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Abstract. The problem of automatically tuning multiple parameters for pattern recognition Support 

Vector Machines (SVM) is considered. This is done by minimizing some estimates of the 

generalization error of SVM using a gradient descent algorithm over the set of parameters. This error 

can be estimated via a bound given by theoretical analysis. Inspired by the relationship between the 

radius of the MEB and the trace of within-class scattering matrix, this paper incorporates the later into 

2-norm Support Vector Machines( 2L -SVM) to estimate the error, and automatically tune parameters 

of SVM by introducing the gradient descent algorithm. Detailed theoretical analysis is conducted to 

show how the resulting optimization is efficiently solved. 

Keywords: support vector machines, radius-margin bound, gradient descent algorithm, within-class 

scattering matrix. 

1. Introduction 

As one of the most popular machine learning approaches, kernel methods have been widely used in 

many applications [1-3]. Support vector machines (SVM), as a kernel method, have been a promising 

tool for data classification [4]. For such tasks, the performance strongly depends on the choice of 

some parameters. These parameters include: the regularization parameter C , which determines the 

tradeoff between minimizing the training error and minimizing model complexity; and parameter   

of the kernel function that implicitly defines the nonlinear mapping from input space to some 

high-dimensional feature space. These higher level parameters are usually referred as 

hyperparameters. 

The success of performance depends on the tuning of hyperparameters that affect the 

generalization error. Tuning these hyperparameters is usually done by minimizing the estimated 

generalization error such as the k-fold cross-validation error or the leave-one-out (LOO) error [5-8]. 

LOO is particularly of theoretical interest, because it makes use of the greatest possible data for 

training and does not involve random sampling. However, LOO exhibits serious limitations. In 

addition to the fact that it is computationally expensive, it has a larger variance than cross validation. 

Another type of bound incorporates the radius of the minimum enclosing ball (MEB) of training data 

into SVM formulation by considering that the generalization error of SVM is upper bounded by the 

ratio of the radius to the margin, so called the radius-margin bound. However, in [9], the radius of the 

MEB is incorporated by solving a more optimization method, which adds one extra level of quadratic 

optimization on top of the existing SVM framework, and the notorious sensitivity of the radius of the 

MEB to outliers or noisy samples can adversely affect the kernel learning performance of SVM. 

From our point of view, the underlying cause for the aforementioned drawbacks lies at that the 

radius of the MEB is sensitive to outliers and increases the computation cost. To improve this 

situation, the paper proposes to incorporate the trace of within-class scattering matrix of training data 

into 2L -SVM, which is inspired by its close relationship with the radius of the MEB. In particular, to 

well justify the incorporation of radius information, we strictly comply with the radius-margin bound 

and focus on the 2L -SVM with a soft margin, which can be reformulated as the SVM with a hard 

margin using a slightly modified kernel, making the radius-margin bound still applicable. It has the 

following advantages. 
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(1) More robust to outliers and noisy samples. By uniformly weighting each sample, the trace of 

within-class scattering matrix is more robust than the radius of the MEB in characterizing the 

scattering of training points. 

(2) More conducive to improve the classification performance. 

(3) More computationally efficient. By substituting the radius with the trace of total scattering 

matrix, our method avoids the extra level of quadratic optimization needed to compute the radius, 

which well reduces the computational cost of each iteration. 

In addition, through using the 2-norm soft-margin formulation of SVM, this work provides an 

efficient way for SVM to utilize the information of the radius of the MEB and uses the reduced 

gradient method [10] to tune the regularization parameter C  and kernel parameter  . 

The rest of this paper is organized as follows. We review the related work in section 2; in section 3, 

we give the formulation of the proposed. Then, we prove that its optimization problem can be written 

into the common form of existing 1-norm SVM and show how it can be efficiently solved. After that, 

some preliminary discussion on the proposed criterion and radius-margin bound is conducted, and the 

conclusion is in section 4. 

2. Related work 

Let  ,i ix y  be a given set of training data, where ix  is the thi  input vector and iy  is the target 

value,  1iy   . 1iy   denotes that ix  is in class 1 and 1iy    denotes that ix  is in class 2. 

2.1 2L -SVM. 

In this paper, we consider the support vector machine (SVM) problem formulation that uses 

2L -norm soft-margin given by 
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This problem is computationally solved using the solution of its dual form: 
~

1 1 1

1

1
max ( ) ( , )

2

. 0, 0, 1,2, ,

l l l

i i j i j i j

i i j

l

i i i

i

W y y K x x

s t y i l

  

 

  



 

  

 


                                                                              (2) 

Where
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C
  , ( , ) ( ) ( )i j i jK x x x x    is a kernel function that satisfies the 

Mercer conditions (symmetric positive definite function), and 
ij  is the Kronecker , which is 1 

when i j , and 0 otherwise, C  is the regularization parameter. 

Different Kernel functions have been designed based on the kernel feature space, among which the 

following RBF kernel is commonly used: 
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Here,   is kernel parameter that implicitly defines the nonlinear mapping from input space to 

some high-dimensional feature space. 

2.2 The Radius Margin Bound. 

The generalization ability of SVM depends on the margin of training points. For SVM with 

hard-margin formulation, it was shown by Chappelle et al. [9] that the following bound holds: 

2 21
|| ||
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                                                                                                                        (4) 
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Where w the weight is vector and 2|| ||w  is computed by (2), i.e. 2|| || 2 ( )w W  . R  is the radius 

of the smallest sphere that contains all the training points in the feature space. The right-hand side of 

(4) is usually referred as the radius-margin (RM) bound. It has been shown that 2R  is the objective 

value of the following optimization problem. 
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In order to solve the RM bound, two optimization problems are considered, in the first step, 2|| ||w  

is computed by solving the quadratic programming (QP) in (2), then, 2R  is calculated by another QP 

in (5). The aforementioned procedure is repeated until a stopping criterion is satisfied, resulting in the 

two QP are solved at each iteration. This can obviously increase the computation cost of SVM-based 

the RM bound, particularly when the size of the training points is large. 

3. Proposed Method 

In this section, we first discuss the close relationship between 2R  and ( )wtr S , then incorporate 

( )wtr S  into RM, and present the optimization problem formulation of the proposed algorithm, 

employ the reduced gradient method to tune the hyperparameters C  and  . 

3.1 Close relationship between 2R  and ( )wtr S . 

Recall that ( 1, , )ix i l  denotes the ith  training sample. The within-class scattering matrix is 

defined as ( ) ( ) ( ) ( )
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sample-based each class mean. Although each training sample is implicitly mapped onto a feature 

space via the kernel trick and ( )wtr S  in that space is inaccessible, its trace can be explicitly expressed 

by the kernel function as 
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Where K  is the kernel matrix based on total sample, iK  denotes the kernel matrix of ith  class 

sample. The close relationship between ( )wtr S  and the squared radius of the MEB 2R  has been 

revealed in the literature [11]. Both measure the scattering of samples in a kernel-induced feature 

space, and ( )wtr S  can be shown as an approximation of 2R . The detailed analysis on the relationship 

can be found in [11, Appendix]. In this paper, instead of incorporating the radius of the MEB directly, 

we incorporate ( )wtr S , and the advantages are threefold. 

Based on the previous discussion, we substitute 2R  with ( )wtr S  in the following to incorporate 

the radius information into the 2L -SVM formulation. 

3.2 Incorporating ( )wtr S  into 2L -SVM. 

The generalization error of SVM with a hard margin can be estimated by leave-one-out (LOO) 

error. This error is upper bounded by the ratio of the radius of the MEB to the margin, called the 

radius-margin bound. A comparison of different methods for model selection is in Duan [12], which 

shows the radius margin bound for 2L -SVM performs quite well. However, optimizing (7) will incur 

extra computational cost to compute the radius at each iteration. More importantly, the notorious 

sensitivity of the radius to the outliers in training data will possibly adversely affect its performance in 

predicting the generalization error. 
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Following the idea proposed in this paper, 2R  is replaced with ( )wtr S , and this leads to the 

objective function 
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Where ( )wtr S  is defined in (6), 2|| ||w  is calculated in (2). Note that, we use the reduced gradient 

method to tune the hyperparameters C  and  . Application of gradient calculations, we 

denote 2 21
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The derivatives of 2|| ||w  are given by 
~
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The derivatives of ( )wtr S  are given by 
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Also 
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Thus, gradient of f  is cheaply computed once f  has been computed, the hyperparameters  C  

and   are updated alternately until convergence. The algorithm is outlined in Algorithm 1. 

Algorithm 1 

Input: 
Training points, initial regularization parameter C  and kernel parameter  , the step 

size of each iteration  . 

Output: Optimal parameters C  and  . 

Step1: Initialization. Assign an initial value to the parameters C ,   and  . 

Step2: 0i   

Step3: Repeat 

Step4: Obtain 1i   by solving the quadratic programming problem (2) with iC  and i , 

calculate ( )wtr S  by (6). 

Step5: 
Update parameters 1iC  , 1i   in terms of the gradients of f , and 1i i

f
C C

C



 


, 

1i i

f
  


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
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Step6: 1i i   

Step7: Until Convergence 
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Therefore, after we obtain the optimal *C , *  by Algorithm 1, we can calculate the 2L -SVM 

decision function as: 
~
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And the bias term 0b  can be computed as follows: 
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Where 
*

i the support is vector and L  is the number of support vectors. 

3.3 Discussion. 

It is shown in [11] that ( ) /wtr S n   is a lower bound of 2R . As a result, our trace-margin criterion, 

i.e., 2( ) || ||wtr S w , may not necessarily be an upper bound of LOO error like the radius-margin bound, 

i.e., 2 2|| ||R w . However, it is observed that the proposed criterion often provides more benefits in 

practice. 

(1) Compared to the radius-margin formulation, the proposed trace-margin formulation can 

significantly shorten the kernel learning time by avoiding solving the QP problem required to 

compute the radius at each iteration. For the given parameters C  and  , each evaluation of the 

radius-margin bound needs to solve two quadratic optimization problems, which can considerably 

prolong the feature selection process. Comparatively, each evaluation of the proposed criterion has 

much less computational load, since it does not involve any optimization. It can significantly reduce 

the time cost, leading to faster obtain optimal C  and  . 

(2) In the definition of ( )wtr S , the class relationships of the data points are taken into account when 

measure within-class scattering matrix, which reflects the global properties of the class distributions, 

it is available to estimate the generalization error of SVM and improve classfication accuracy. 

(3) ( )wtr S  is less sensitive to an outlier that significantly deviates from the center of data cloud. 

The estimation of 2R  is prone to being affected by noisy samples. Comparatively, the proposed 

criterion is less sensitive to the scarcity of training samples and the presence of data noise, because it 

evaluates the average case of each class by computing within-class scattering matrix, reflects the 

global properties of the class distributions. So the proposed criterion may correlate well with the 

generalization performance. 

4. Conclusions 

In this paper, we propose a method that chooses parameters for 2-norm Support Vector Machines 

based on the new criterion. Different from 2L -SVM method based on the RM, the new bound 

approximates R  by the within-class scattering matrix, it is a better approximation that can 

significantly short the computation time, improve classfication accuracy and enhance the robustness 

of classfication algorithm. 

Acknowledgments 

This work is supported by the graduate innovation fund of Xihua University (Grant 

No.ycjj2014032). 

References 

[1] B. Scholkopf, A. Smola, Learning With Kernels, MIT Press, Cambridge, MA, 2002. 

[2] K.-R. Müller, S. Mika, G. Rätsch, and S. Tsuda, An Introduction to Kernel-Based Learning 

Algorithms, IEEE Transactions on Neural Networks, 2001, 12 (2): 181-202. 

http://www.bibsonomy.org/author/M%C3%BCller
http://www.bibsonomy.org/author/Mika
http://www.bibsonomy.org/author/R%C3%A4tsch
http://www.bibsonomy.org/author/Tsuda


International Journal of Science Vol.2 No.7 2015                                                                                                 ISSN: 1813-4890 

 

113 

 

[3] G. Camps-Valls and L. Bruzzone, Kernel-based methods for hyperspectral image classification, 

IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 6, pp. 1351–1362, June 

2005. 

[4] V. Vapnik, The nature of Statistical Learning Theory, Springer-Verlag, New York, 1995. 

[5] S. S. Keerthi, Efficient tuning of SVM hyper parameters using radius/margin bound and iterative 

algorithms, IEEE Trans. Neural Network, 13 (5) (2002), pp. 1225–1229. 

[6] K. M. Chung, W. C. Kao, C. L. Sun, L. L. Wang, C. J. Lin, Radius margin bounds for support 

vector machines with the RBF kernel, Neural Compute., 15 (2003), pp. 2643–2681. 

[7] M. M. Adankon, M. Cheriet, Optimizing resources in model selection for support vector 

machine, Patt. Recogn, 40 (3) (2007), pp. 953-963. 

[8] N. E. Ayat, M. Cheriet, C. Y. Suen, Automatic model selection for the optimization of SVM 

kernels, Patt. Recogn, 38 (10) (2005), pp. 1733-1745. 

[9] O. Chapelle, V. Vapnik, Choosing multiple parameters for support vector machines, Machine 

Learning, 46 (1–3) (2002), pp. 131–159. 

[10] T. Glasmachers, C. Igel, Gradient-based adaptation of general Gaussian kernels, Neural 

Computation, 2005, 17(10), pp. 2099–2105. 

[11] L. Wang, Feature selection with kernel class reparability, IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 30, no. 9, pp. 1534–1546, Sep. 2008 

[12] Duan, K., Keerthi, S. S., Poo, A. N., Evaluation of simple performance measures for tuning 

SVM hyper parameters, Neurocomputing, 2003, 51, 41-59. 


