International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

Design and Implementation of Online Upgrade Software for Vehicle
ECU Based on HIS Standard

Anyu Cheng 2, Liangbo Xiong °, Ming Xie ¢, Yang Li ¢

School of Automation, Chongging University of Posts and Telecommunications, Chonggqing 400065,
China

achengay@cqupt.edu.cn, °xlIb@sumarte.com, cxieming@sumarte.com,haolyabc@126.com
Abstract

This paper has designed a flashloader software architecture which can be applied to different
hardware platforms basing on hersteller initiative software (HIS) standard. This software
architecture adopts hierarchical design thought and consists of five parts, which are micro
controller abstraction layer, ECU abstraction layer, network layer, runtime environment
(RTE) and application layer. The flashloader with this kind of structure can be transplanted
conveniently and maintained easily. The software has integrated the diagnostic protocol stack
which is based on the international diagnostic agreement, and solved the problem that current
flashloader has low standardization of the agreement. Transplant the flashloader to different
vehicle instruments which have different hardware platforms. After many times of
experiments, the results show that this software can realize the online upgrade function with
good performance, and be transplanted conveniently.

Keywords
Online Upgrade, Vehicle ECU, HIS standard, Flashloader.
1. Introduction

Now online upgrade technology of vehicle ECU has become more and more important. Due to the
continuous development of micro controller technology, abundant software and hardware resources
make it possible to realize the technology [1]. To the implementation of the technology, we can
remove a single ECU from the vehicle firstly, and then use the dedicated download device to update
the program [2]. But this way is very inconvenient and may damage the ECU easily. In order to solve
the problems, Deng [3] proposed a method using serial port to achieve the online upgrade, but the
method will increase the wiring harness, which may cause assemble and maintain the ECU will
become more difficulty. Basing on this, Zhang and Tan [4, 5] proposed with the method using bus to
realize online upgrade. But due to lack of protocol support, the accuracy and efficiency of the update
data can’t be guaranteed when in complex network environment.

At present, the automobile companies have developed the flashloader which suit for their agreement
by defining their own protocol, ensuring the online upgrade progress can work normally [6, 7, 8].
However, the limitations of the software architecture and the disunity of the communication protocol
causes that the current flashloader can’t be reused and need to develop the whole software for
different hardware platforms of ECUs. So in 2006, HIS organization published the complete
flashloader norms, which standardized the diagnostic service layer and the transport layer which
conform to the international diagnostic criteria, and defined the whole software architecture for Flash
programing process [9]. Therefore, basing on the deeply analyzed of HIS standard, this article
designed and implemented a flashloader which has good portability and versatility.

This paper is organized as follows: Section 2 introduces the main problems of current flashloader, and
proposes a new flashloader software architecture based on HIS standard. Basing on this, Section 3
describes the implementation process of the software. Section 4 transplants and verifies the software
on the different hardware platforms of instruments. Section 5 summarizes the full text.

98



International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

2. Flashloader software architecture
2.1 Current problems of flashloader software architecture.

HIS standard specifies the implementation of software architecture for micro controller should adopt
the hierarchical approach, and each layer use the standard function interface to call. But the current
flashloader software architecture all defined by automobile companies [10, 11], which is not strictly
according to HIS standard and dependent between each layers. For example, in the flashloader
described in the papers which are presented by Zhang and Yan [12, 13], the protocol stack of network
layer calls the functions of underlying driver layer directly, and operates the physical address of the
Flash. Because in different ECU the physical address allocation of flash is different. The method may
cause transplanting the upper layer software lack of unity, and need to redevelopment all the upper
software for different ECUs, which may extend the development cycle and increase cost.

The implementation of current flashloader adopts the custom protocol mostly [15], such as the
custom protocol is shown in Fig. 1 which is used in the paper by Liu.

Download Tool ECU

Read the software version number $13A

Erase flash $13B

Download the target files $13C

\>

Send the check code $13D

ECU reset $13F

Fig. 1 Custom protocol example

In the protocol, PC sends online upgrade command message to the target ECU to achieve online
update function. But without the response mechanism for all request messages, the security and
reliability of the data transmission are not guaranteed. In this protocol, the ID of the message is
0x13A - 0x13F, but in other custom protocols the ID may be different. The protocol of un-uniform is
also the main factor of the difficult transplantation of the current online upgrade software.

Application Layer

‘ Boot Manager ‘ ‘ Application Extend Module ‘

JC JL

RTE

Network Layer T f
diagnostic
protocol

Watchdog Driver
Interface

‘ Memory Abstraction Interface ‘

Security
Module

RS Z =
ECU Abstrction

layer
CAN Driver
Interface

@ MCAL {L

‘ CAN Driver ‘ ‘ Flash Driver

Flash EEPROM EEPROM
Emulation Abstraction

‘ EEPROM

Driver ‘ Watchdog Driver ‘

Fig. 2 Flashloader software architecture
2.2 Flashloader software architecture based on HIS.

In view of the problems of the present flashloader for vehicle ECU, after analysing the HIS software
standard deeply, we adopt modular hierarchical design thought to design the flashloader software
architecture, basing on the demand of the flashloader for ECU. The software architecture is shown in
Fig. 2.

99



International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

The software architecture contains five layers, which are micro controller abstraction layer, ECU
abstraction layer, network layer, RTE and application layer. The micro controller abstraction layer
connects the software and the actual micro controller, mapping the function of the micro controller
and the peripheral interface. ECU abstraction layer is used to provide all driver programs on the basic
of the hardware. Network layer provides various services for the software. The main work of the RTE
is to handle the data exchange between the application layer and the other layers, which is the
foundation of the software transplantable. The application layer is used to handle the business and
logic work according to the actual demand.

The workflow of the software architecture is starting from application layer. Firstly, call the hardware
initialization functions are stored in the micro controller hardware abstraction layer. Then run the
boot manager module. The boot manager module writes and reads EEPROM through EEPROM
driver interface, and judges the flag which is stored in EEPROM to decide whether the ECU is
running application or flash loader currently. The detail work flow is shown in Fig. 3.

? Reset

Initializes hardware

A
Enter flashloader ‘ ‘ Enter application

Fig. 3 Work flow of the boot manager module

Start

CANdriver | [ ~A0 " T T T[T T T T T T T
FLASH driver
EEPROM driver

A

. Disable communication
Configure parameters

Timer driver L\ ________[ - ———_——_
Watchdog driver
: Network layer y :
- - I
: Tranplant diagnostic protocol : Read DID
: stack | | Pre-programming Extend diagnostic session
: ¢ : phase Disable DTC storage
]
: |
| I

Programming diagnostic
session

{ Application | SecurityControl
| layer y : Erase flash
i | Realize online upgrade process - Po9raMMNg L) Write flash
phase
| | Check data
Offset interrupt : * : Write DID
vector | Jump to application | ECU Reset
Determine entry : SLoany :

address ! |

5 - Default diagnostic session
re-programmin

P pl?ase R Enable DTC storage
\ 4 Enable communication

Fig. 4 The implementation process of flashloader

100


javascript:void(0);

International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

3. The realization of flashloader
3.1 Entire realization process.

When users are going to realize the software, first of all they should finish develop all drivers based
on the specific ECU chip platform, including CAN, flash, EEPROM, timer and watchdog. Secondly,
they should transplant the modular encapsulation source files to the network layer, which contains the
network layer and the application layer of the diagnostic protocol stack, and configure all the
configurable parameters. Finally, complete the whole process of online upgrade in the application
layer, update and run the application. The detail implementation process is shown in Fig. 4.

3.2 Specific realization.

Due to each ECU has its own chip platform, all the drivers must be developed according to the
specific chip platform. The realization of the diagnostic protocol stack is based on the international
diagnostic agreement ISO 14229 and ISO 15765. To enhance the universality, the protocol stack
specifies the format and the content of a message should adopt the international standards. For the
convenience of transplanting the protocol stack in the different ECUs, this paper adopts the idea of
modularization to encapsulate the diagnostic protocol stack, putting the data structure and the
function prototypes of network layer and application layer in the header files, and then compiling the
source files of functions to get the target code. Users just need to include the header files in their
project and then compile all files and link the target code when operate the software.

The parameters which can be configured mainly include application layer parameters, network layer
parameters, hardware platform parameters, message addressing mode, message ID and so on. The
detail configuration information is shown in Table 1.

Table 1 The information of configurable parameters

Configurable

Parameters Describe
parameter types
SID 10, SID 11, SID 27, SID 22 SID  Configure the services and its
services 28, SID 2E, SID 31, SID 34 SID 36, sub function according to
SID 3E, SID 37, SID 85 demand
Application layer i
PP y P2*Client Value scope:0-5000ms Value
parameters P2*Server scope:0-2000ms Value
Timer parameters P2Client scope:0-150ms  Value
P2Server scope:0-50ms
Control Stmin 1ms
Network layer parameters Blocksize 8byte
parameters . N_As, N_Bs, N_Cs
Timer parameters — - - Value scope:0-150ms
N_Ar, N_Br, N_Cr
Main receive cache size Sub
H?afg\é\/r&:;e Application layer receive cache size_ Send Configure the parameters
P cache size according to hardware resource
parameters .
Network layer Network layer cache size
Routine addressing
Message Routine constant addressing
addressing mode Extend addressing Configure the message
Other parameters Mixed addressing addressing mode and ID

Physical request message 1D according to demand

Message ID Function request message ID
Response message 1D

101



International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

The online upgrade process for vehicle ECU is the reprogramming process of flash, which mainly
includes pre-programming stage, programming stage and post - programming stage. The main
function of pre - programming stage is to check whether current programming conditions are suit for
the demand of online upgrade for ECU or not, and configure the current network environment to
ensure that ECU can enter into an appropriate programming environment. The main function of
programming stage is to complete the external programming device access authorization, download
flash driver and application, and then check all of the data. The main function of post - programming
stage is to restore the normal communication and the DTC record of the other ECU on the network,
and request to turn the current diagnostic session model into default session. The detail
implementation steps are shown in Fig. 5.

After finishing update the application, programs running in the ECU should change from flashloader
to application. Flashloader and application are stored in the flash memory with the method of
partition. If the flashloader adopts the default interrupt vector table, the application should adopt the
interrupt vector table which had been offset. The two interrupt addresses shouldn’t be overlapped.
Otherwise it will cause the interrupt conflict so that the application couldn’t run normally. Due to
different applications have different sizes, and their own application entry address, we must fix on the
application entry address, insuring the ECU can jump to application normally.

m =

ReadDataByldentifier $22 DiagnosticSessionControl $10 $02 DiagnosticSessionControl $10 $03
(ProgrammingSession) (ExtendedSession)
‘ DiagnosticSessionControl $10 $03 ‘ SecurityAccess $27 .
(ExtendedSession) (request Seed / send Key) CommunicationControl $28
¢ * (Enable Non Diagnostic Communication)
RoutineControl $31 Download Flash Driver
(Check Programming Dependencies) (Download data Block) 4

ControlDTCSetting $85
(Enable DTC Storage)

RoutineControl $31
(Activate Flash Driver)
* DiagnosticSessionControl $10 $01
RoutineControl $31 (DefaultSession)
(Erase Flash Sector)

ControlDTCSetting $85
(Disable DTC Storage)

A
CommunicationControl $28
(Disable Non Diagnostic Communication)

(a) Pre-programming sequence

Download APP End
(Download data Block)

ore data files to download?

RoutineControl $31
(Check Logical Block)

v

WriteDataByldentifier $2E

v

ECUReset $11 $01

(b) Programming sequence

(c) Post-programming sequence

Fig. 5 Flash reprogramming process

102


javascript:void(0);

International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

4. Transplantation and verify the software

We transplanted the flashloader to two vehicle instruments and updated their application. The chip
platforms of the two instruments are Freescale MPC5645S and T1 TMS320F28035, both of which are
32-bit micro controllers, and their internal flash can be divided into different size of sections. Users
can erase and write single or multiple sections assigned, and the detail memory allocation is shown in
Fig. 6. To avoid happening the situation of erasing application by mistake, when the application is
updated the flash driver is downloaded to the RAM by CAN bus. When power off the data of the flash
driver will be lost, and not always stored in the flashloader programs.

We test the software on the two instruments. Firstly, we should connect the target ECU to the PC by
USB - CAN adapter, and configure the detailed information of PC. Secondly, we should import the
object files to the download tool and start to update the application. When the online upgrade process
had been finished, the data which are stored in the target ECU flash memory as is shown in Fig. 7. The
application image files of the two instruments as are shown in Fig. 8 and Fig. 9. By comparing the
data we can find that all the data are exactly the same, which means that the target files have been
written to the specified space accurately, and the online upgrade function is achieved.

0x40010000 RAM RAM 0x00008C00

Flash Driver Flash Driver
0x40000000 0x00008000

Reserved Reserved
0x00200000 Download to RAM 0Xx003E8000
by CAN bus Offset Interrupt
. vector
App Section startup Ox003E8021
Transplantable part .
0x00012000 Offset Interrupt App Section
vector
0x00010000} AP Realize based 0X003F2000
Other Programs on MCU Other Programs
Flashloader Secton Flashloader Secton

All Drivers All Drivers

0x00004000 0x003F7F80
Original Interrupt Original Interrupt
0%00000000| STFD | vector [Startup | vector OXO03FTEEE
(a) MPC5645S Memory (b) TMS320F28035 Memory
Allocation Allocation

Fig. 6 Memory allocation map

Euuuwuacgguu 61 28 18 80 81 20 10 B8 B8 B7 38 00 @1 27 48 B0 81 27 48!
;00010050 | 00 00 DO OC 00 01 27 54 00 01 27 54 00 OO 00 08 00 01 27 5C
{00610064;; 00 01 27 SC 00 00 00 08 00 01 27 64 08 01 27 64 60 00 00 28!
1 BPA1AO7R I A6 _A1 27 BC_AA 61 27 8C_PA_ AP _AA_GC_ 66 A1 _28_ A6 40 AR 13 4@ -
ECUL A
""""""""""""""""""" Flash |:
Download Tool App
Flashloader | MpCS56455 MCU
USB-CAN ECU2
A
dapter RAM (5 TMS320F28035 MCU
Flash App
Flashloader

J Memary Browser i1 E A = - f’-{><;3| i . I = |
Data ~| Ox003eB8021 - a New Tab
Data:0x3e8021 - 0x003e8021 <Memory Rendering 1> &%

|16-Bit Hex - TI Style /*]L" Flash address Data ~__

BxB@3EBB21]
PX@BSES031!
BxBB3ESe41!
Bx@e3E8851!
BxBBSESE61!
BxBESESBTL
Bx@3E3081!

{FE@2 2B41 9241 5202 6312 2D41 8F00 802 BF40 BCAB 350A 5601 8BAL 351C 5601 BBAS
{767E 8383 BA41 9241 5282 G4F@ 2B41 9241 5202 6312 2D41 3F@0 5C16 3F4@ SCE@ 3506
15681 8844 351C S681 GBAS 767E 8325 BA41 9241 5202 64FB SFBR 3C41 767E 8259 761F
18231 S6BF @188 FES2 8886 751F 8231 2660 G006 FEGA AS44 0641 8200 1E46 1E48 S6BF
19149 56BF B14A 28AC B0G6 SFED BC16 3841 5601 BBAL AB46 2BAC @B1C SFEB BCEG 3841
15681 BAAL ABAS A48 DBBA 9294 5281 ED36 5A48 DBBE 26894 8A48 DB1@ 2894 8A48 2BCC
18444 3348 DEGF 92D4 96395 3448 DBEC 8644 1E94 8446 92D4 SA48 9C01 FFCE BEAD 1ED4

m

Fig. 7 The data of the target ECU

103


javascript:void(0);
javascript:void(0);

International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

£31 90001 00040000000000000000000000020001 00000001 000GDR
S31900010014000000BC0001 00BCO00100BCO000026C000110001C
£31960001 00280001 1000000000480001 20000001 200000000004BE
8319p001003d000120100001201000000?3800012?4800012?4%2&
§319000100500000000C0001 27540001 2754000000080001 275C05
531q0001006§0001ZTSCOUOUOUOSOOOI2?6400012?640000002855
53190001 00720001 2780000127 8C0000006C0001 280040001 340400

| app.hex - iB=&E High address
MR FERE) FEIN0) EH(N) ERIH)

T T gy Ly N T

: 2080310476 TER3030441 924152026 4F 02B41 92415202631 22D41 8F008C1 63F 408CE03506D2
: 2(!804150Q560100A4351C560100A5767E83250A419241520264F08F008641?67E8259761F3B5
: 208051:0[1023156E5F0100FE820006751F023125000006FEO&A844964102001E461E4855BF!9E§
: 20080610001 4956BF 01 4428AC00068F 008C 1630415601 00444846 284C001CEF 008CE03041194
: 208071005601 004448488448D00492945201 ED388A4EDO0EZB948A48D01 02B948A4R2BC01 3
: 201308100184448348D00F 2049695 8448000006441 FO4BA4697D48A4R 9001 FECONEAILEDAL R

Fig. 9 Application image file of the TMS320F28035 platform
5. Conclusion

This paper has designed and implemented a flashloader software architecture for vehicle ECU which
can be applied to different hardware platforms. The software architecture adopts hierarchical design
thought. The upper software calls the underlying drivers through HIS standard function interfaces,
and ignores the details of the different hardware platforms. This software integrates the diagnostic
protocol stack which is based on international diagnostic agreement ISO 14229 and ISO 15765, ruled
the format and the content of the online upgrade message which should adopt the international
standard. We have tested the flashloader on two different vehicle instruments in which the hardware
platforms are different, and the result is that the software can be transplanted easily and can realize the
online upgrade function normally.

References

[1] Yang J, Zhao G. The transplant and compile of Bootloader in embedded system[J]. Journal of
Sichuan University, 2007, 44(4): 835-839.

[2] Zhang A Y, Zhu X M, Yang C. Development of the Bootloader Function of Electronic Control
System[J]. Modern Vehicle Power, 2010, 4(4): 17-19.

[3] Deng H. Design of TMS320C6713 Flash Application Upgrading Online Based on the Serial
Port[J]. Ship Electronic Engineering, 2009, 29(5): 120-122.

[4] zZhang H, Zhan D A. Design of Vehicle Fault Diagnosis System Based on CAN Bus[J].
Automotive Engineering, 2008, 30(10): 934-937.

[5] Tan T, Tang H, Zhou Y. Design and Implementation of Bootloader for Vehicle Control Unit
Based on Can Bus[C]// Proceedings of the FISITA 2012 World Automotive Congress. Springer
Berlin Heidelberg, 2013: 447-457.

[6] MuC Y, Sun L N, Du Z J, et al. Research and Development of Device for Downloading and
Updating Software of Product ECU Based on Extended CCP[C]//2nd IEEE Conference on
Industrial Electronics and Applications. IEEE, 2007: 2865-28609.

[7] 1 Zhang Y, Bao K J. Design and Implementation of BootLoader for Vehicle Control Unit[J].
Computer Engineering, 2011, 37(12): 233-235.

[8] Wang Y, Lin Z. Stable In-circuit Programming of Flash Memory in Freescale's MC9S12 MCU
Family[C]// Proceedings of the 2010 International Conference on Measuring Technology and
Mechatronics Automation - Volume 03 IEEE Computer Society, 2010: 477-480.

[9] DaimlerChrysler AG. HIS Flashloader Specification Version 1.1[S]. 2006.

104



International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

[10]Cheng A, Yao Y, Duan Z, et al. ECU loader design of in-vehicle CAN network based on
ISO15765[C]// Information Science and Technology (ICIST), 2011 International Conference on
IEEE, 2011: 1215-1217.

[11] Fahrner D | A, Geese D | M, Happel D | A. Data compression algorithms for EOL flash
programming of automotive electronic control units[J]. Atzelektronik Worldwide, 2010, 5(2):
22-26.

[12]Zhang D, Wu Y. The research and implementation of flash EMIFA bootloader[C]// Image and
Signal Processing (CISP), 2012 5th International Congress on IEEE, 2012: 1911-1914.

[13]Yan J. Design of Secondary Bootloader for Embedded System based on DSP [J]. International
Journal of Computer Science Issues, 2013, 10(1): 544-548.

[14]Xu Y, Wang R G, Cheng A Y, et al. Design of Online Upgrade System for the Software of
Vehicle ECU based on CAN-Bus[J]. International Journal of Advancements in Computing
Technology, 2013, 5(1): 79-87.

[15]Liu C, Luo F. Implementation of CAN Bootloader Based on Freescale MCU [J]. Journal of
Suzhou University, 2010, 30(2): 57-61.

105



