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Abstract. Spectroscopy is a powerful tool for identifying chemicals in environment, food and 

industry etc. Chip spectrometer will boost the application of spectroscopy because it is portable and 

able to be produced in batch with low cost. However, the coupling between multimode fiber and 

waveguide was a significant obstacle in the realization of chip spectrometer. An on-chip photo lantern 

was proposed in this paper to convert the multimode light into multi-channels single mode light, and 

couple to a chip spectrometer vertically. The design, simulation and fabrication of the on-chip photo 

lantern were introduced. The proposed technology is promising for improving the sensitivity of chip 

spectrometer. 
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1. Introduction 

The coupling of single-mode optic fiber to waveguide is well developed in the past 30 years due 

to the huge demand comes from optical communication and optical interconnection [1-5]. However, 

multimode fiber with a core size large than 100 micron is normally used to collect enough scattering 

light in a fiber spectroscopy system. In recent, with the development of on-chip spectrometer [6-16], 

efficient multimode fiber-waveguide coupling techniques are in demand. Since the diameter of the 

output light spot of multimode fiber is normally more than a hundred micron while the core size of 

waveguide is only several micron, a large coupling loss is normally unavoidable in a horizontal direct 

coupling mode because of the large core size mismatch. Accordingly, many researches focused on 

the development of vertically coupling techniques. Although the grating coupling technology of 

single mode fiber-waveguide is well developed [17-26], the vertically coupling of multimode fiber-

waveguide faced more difficulties due to mode conversion and is far from usable. For example, it is 

difficult to calculate the spatial distribution of multimode light as well as its emission angle using 

electromagnetic theory because the theoretical analysis on so many modes is too complex to be 

accomplished. It is almost impossible to establish a theoretical model on coupling of multimode fiber 

to waveguide. The experimental coupling efficiency of multimode fiber to waveguide is also poor 

due to the mode mismatch.  

A feasible solution is to convert multimode light into multichannel single mode light firstly, and 

then couple into waveguide vertically. An optical component called photo lantern had been reported 

to covert multimode light to an array of single mode light [27-34]. One end of a photo lantern is a 

multimode fiber while the other end is a bundle of single mode fibers. The contour of these single 

mode fibers formed a circle with the diameter that equals to the core size of the multimode fiber. 

A vertically multimode fiber-waveguide coupling approach was introduced in this paper for the 

application on an on-chip spectrometer. A tilted polymeric pillar array was fabricated on a taper 

silicon oxynitride waveguide, and the diameter of each pillar was limited to a few micron to allow 

only single mode transmission. These pillars were arranged close to each other and the silicon 

substrate under these pillars was removed and a metal reflective layer was then deposited. In the on-

chip spectrometer, the input multimode fiber was fixed on the top of these pillars, and the multimode 

light was covert into many isolated single-mode beams along these pillars and further coupling into 

the taper waveguide. The design, simulation, fabrication and testing of the coupling structure was 

discussed in the following sections. 
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2. Theoretical Analysis and Simulation 

The cross section of the proposed on-chip photo lantern was illustrated in Fig.1. The refractive 

index of cladding and core layer of oxynitride waveguide are 1.454 and 1.483, respectively. The 

thickness of core layer is about 1.5 micron to allow the transmission of only single mode light. The 

thickness of top and bottom cladding layer is about 4 micron. The vertical polymeric waveguide is 

formed by SU-8 photo resist and its refractive index is 1.574. α and c is the angle of total reflection 

of the oxynitride waveguide and SU-8 vertical waveguide, respectively. β is the refractive angle from 

SU-8 to oxynitride core layer. The following equations can then be derived according to the classical 

optical theory. 

 
Figure1 The model of vertical coupling with titling polymeric pillar 
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Where nair is the refractive index of air. We can derive the solution of these equations by substitute 

the value of n1, nair, ncore and nclad into equation 1-3. The solution of these equations are c=39.6˚, 

α=78.6˚, β=67.8˚. The incline angle of the SU-8 vertical waveguide is determined to be γ=72.6°.  

Simulation was carried out using the software FDTD based on the model shown in Fig. 1.The 

simulated result was shown in Fig. 2. Here the input light irradiation on the top surface of the on-chip 

photo lantern vertically and coupled into the core layer of the underneath oxynitride waveguide. The 

coupling efficiency is defined as the ratio of output and input optical power.  

 
Figure 2 Simulation model and result of vertical coupling structure by FDTD 

The diameter of the SU-8 pillar as well as the gap between adjacent pillars was determined by the 

minimum size allowed by the lithography process in our lab. The height of the SU-8 pillar was 

optimized by maximizing the efficiency and reducing the difference of efficiency from 800-1000 nm, 

which is the range of Raman chip spectrometer with a 785 nm irradiation laser. The simulated 

efficiency was shown in Fig. 3 with the height of SU-8 pillar ranged from 4.3 to 5.0 micron. Finally, 



International Journal of Science Vol.2 No.3 2015                                                                                                 ISSN: 1813-4890 

 

77 

 

the diameter of SU-8 pillar is 2.0 micron while their gap is 2.0 micron, too. The height of SU-8 pillar 

is determined to be 4.9 micron.  

 
Figure 3 The coupling efficiency with different height of SU-8 pillars 

3. Fabrication 

3.1 Fabrication of photomask by direct laser writing 

The collimated ultraviolent light should irradiate the wafer in an incline angle in order to realize a 

tilting SU-8 pillar array in the exposure process. A feasible way is to place the wafer as well as its 

photomask on a leaned base. However, the commercial available photomask is too bulky to be 

amounted on a leaned base. We made a compact photomask instead by direct laser writing.  

Chrome 200 nm thick was sputtered on a glass wafer about 400 micron thick. A photo resist (AZ 

1805, Shipley) was spin-coated at 7000 rpm for 30 second and prebaked at 95 C for 4 minutes. The 

wafer was developed for 1 minutes using a TMAH developer (RZX-3038, Ruihong Inc., China) after 

exposure using a laser direct writing system (Micro Writer MLTM, Quantum design Inc., Britain) at 

a dose of 9 mJ/cm2. Then the wafer was immersed in a Chrome etching solution (NH4NO3: HClO4: 

H2O=100g: 26ml: 440ml) for 1 minute. The AZ 1805 photo resist was stripped by acetone and IPA. 

The glass was then diced to small pieces about 2 × 2 cm. Last, the photomask was rinsed by DI water 

and blow dry by nitrogen. The optical microscopy picture of the fabricated photomask was shown in 

Fig. 4 

 
Figure 4 the OM pictures of fabricated photo mask by laser direct writing 

3.2 Fabrication of Tilting SU-8 Pillar Array 

The inclined base for the exposure of titling SU-8 pillar array was shown in Fig. 5. Because the 

size and gap of SU-8 pillars is only a few microns, it is essential to minimize the gap between the 

wafer and photomask to prevent the blurring of the photo resist pattern induced by UV diffraction. 

Two silica gel gaskets hold by trip bolts were placed on the pair of wafer and photo mask and pressed 

them together.    
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Figure 5 the illustration and the optical picture of the incline base 

The inclined base for the exposure of titling SU-8 pillar array was shown in Fig. 5. Because the 

size and gap of SU-8 pillars is only a few microns, it is essential to minimize the gap between the 

wafer and photo mask to prevent the blurring of the photo resist pattern induced by diffraction. Two 

silica gel gaskets screwed by trip bolts was placed on the edge of the pair of wafer and photo mask 

and pressed them together tightly. DI water was dipped on the pair of wafer and photo mask to further 

reduce the effect of diffraction. The optical microscopy picture of the achieved SU-8 pillar array with 

or without water immersion were shown in Fig. 6. The lithograph resolution was improved 

significantly. 

 
Fig.6 The OM picture of SU-8 pillars with or without water immersion 

SU-8 2005 was spin-coated on a spectrometer chip at 3500 rpm for 30 second. The chip was placed 

on the inclined base after prebake at 65 C for 5 minutes and 95 C for another 5 minutes. The photo 

mask was placed on the chip face to face and pressed tightly by the silica gel gaskets as shown in Fig. 

5. A dip of DI water was dipped on the edge of the pair of chip and photo mask. The DI water filled 

the gap between the chip and photo mask by capillary action. The inclined base was then moved to 

an contact aligner (BA6, Karlsuss, Germany) and exposed at a dose of 150 mJ/cm2. The chip was 

developed for 3 minutes after bake at 65 C for 5 minutes and 95 C for another 5 minutes. Last, the 

chip was rinsed by IPA and blow dry by Nitrogen. The SEM picture of the fabricated SU-8 pillar 

array was shown in Fig. 7 

 
Figure 7 The SEM picture of fabricated titling SU-8 pillars 

 
Figure 8 The SEM picture of the cross section of the on-chip photo lantern 
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As shown in Fig.1, A reflection layer under the oxynitride waveguide is required to improve the 

coupling efficiency. To prepare the reflection layer, the silicon substrate underneath the SU-8 pillar 

array was removed by wet etching and Aluminum 100 nm thick was then deposited on the backside 

of the chip. The SEM picture of cross section of the coupling structure was shown in Figure 8. 

4. Conclusions 

An vertically coupling approach of multimode fiber to oxynitride waveguide was investigated in 

this paper for the application of chip spectrometer. multimode light was converted to an array of 

single mode light by passing through a titling SU-8 pillars array, and coupling to oxynitride 

waveguide vertically. The fabrication process of the on-chip photo lantern was demonstrated. The 

optical characterization and the optimization of structural parameters is on-going and will be 

presented in a future paper. 
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