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Abstract 

Due Many real networks in nature and society are characterized by a high degree of 
clustering,in addition to the small-world and the scale-free property.We propose a model of a 
growing network in which preferential linking is combined with local clustering 
organization.The model is solved exactly in the limit of a large network size.We demonstrate 
that both the degree distribution and the triangle distribution depend on the network 
size.When the size of the network tends to infinity,there is a stationary power law degree 
distribution and a high clustering coefficient. 
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1. Introduction 

With the increasing attention of network representing many real networks, new statistical measures 
have been motivated to describe random networks [1, 2, 3]. These measures has revealed that, as a 
difference with the classical Erdos Renyi [4] model, real networks are characterized by three 
property :a power law distribution of vertex degrees [1, 5, 6], a high clustering coeffcient [1,7, 8] and 
a short average path length[1,9,10,11]. 

Consider undirected simple graphs on Ni ,,2,1  nodes.The clustering coeffcient for node i with ik  

is defined as 
)1( 


ii

i
i kk

T
C  , where iT  is the number of links between the ik  neighbors of i ,in a 

simple word, we call it the triangle number of node i. And the average clustering coefficient defined 

as 
N

C
C i i . Empirical results indicate that C is significantly higher for most real networks than for 

a random one of similar size[1,2,9]. Furthermore,the clustering coefficient of real networks is to a 
high degree independent of the number of the nodes in the network[1]. 

Yet, most models of complex networks have difficulty capturing this feature.For example,the random 
graph model[4] predicts the average clustering coefficient C(N) decreases as 1N  .The scale-free 
model[12] predicts a larger clustering coefficient than a random one of the same size.But numerical 
simulations of it show that the average clustering coefficient depends on the system size as 

75.0)(  NNC ,and this is still not consistent with that many real networks have the C(N) independent 
of the network size. Recently many works have been done to predict the case of the real network by 
simulations and approximation. 

In the present paper we propose a networks model with local clustering organization which means 
that whenever a new node point to an old one it also prefer to pointing to the neighbors of the old node. 
The model is solved exactly in the limit of a large network size. We demonstrate that both the degree 
distribution and the triangle distribution depend on the network size. When the size of the network 
tends to infinity,the degree distribution behaves as 3)(  kkP  and the average clustering coefficient 
C(N) independent of the network size N. 
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2. The Scale-free model  

Let us introduce the model of scale free growing networks with undirected links.  

Initially( 1 mt ),there is a completed graph with m nodes, 1,,1,0  ms  . At each increment of 
time , a new node with m edges is added. The first edge is linked to the existed nodes of the network 
with preferential attachment: the probability that a new node will be linked to node i depend on the 

degree ik  of that node, such that 
 j j

i

k

k
.Then, the rest 1m  edges are uniformly linked to the 

neighbors of node i that has been linked to by the first edge. 

We solve the model by mean-field method and rate equation. 

From the model, a node s receives links from a new node by two case:  

(a)it can be linked by the first link with preferential probability 
 j j

i

k

k
; 

 (b)if one of it'neighbors j get the first link, it also can be linked with uniformly probability
jk

m 1
. 

We can easily obtain the differential equation about degree )(tks : 

                  
jjsj j j
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k

k
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tdk 1)(
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
   

                                                   (1) 

where ),( jsj denote all nodes j linked to node s. From the initial condition of the equation(1), 

msks )( ,and we know mtk
j j 2  ,we get the function 

                       2/1)/()( stmtks                                                                     (2) 

We can see that the above function is as same as that of the scale-free model[12].And we can get 
similarly the power law degree distribution 322)(  kmkP when the network size is very large. 

3. The analytical result    

In the following, we will give and solve the rate equation of )(tTs ,the triangle number of nodes. From 

the model,the triangle number )(tTs  of node s increases in three case: 

(a)s is linked by the first link of new node,then the number will increase 1m ;  

(b) if one of it'neighbors j get the first link,then whenever it receive an edge ,the triangle number 
increases 1; 

 (c) if(b)and if I which is another neighbor j receives a new link and simultaneously i is one neighbor 
of s then the triangle number of s will increase.  

So we obtain the rate equation 

   
( , )

( ) 1
( 1) js s

j s jj j jj j

kdT t k m
m

dt k k k s


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k Tm m
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 
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                        (3) 

We can rewrite (3) by a simple form 

                      
( , )

( ) 22( 1)( 2) 1
2( 1)s s s

j s jj j s jj j

dT t k Tm m
m

dt k k k k

 
    

  

Now,in the sense of average and using (2) we get  
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So we get the simpler form of (3) 

     ( ) 2( 1)( 2) 2
2( 1)

3
s s
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dT t k m m
m T
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By(2), we get 

1 2 1 2 2

( ) 1 2 ( 1)( 2)
( 1)

3
s sdT t Tm m

m
dt t s m t

 
                                      ( '3 ) 

The general solution of ( '3 )is 
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where )(sf  is the function only dependent on s. For the convenience of the following analysis,we 
can use the equivalent form of (4) 
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where )(sTs  is the very initial condition of )(tTs . 

To get the exact solution of (3),we now try to find the form of )(sTs . We perform integration on 

s from 0 to t respectively to the left and right of (3 ). Then we get 

                        
20 0
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2 2( 1)
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s s
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Making difference on both sides of (5 ) and using the (5) . 
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Then we get the general solution of )(tTt  
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where g(m) is the constant when m is given.And from the initial condition
( 1)
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2m
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Now,we obtain the exact expression of )(tTs  

         2 2
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Then,for node s,we obtain 
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By (2) and (7), we obtain )(NC k , the average clustering coefficient of nodes whose degree is k. 
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When N ,we obtain 
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and as we see, at large N, )(NC k is independent of N. 

Further,we can calculate the average clustering coefficient of the whole network 

    ( ) ( ) ( )
m

C m P k C k dk


   

From (2)and(8), it is easy to see that for given m the average clustering coefficient C is a constant 

independent of N.                

4. Computer simulations 

In order to check our analytical result we have performed numerical simulations of our model. See the 
following figures. 

Figure1: Clustering coefficient changes with t when m0 = 6,m = 6 and t < 100000 

Figure2 :Clustering coefficient changes with t when m0 = 2,m = 2 and t < 100000 

 

5. Conclusion 

Both the theory and simulation results show that we have proposed a model that has the high 
clustering coefficient and power-law degree distribution simultaneously. Both the degree distribution 
and the triangle distribution depend on the network size and when the size of the network tends to 
infinity, the average clustering coefficient C(N) independent of the network size N. 
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