropriate in accordance with the human visual characteristic. In conclusion, according to the 

input conditions, the appropriate combined use of SR and the spatial domain techniques can achieve 

better fusion effect. 

3.1 The dictionary joint training with K-SVD [18] 

Since all the sparse coefficients of source images are same, the image features are present in the 

corresponding dictionaries. Let the pixels of the ideal images ix  ( 1, 2i  ) to be fused be corrupted by 

an additive zero-mean white and homogeneous Gaussian noise in  with known variances 2

i . The 

measured image is  is thus 

 

i i is x n 
                                                           

(1) 
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Each image is divided into B B  patches ( )is l  ( [1, ]l L , )( 1)( 1)NL M B B      with sliding 

window technique. Each block is ordered lexicographically as vector ( )iv l . Assume that the vectors 

responding to all the patches in image 
is  are constituted into one matrix 

iV . The individual dictionary 

training problems are 
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where ( )l  is the l-th column vector of   and 
0T  stands for the count of the nonzero entries in ( )l . In 

order to force the source images to share the same sparse coefficients, we train the dictionaries jointly. 
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, then (2) can be rewritten as 
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(3) 

 

In this paper, we use the orthonormal matching pursuit (OMP) [19] to get an approximation solution 

of (3) because of its simplicity and fast execution.  

3.2 Combining the dictionaries and constructing the fused image 

In the next step, according to the input conditions, we adopt the spatial domain techniques to combine 

the atoms of dictionaries of the source images. In this paper, we use the feature indicator to evaluate 

the contribution of the atoms of dictionary instead of the activity indicator. Assume 1 2, B GD D R  , and 

let ( )iI g , 1,2, ,g G  represent the innovation indicator of each atom. According to our previous 

work [14], the source image can be separated into the common components and the innovative 

components. And each image can be considered as the linear combination of some atoms of 

dictionary. In this paper, we regard the atoms as the common components if the difference between 

the innovation indicators of atoms corresponding to different images is small, otherwise as the 

innovative components. For the common components, we can use the “mean” rule. While for the 

innovative components, we combine the atoms with the “choose-max” rule, in order to try to preserve 

the features with the bigger feature indicator. Thus, the atoms of dictionary of fused image can be 

obtained by 

 

1 1 2 1 2 1 2

2 1 2 1 2 1 2

1 2

( ), if ( ) ( )and ( ) ( ) ( ( ) ( ) )

( ) ( ), if ( ) ( )and ( ) ( ) ( ( ) ( ) )

( ( ) ( )) / 2, otherwise

F

D g I g I g I g I g I g I g

D g D g I g I g I g I g I g I g

D g D g





     


     




                      (4) 

 

Table I Various physical characteristics for different types of images 

The types of images to be fused The physical characteristics adopted 

The medical images Entropy [11], energy of image gradient [10] [20] 

The multi-focus images Spatial frequency [8], fuzziness [6], variance [9] 

The infrared-visual images Intensity [21], energy of image gradient [10] [20] 
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The image fusion methods in the existing literatures use various physical characteristics to fuse the 

images, as shown in Table 1. In this paper, according to the input conditions, these physical 

characteristics are adopted to determine the innovation indicator ( )iI g . 

We can acquire the fused image dictionary 
FD  by calculating equation (4). Then the fused image 

matrix can be reconstructed by 

 

F FV D                                                                  (5)   

 

Finally, we can transform the matrix 
FV  to the image patches ( ), 1,2, ,Fx l l L  and synthesize the 

fused image 
Fx  by averaging the image patches in the same order the image patches were selected 

during the analysis step. 

3.3 The computational complexity 

  The next, we compare roughly the computational complexity of our combined sparse-spatial 

representation method with the spatial domain methods and the transform domain methods. The 

computational complexity of the spatial domain methods comes from two parts: calculating the 

feature indicator and combining the features. In addition to two above sources, another contribution 

to the computational complexity of the transform domain methods is transforming the images 

forwardly and backwardly. For each pair of elements, we assume that the computational complexities 

of the feature indicator, the feature combination and image transformation can be represented by 
IT , 

CT  and 
TransT . So the computational complexity of the spatial domain fusion methods is about 

 

( )S I CT T T L                                                                   (6) 

 

and the computational complexity of the transform domain fusion methods is about 

 

( )T I C transT T T T L                                                             (7) 

 

With our method, the images are fused by combining the dictionary instead of the coefficients, so the 

computational complexity is about 

 

( )O I C transT T T G T L                                                         (8) 

 

In general, G L=  (for example, with the sliding windows technology, the image of size 256 256  will 

be divided into 62001 patches of size 8 8 , and these patches can be represented in a dictionary of size 

64 500 . Thus 500G   and 62001L  ). So our method has a potential to offer a reduction in the 

computational complexity compared with the transform domain methods. If the algorithm of 

calculating the feature indicator is very sophisticated, the computational complexity of our method 

could even be lower than that of the spatial domain methods. 

4. Experiments and comparisons 

In this paper, the proposed fusion algorithm is compared with the spatial domain fusion methods and 

the transform domain fusion methods. The spatial domain methods based on entropy (EN) [11], 

spatial frequency (SF) [8], energy of image gradient (EG) [10] [20], intensity (IN) [21], and variance 

(VA) [9] have been proven to fuse the images well. The transform domain fusion methods, including 

sparse representation (SR)-based [13], the ICA [12] and discrete wavelet transform (DWT) [22] 
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methods are widely applied. In the proposed method, the overcomplete dictionary of size 64 500  is 

trained by K-SVD, the maximum number of iterations is set to 100, and 0.5  . For a fair comparison, 

in all fusion methods, the source images are divided into small patches of size 8 8  using sliding 

window technique. In the SR based fusion algorithm, the fixed dictionary—an overcomplete DCT 

dictionary is applied and the sparse coefficients are estimated by OMP. The ICA algorithm are trained 

using 10 000 training patches selected randomly from a set of images with similar content, and 40 out 

of the most significant bases obtained by training are selected using the PCA algorithm. The DWT 

algorithm uses a five-level decomposition.  

In order to evaluate the performance of these fusion algorithms, the objective fusion metric based on 

mutual information (
MIQ ) [23], Petrovic’s metric based on gradient of image (

GQ ) [24], and Cvejie’s 

metric (
CQ ) [25] are applied. These metrics are calculated using the fused images and the 

corresponding noise-free images. The lager the values are, the better the fusion result will be.  

The medical images are widely used in clinic diagnosis and treatment. MR and CT are important 

medical images. Due to the differences of the imaging principle between them, the dissection 

structure of showing they give prominence to differ. Normal and pathological soft tissue are better 

visualized by MR while the structure of bone, for example the temporal bone, including the middle 

ear and cochlea, is better visualized by CT. Because of the supplementary effects of MR and CT, the 

combination of the two types of images can often lead to additional clinical information not apparent 

in the separate images. 

Fig. 1 shows the medical images corrupted with Gaussian noise, and their fused images using the 

fusion methods based on ICA, SR, DWT, EN, EG and our method. In our method, the feature 

indicator is determined by the energy of image gradient. It can be seen that, the fused images in Fig. 

5(c), (e) and (h) are better perceptive than the fused results of other methods in Fig. 5(d), (f) and (g). 

Our method, SR and EG have successfully chosen the soft tissues features in the MR image and the 

hard tissues features in the CT image. The fused image with EG contains more noise than that with 

our method and SR. The structure of soft tissues of fused images by EN is clear, but the structure of 

bones is blurred. For DWT and ICA, the contrast is reduced to some extent and the edges are not 

easily distinguished.  

    
a                   b                  c                   d 

    
e                   f                  g                   h 

Fig. 1 Visual comparison of the performance of the fusion algorithms using the medical images 

corrupted with Gaussian noise, [20, 20]  . (a) Input magnetic resonance (MR) image. (b) Input 

computed tomography (CT) image. (c) The fused image, the proposed algorithm. (d) The fused image, 

ICA fusion algorithm. (e) The fused image, SR fusion algorithm. (f) The fused image, DWT fusion 

algorithm. (g) The fused image, EN fusion algorithm. (h) The fused image, EG fusion algorithm. 
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The corresponding standard fusion metrics, including MIQ , CQ  and GQ , are listed in Table II. The 

highest quality measures obtained over all methods are indicated by the values in bold. From Table II, 

we can see that our method provides higher values in CQ  and GQ , and is a little inferior to SR in MIQ . 

 

Table II Performance of image fusion methods by the standard fusion metrics for medical images  

Image Medical image 

                                Metric     

Method 
MIQ  

CQ  
GQ  

Our method 0.4926 0.4661 0.9302 

ICA 0.3936 0.2793 0.7494 

SR 0.5076 0.4237 0.8723 

DWT 0.3474 0.2823 0.8028 

EN 0.3810 0.3650 0.9131 

EG 0.3745 0.3689 0.9087 

  

Since the optical lenses, particularly those with long focal lengths, suffer from the problem of limited 

depth of field, it is impossible to get an image in which all containing objects appear sharp. The 

objects in front of or behind the focus plane would be blurred. Multi-focus image fusion can get one 

image with all the objects focused. 

Fig. 2 shows the multi-focus images corrupted with Gaussian noise, and their fused images using ICA, 

SR, DWT, SF, VA and the proposed method. In our method, the feature indicator is determined by the 

spatial frequency. Fig. 7(a) is near focused, where the small clock is in focus and clear in vision, 

whereas the big clock is out of focus and blurred. Fig. 7(b) is far focused, and the situations for the 

small clock and the big clock are contrary. We can see that all the objects of the fused image provided 

by our method and SF are sufficiently well focused, and both the big and small clocks look clearer. 

Compared with SF, the noise of the fused image with our method has been removed significantly.  

    
                                 a                                   b                                  c                                d 

    
e                                 f                                  g                                 h 

Fig. 2 Visual comparison of the performance of the fusion algorithms using the multi-focus images 

“Clock” corrupted with Gaussian noise, [10, 10]  . (a) and (b) Multi-focus “Clock” images. (c) The 

fused image, the proposed algorithm. (d) The fused image, ICA fusion algorithm. (e) The fused image, 

SR fusion algorithm. (f) The fused image, DWT fusion algorithm. (g) The fused image, SF fusion 

algorithm. (h) The fused image, VA fusion algorithm. 
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In Table III, we show the fusion metrics for two pairs of multi-focus images. In most cases, our 

method obtains the highest value, only lost to SR in 
MIQ  for the multi-focus images “Clock”. It is in 

line with the visual effects. 

 

Table III Performance of image fusion methods by the standard fusion metrics for multi-focus images 

Image Clock Book 

               Metric         

Method 
MIQ  

CQ  
GQ  

MIQ  
CQ  

GQ  

Our method 0.7863 0.6216 0.9673 1.0098 0.7978 0.9703 

ICA 0.6529 0.5191 0.9690 0.6722 0.6418 0.9258 

SR 0.7984 0.6193 0.9700 0.9089 0.7135 0.9700 

DWT 0.6051 0.5026 0.9657 0.9241 0.7247 0.9702 

SF 0.6528 0.5211 0.9639 0.6827 0.5799 0.9659 

VA 0.6502 0.5024 0.9584 0.6698 0.5796 0.9646 

5. Conclusions 

  In this paper, we propose a combined sparse-spatial representation method, which seeks a SR for 

each patch of all source images, and then uses the sparse coefficients and the composite dictionary to 

generate the fused image. With SR, the essence elements of the images can be extracted. These 

elements are considered as image features, and combined with different rules according to the feature 

indicators. Since the dimension of dictionary is usually less than that of the coefficient matrix, our 

method has a potential to cut down the amount of calculation. Experiment results show that the 

proposed method has better fusion performance than the state-of-the-art methods. 
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