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Abstract 

As a transition from Traditional Networks to Software Defined Networks, Hybrid Software 

Defined Networks (SDN) shows significant research value. Hybrid SDN successfully faces the 

challenges that SDN comes with, such as robustness and scalability. In this paper, we describe 

the network architecture of flow-based hybrid software defined networks. We show how to 

distribute different flows in flow-based hybrid SDN to realize optimization of the entire network, 

using models of bi-level programming and stochastic user equilibrium. 
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1. Introduction 

Software Defined Networks(SDN)[1] promises to ease design, operation and management of 

communication networks by separating routing and forwarding function in traditional routers. 

However, SDN comes with its own set of challenges, including scalability and robustness. Those 

challenges make a full SDN deployment difficult in the short-term and possibly inconvenient in the 

longer-term. Therefore, lots of scholars come up with conceptions of hybrid SDN. 

Besides the role as a transition from traditional networks to SDN, Hybrid SDN has its own superiority. 

On the one hand, Hybrid SDN absorbs advantages of SDN[2], such as flexibility by decoupling control 

plane from data plane, stability by a centralized controller and complete view of the underlying 

network. On the other hand, Hybrid SDN retains advantages of traditional networks, such as 

scalability and robustness[3]. 

Hybrid SDN architecture can be classified into node-based hybrid SDN and flow-based hybrid SDN. 

Flows in different network system follow their own forwarding protocols; as a result, flows in SDN 

system and traditional networks (hereinafter referred to as TN) system possess different 

characteristics. SDN flows require SDN transponders to forward data, and on the contrary TN flows 

requires routers to forward data. Node-based Hybrid SDN architecture is based on the variety of nodes 

(which are the transponders and routers in the network) in networks; comparatively, flow-based 

hybrid SDN is based on the variety of flows in networks. In short, node-based hybrid SDN system 

contains different kinds of nodes, flows follow various protocols forwarding in corresponding nodes. 

Similarly, flow-based hybrid SDN system contains only one kind of node which can forward all kinds 

of flows. 

At present, there have been quite a lot of researches on SDN[4] and traffic engineering of SDN[5], 

some of them introduce virtualization into SDN architecture to solve the problem of scalability[6], 

some of them focus on the research of OpenFlow[7] technology used in SDN. However, researches 

on hybrid SDN architecture are insufficient. Thus, we come up with the flow-based SDN architecture; 

discuss how to optimize flow allocation using methods of bi-level programming. 

2. Architecture 

Hybrid SDN architecture, put forward to meet the complex requirement of networks as well as to 

make up for the insufficient of SDN architecture, brings topology and technology which are 

developed in traditional networks into SDN. Schematic of flow-based hybrid SDN is shown below: 
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Fig. 1. Flow-based Hybrid SDN Architecture 

As can be seen in the schematic, flow-based hybrid SDN architecture is divided into two layers: 

2.1 Physical Network: 

Switchers in physical network support data forwarding protocol of traditional IP network, besides, 

these switchers can be used as SDN transponders which follow command of controllers in controller 

layer. As a result, these switchers have to provide ample space to store the data-flow graphs which 

are generated by controllers. As stated, flow-based hybrid SDN architecture achieves the forwarding 

of SDN flows and TN flows. 

2.2 Controller Layer: 

Controller layer plays the role of abstracting resources in physical network, it also offers open 

interface to applications which makes application programming possible. Applications in this way 

can flexibly control data flows. What calls for special attention is that controller layer only controls 

nodes who forward SDN flows. 

3. Model 

3.1 Model Foundation 

As described in the architecture, there are two kinds of flows in the network: SDN flows and TN 

flows. Condition of flow allocation is decided by the interaction of different flows. Before forwarding 

CN flows, we have to consider the occupied resources by SDN flows. At the same time, controllers 

command SDN flows’ forwarding, which results in a new condition of resources occupation. The 

interaction of flows forms Stackelberg Competition and can be represented as a leader-follower game 

where the transport planner makes network planning decisions, which can influence, but cannot 

control the users’ route choice behavior. The users make their route choice decisions in a user optimal 

manner. We formulate the problem as a bi-level decision problem: the lower-level, in which TN flows 

are the decision-maker, aims to minimize the travel time of TN flows, considering the influence of 

SDN flows at the same time. In the end, the lower level reaches a traditional Wardrop user equilibrium 
[8] (UE) balance. The UE problem refers to a equalization state in which all the data flows choose 

lanes that cost the least time. And we assume that all the flows are entirely rational which means data 

flows accurately understand the situation of the lanes. Under this equilibrium, data flows’ transporting 

time is equal in all chosen lanes between the same origin-destination pairs (OD pairs). And the time 

is less than any other lanes’ transporting time. The upper level, in which SDN flows are the decision-

maker, aims to realize global optimization. The controller adjusts SDN flows in the network so that 

the resources can be used effectively. Both the upper level and the upper-level have their own decision, 

but their goal attainment is interplayed. 

Based on all the traits described above, we formulate bi-level programming model. In order to make 

the research simple and convenient, we appropriately simplify some terms as follows: 
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Demand assumption: we assume that the quantity of SDN flows and TN flows demanded is settled. 

Capacity limitation: In upper level, when optimize the global network, we have to consider the 

influence from TN flows to SDN flows, thus we use a flow allocation model with capacity constrain, 

the constrained capacity has been known. 

The stochastic user equilibrium [9] (SUE) manner: we use the SUE manner to describe the problem 

of the upper-level. We assume that TN flows make decisions randomly. Further, we assume TN flows 

have understood error about the transporting time, and the error is a variable which meets independent 

identically distributed of Gumbel. Which in return, the consequences of the decision can be described 

by SUE based on Logit mounted. 

3.2 Model Building 

Before formulating the bi-level model, we abstract flow-based SDN into a directed network G={N, 

A}, and then list some symbols used in the model: 

Table 1 Symbols used in bi-level programming model 

Sets 

N Set of all nodes in the network, represent the transponders in the network 

A Set of all links in the network, represent the directed section of adjoined nodes 

R Set of all the origins of data flows in the network, r∈R 

S Set of all the destinations of data flows in the network, s∈S 

Prs 
Set of all the lanes between R and S(OD pair), k∈P, k represent one of the lanes between 

R and S(OD pair) 

Parameters 

qSDN Given travel demand of SDN flows for OD pair 

qTN Given travel demand of TN flows for OD pair 

CSDN The capacity limitation of SDN flows in the transport network 

ta(xa) Travel time fuction on lane a, a∈A 

𝜺𝒓𝒔
𝒌  Random error of understand data transporting time if choose lane k in OD pair 

Variables 

xa Flow of TN flows on section a 

𝒙𝒂
′  Flow of SDN flows on section a 

ta Transport time of data flows on section a 

𝒑𝒓𝒔
𝒌  Probability for choosing lane k of OD pair 

𝒇𝒓𝒔
𝒌  Flow on lane k of OD pair 

𝜹𝒓𝒔
𝒂𝒌 Associated variable of lane k and section a, 𝛿𝑟𝑠

𝑎𝑘=0 if a is on k 

𝒄𝒓𝒔
𝒌  The actual transport time of data flow on lane k, 𝑐𝑟𝑠

𝑘 =∑ 𝑡𝑎𝑟,𝑠 (𝑥𝑎)𝛿𝑟𝑠
𝑎𝑘 

The upper-level problem: 

We aims to minimize the total travel time of entire network, thus the upper-level problem can be 

formulated as: 

 
' 'min ( ) ( )a a a a a a

a A a A

z x t x x t x
 

                                              (1) 

 

s.t. 

 

 𝑓𝑟𝑠
𝑘 ≥ 0, r∈R, s∈S, k∈Prs                                         (2) 
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The objective function (1) represents the total travel time where xa is determined by the lower-level 

SUE problem which will be presented later. Constraint (3) (4) ensures to meet the demand of the 

flows. Constraint (5) guarantees that the total flow does not exceed the capacity limitation. 

The lower-level problem: 

We use SUE model based on Logit mounted to formulate the lower-level problem, we assume that 

the random error 𝜀𝑟𝑠
𝑘 , r∈R, s∈S, k∈Prs of understand data transporting time is independent 

identically distributed, mean value equals zero, and is random variable who obey Gumbel probability 

distribution, then based on random utility probability and utility maximization principle we know that 

probability of lane choosing can be given by a Logit formula[10]: 
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In this formula, non-negative parameter θ represents the understand indeterminacy of data flows’ 

transporting time. The random error 𝜀𝑟𝑠
𝑘 , r∈R, s∈S, k∈Prs is a Gumbel probability variable, 

therefore bigger value of θ means flows knows better about the condition of the network, thus flows 

have more accurate estimate on the data transporting time. For example, when θ→∞, flows know 

exactly what condition it is in the network, they all choose the shortest path, which in the end reaches 

UE balance.  

The problem can be formulated as follows: 
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3.3 Solution Method for Model  

Sheffi(1985)[9] has proved that the Hessian matrix of function (6) is usually not positive definite, but 

it will be positive definite on SUE solution point, which means this function is strictly convex on 

solution point. Thus, the SUE solution point is a local minimum of the optimization problem. 

The mechanism of the model shows as follows: the lower-level obtain variable xa, which is the 

resources occupation situation of CN flows under UE balance, according to its objective function. 

The variable then is used as the initial value of capacity constrain in upper-level optimization problem. 

The upper-level obtain variable 𝑥𝑎
′ , which is the resources occupation situation of SDN flows of 

system optimization balance. The variable directly influences the lower-level.  

In this paper, we use tabu search algorithm[11] to solve the bi-level programming model, and use Bell’s 

Logit mounted algorithm[12] to solve the lower-level model. 

Bell’s algorithm does not need to enumerate the lanes, and it takes all the possibility into consideration. 

The set of lane only related to the structure of the network, and has nothing to do with the flow 

distribution.  

Tabu search algorithm is similar to simulated annealing algorithm and genetic algorithm, its relevant 

parameter influences the operation effect. 

At first, we convert the upper-level model into an extremum without constraint; we use penalty 

function[13] to realize this: 

 

2 21
max ( ) ( ) {max [0, ( )] }

2
a a a a a

a

Y Z x x C
p

                                (7) 

 

The basic idea of the algorithm is to select the initial value of capacity constrain, work out the 

neighborhood of the solution: N(t). Solve the lower-level model to obtain the flow of section, 

substitute the value of the flow into function (7), we then work out the feasible solution. After that, 

we search the best solution from a new start point until we obtain the solution of bi-level programming 

model. 

The concrete steps are as follows: 

step 0. Set capacity constrain’s initial value is, at this time elements of value zero. Set 𝜏𝑎
(0)

=(0,0,0,0,0), 

solve the problem of lower-level to obtain the value of 𝑥𝑎
(0)

 and 𝑞𝑎
(0)

, substitute the values into 

objective function of upper-lower-level level to obtain Z(𝑡𝑎
(0)). Set the tabu list empty, i=1. 

step 1. Expand the neighborhood of 𝜌𝑎
(𝑖)

, the expand rules are to change only one section’s value each 

time. If the value of section in 𝜌𝑎
(𝑖)

 changes from 1 to 0, then this section does not need SDN flows to 

allocate the flow. Otherwise if 𝜌𝑎
(𝑖)

 changes from 0 to 1, then randomly generate value based on 𝜏𝑎
(𝑖)

, 

𝜏𝑎
(𝑖+1)

= 𝜏𝑎
(𝑖)
+ 𝛿[−𝑗, 𝑗], parameter δ is the step size in search. Respectively determine 𝑥𝑎

(𝑖+1)
 and 

𝑞𝑎
(𝑖+1)

, substitute them into objective function of upper-level to obtain Z(𝑡𝑎
(𝑖+1)), set the value which 

make the objective maximum as candidate solution. 

step 2. Judge the section flow under current state to see if it meets the requirement of capacity 

constraint. If does, then the candidate solution is the solution we need, update tabu list and the optimal 

state. If not, then set the optimum solution of taboo object as the solution, update tabu list. 

step 3. Set maximum searching times 𝑛𝑚𝑎𝑥 , if we can’t improve the optimum solution within 𝑛𝑚𝑎𝑥 

times, and then stop the algorithm. 

4. Computational Examples 

In order to verify the algorithm validity, we adopt experiment network which is designed by 

Suwansirikul(1987)[14], showed in Fig. 2. There are 4 nodes, 5 sections and 3 lanes in the network. 
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We suppose that the quantity demanded is 100, forwarding time function of section a is 𝑡𝑎(𝑥𝑎), and 

we use function BPR who adds parameter 𝑦𝑎: 

 

0 4( , ) [1 0.15( / ( )) ]a a a a a a at x y t x c y  
 

 

𝑡𝑎
0 is free travel time of section a, 𝑥𝑎 is flow of section a, 𝑐𝑎 is maximum traffic capacity of section a, 

𝑦𝑎 is added traffic capacity value of section a. 

 
Fig. 2. Experiment network 

Objective function is: 

 

2( ( ), ) ( ) 1.5 ( )a a a a a a

a a

D t x y y x y h y  
 

 

The values and parameter ℎ𝑎 are shown in Tab. 2. 

 Table 2 Free travel time, maximum capacities and parameter 

parameters 
sections 

1 2 3 4 5 

𝑡𝑎(0)/min 4 6 2 5 3 

𝑐𝑎/(pcu h-1) 40 40 60 40 40 

ℎ𝑎 2 2 1 2 2 

Here are two tables(Tab. 3and Tab.4) which show the results before and after the flow allocation 

optimization. 

Table 3 Results before flow allocation optimization 

Before x1 x2 x3 x4 x5 

UE 52.53 47.47 5.72 46.81 53.19 

Logit-SUE 55.58 44.12 13.18 42.70 57.30 

In order to clearly show the results, we show the improved proportion of the optimization. Its 

computing method is: 

 

Improved proportion=
𝐷0−𝐷

𝐷0
×100% 

 

𝐷0 is the value of objective function before the optimization, D is the value after optimization. 

Table 4 Results after flow allocation optimization 

After y1 y2 y3 y4 y5 D0 D  improved proportion 

UE 1.34 1.21 0.01 0.97 1.10 1219.17 1200.59 1.52% 

SUE 1.51 1.02 0.00 0.79 1.29 1236.64 1217.65 1.54% 
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From the data above we know that the bi-level programming model optimized the flow allocation of 

the network. 

5. Conclusion 

In this paper, we have built a bi-level programming model in flow-based hybrid SDN, found out the 

appropriate arithmetic to solve the model. The model has accurately described the interaction of SDN 

and TN flows in flow-based hybrid SDN. The arithmetic used in this paper has an advantage over 

other ones. We achieve our aim to optimize the whole network. 

Acknowledgments 

This work was supported by the Natural Science Foundation of China(NO. 61402266), Natural 

Science Foundation of Shandong Province, China(NO. ZR2012MF013) and Social Science Fund 

Project of China(NO. 14BTQ049). 

Author Mingchun Zheng is Corresponding Author. 

References 

[1]S. Sezer et al. Are We Ready for SDN? Implementation Challenges for Software-defined Networks. 

IEEE Communications Magazine, July 2013. 

[2]Stefano V et al. Opportunities and Research Challenges of Hybrid Software Defined Networks. 

CCR, 2014.. 

[3]Open Networking Foundation. Outcomes of the Hybrid Working Group. 2013. 

[4]C. Y. Heng, S. Kadula, R. Mahajuan et al. Achieving High Utilization with Software-driven Wan. 

in SIGCOMM, 2013. 

[5]S. Agarwl, M. Kodialam, and T. Lakshman. Traffic engineering in software defined networks.  

INFOCOM, 2013. 

[6]McKeown N, Anderson T, Balakrishnan H et al. OpenFlow: Enabling innovation in campus 

networks. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 69-74. 

[7]Balazs Sonkoly, Andras Fulyas. Integrated OpenFlow Virtualization Framework with Fexible 

Data. Controland Management Function. IEEE INFOCOM(Demo) Orlando, Florida, USA, Mar. 

2012. 

[8]Wardrop J. Some Theoretical Aspects of Road Traffic Research[C]//Proceedings of the Institution 

of Civil Engineers, Part Ⅱ, 1952: 325-378. 

[9]Sheffi Y. Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming 

Methods[M]. Prentice Hall, 1985. 

[10]Chief-Hua Wen, Frank S Koppelman. The Generalized Nested Logit Model[J]. Transportation 

Research Part B, 2001, 35(7): 627-641. 

[11]Thamilselvan R, Balasubramanie P. A Genetic Algorithm with a Tabu Search for Traveling 

Salesman Problem[J]. International Journal of Recent Trends in Engineering, 2009, 1(1): 607-

610. 

[12]Bell M G H. Alternatives to Dial’s Logit Assignment Algorithm. Transportation Research, 1995b, 

29B, 287-295. 

[13]Bazaraa M, Sherali H D, Shetty C M. Nonlinear Programming: Theory and Algorithms (2nd ed). 

1993, New York: Wiley. 

[14]Suwansirikul C, Friesz T L, Tobin R L. Equilibrium Decomposed Optimization: A Heuristic for 

the Continuous Equilibrium Network Design Problem[J]. Transportation science, 1987, 21(4): 

254-263. 

 

 


