
International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

98

Design and Implementation of Online Upgrade Software for Vehicle
ECU Based on HIS Standard

Anyu Cheng a, Liangbo Xiong b, Ming Xie c, Yang Li d

School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065,
China

achengay@cqupt.edu.cn, bxlb@sumarte.com, cxieming@sumarte.com,dhaolyabc@126.com

Abstract

This paper has designed a flashloader software architecture which can be applied to different

hardware platforms basing on hersteller initiative software (HIS) standard. This software

architecture adopts hierarchical design thought and consists of five parts, which are micro

controller abstraction layer, ECU abstraction layer, network layer, runtime environment

(RTE) and application layer. The flashloader with this kind of structure can be transplanted

conveniently and maintained easily. The software has integrated the diagnostic protocol stack

which is based on the international diagnostic agreement, and solved the problem that current

flashloader has low standardization of the agreement. Transplant the flashloader to different

vehicle instruments which have different hardware platforms. After many times of

experiments, the results show that this software can realize the online upgrade function with

good performance, and be transplanted conveniently.

Keywords

Online Upgrade, Vehicle ECU, HIS standard, Flashloader.

1. Introduction

Now online upgrade technology of vehicle ECU has become more and more important. Due to the
continuous development of micro controller technology, abundant software and hardware resources

make it possible to realize the technology [1]. To the implementation of the technology, we can
remove a single ECU from the vehicle firstly, and then use the dedicated download device to update

the program [2]. But this way is very inconvenient and may damage the ECU easily. In order to solve
the problems, Deng [3] proposed a method using serial port to achieve the online upgrade, but the

method will increase the wiring harness, which may cause assemble and maintain the ECU will
become more difficulty. Basing on this, Zhang and Tan [4, 5] proposed with the method using bus to

realize online upgrade. But due to lack of protocol support, the accuracy and efficiency of the update
data can’t be guaranteed when in complex network environment.

At present, the automobile companies have developed the flashloader which suit for their agreement

by defining their own protocol, ensuring the online upgrade progress can work normally [6, 7, 8].
However, the limitations of the software architecture and the disunity of the communication protocol

causes that the current flashloader can’t be reused and need to develop the whole software for
different hardware platforms of ECUs. So in 2006, HIS organization published the complete

flashloader norms, which standardized the diagnostic service layer and the transport layer which
conform to the international diagnostic criteria, and defined the whole software architecture for Flash

programing process [9]. Therefore, basing on the deeply analyzed of HIS standard, this article
designed and implemented a flashloader which has good portability and versatility.

This paper is organized as follows: Section 2 introduces the main problems of current flashloader, and

proposes a new flashloader software architecture based on HIS standard. Basing on this, Section 3
describes the implementation process of the software. Section 4 transplants and verifies the software

on the different hardware platforms of instruments. Section 5 summarizes the full text.

International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

99

2. Flashloader software architecture

2.1 Current problems of flashloader software architecture.

HIS standard specifies the implementation of software architecture for micro controller should adopt
the hierarchical approach, and each layer use the standard function interface to call. But the current

flashloader software architecture all defined by automobile companies [10, 11], which is not strictly
according to HIS standard and dependent between each layers. For example, in the flashloader

described in the papers which are presented by Zhang and Yan [12, 13], the protocol stack of network
layer calls the functions of underlying driver layer directly, and operates the physical address of the

Flash. Because in different ECU the physical address allocation of flash is different. The method may
cause transplanting the upper layer software lack of unity, and need to redevelopment all the upper

software for different ECUs, which may extend the development cycle and increase cost.

The implementation of current flashloader adopts the custom protocol mostly [15], such as the

custom protocol is shown in Fig. 1 which is used in the paper by Liu.
ECUDownload Tool

Read the software version number $13A

Return the version number $13A

Erase flash $13B

Download the target files $13C

Send the check code $13D

Return the verify result $13E

ECU reset $13F

Fig. 1 Custom protocol example

In the protocol, PC sends online upgrade command message to the target ECU to achieve online

update function. But without the response mechanism for all request messages, the security and
reliability of the data transmission are not guaranteed. In this protocol, the ID of the message is

0x13A - 0x13F, but in other custom protocols the ID may be different. The protocol of un-uniform is
also the main factor of the difficult transplantation of the current online upgrade software.

CAN Driver Flash Driver
EEPROM

Driver
Watchdog Driver

CAN Driver

Interface

Flash EEPROM

Emulation

EEPROM

Abstraction

diagnostic

protocol
Memory Abstraction Interface

Watchdog Driver

Interface

Security

Module

RTE

Boot Manager Application Extend Module

Application Layer

Network Layer

MCAL

ECU Abstrction

layer

Fig. 2 Flashloader software architecture

2.2 Flashloader software architecture based on HIS.

In view of the problems of the present flashloader for vehicle ECU, after analysing the HIS software
standard deeply, we adopt modular hierarchical design thought to design the flashloader software

architecture, basing on the demand of the flashloader for ECU. The software architecture is shown in
Fig. 2.

International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

100

The software architecture contains five layers, which are micro controller abstraction layer, ECU

abstraction layer, network layer, RTE and application layer. The micro controller abstraction layer
connects the software and the actual micro controller, mapping the function of the micro controller

and the peripheral interface. ECU abstraction layer is used to provide all driver programs on the basic
of the hardware. Network layer provides various services for the software. The main work of the RTE

is to handle the data exchange between the application layer and the other layers, which is the
foundation of the software transplantable. The application layer is used to handle the business and

logic work according to the actual demand.

The workflow of the software architecture is starting from application layer. Firstly, call the hardware

initialization functions are stored in the micro controller hardware abstraction layer. Then run the

boot manager module. The boot manager module writes and reads EEPROM through EEPROM
driver interface, and judges the flag which is stored in EEPROM to decide whether the ECU is

running application or flash loader currently. The detail work flow is shown in Fig. 3.

Initializes hardware

Application is valid?

Enter flashloader Enter application

N

Y

NY

Reset

External programming

request?

Fig. 3 Work flow of the boot manager module

Development all driver

Tranplant diagnostic protocol

stack

Configure parameters

Realize online upgrade process

CAN driver

FLASH driver

EEPROM driver

Timer driver

Watchdog driver

Jump to application

Pre-programming

phase

programming

phase

Pre-programming

phase

Read DID

Extend diagnostic session

Disable DTC storage

Disable communication

SecurityControl

Erase flash

Write flash

Check data

Write DID

ECU Reset

Offset interrupt

vector

Determine entry

address

End

Start

MCAL

Application

layer

Network layer

Programming diagnostic

session

Enable communication

Enable DTC storage

Default diagnostic session

Fig. 4 The implementation process of flashloader

javascript:void(0);

International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

101

3. The realization of flashloader

3.1 Entire realization process.

When users are going to realize the software, first of all they should finish develop all drivers based
on the specific ECU chip platform, including CAN, flash, EEPROM, timer and watchdog. Secondly,

they should transplant the modular encapsulation source files to the network layer, which contains the
network layer and the application layer of the diagnostic protocol stack, and configure all the

configurable parameters. Finally, complete the whole process of online upgrade in the application
layer, update and run the application. The detail implementation process is shown in Fig. 4.

3.2 Specific realization.

Due to each ECU has its own chip platform, all the drivers must be developed according to the

specific chip platform. The realization of the diagnostic protocol stack is based on the international
diagnostic agreement ISO 14229 and ISO 15765. To enhance the universality, the protocol stack

specifies the format and the content of a message should adopt the international standards. For the
convenience of transplanting the protocol stack in the different ECUs, this paper adopts the idea of

modularization to encapsulate the diagnostic protocol stack, putting the data structure and the
function prototypes of network layer and application layer in the header files, and then compiling the

source files of functions to get the target code. Users just need to include the header files in their
project and then compile all files and link the target code when operate the software.

The parameters which can be configured mainly include application layer parameters, network layer

parameters, hardware platform parameters, message addressing mode, message ID and so on. The
detail configuration information is shown in Table 1.

Table 1 The information of configurable parameters

Configurable

parameter types
Parameters Describe

 Application layer

parameters

services

SID 10, SID 11, SID 27, SID 22 SID

28, SID 2E, SID 31, SID 34 SID 36,

SID 3E, SID 37, SID 85

Configure the services and its

sub function according to

demand

Timer parameters

P2*Client

P2*Server

P2Client

P2Server

Value scope:0-5000ms Value

scope:0-2000ms Value

scope:0-150ms Value

scope:0-50ms

Network layer

parameters

Control

parameters

Stmin

Blocksize

1ms

8byte

Timer parameters
N_As, N_Bs, N_Cs

N_Ar, N_Br, N_Cr
Value scope:0-150ms

Hardware

platform

parameters

 Application layer

Main receive cache size Sub

receive cache size Send

cache size
Configure the parameters

according to hardware resource

Network layer Network layer cache size

Other parameters

Message

addressing mode

Routine addressing

Routine constant addressing

Extend addressing

Mixed addressing

Configure the message

addressing mode and ID

according to demand

Message ID

Physical request message ID

Function request message ID

Response message ID

International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

102

The online upgrade process for vehicle ECU is the reprogramming process of flash, which mainly

includes pre-programming stage, programming stage and post - programming stage. The main
function of pre - programming stage is to check whether current programming conditions are suit for

the demand of online upgrade for ECU or not, and configure the current network environment to
ensure that ECU can enter into an appropriate programming environment. The main function of

programming stage is to complete the external programming device access authorization, download
flash driver and application, and then check all of the data. The main function of post - programming

stage is to restore the normal communication and the DTC record of the other ECU on the network,
and request to turn the current diagnostic session model into default session. The detail

implementation steps are shown in Fig. 5.

After finishing update the application, programs running in the ECU should change from flashloader

to application. Flashloader and application are stored in the flash memory with the method of

partition. If the flashloader adopts the default interrupt vector table, the application should adopt the
interrupt vector table which had been offset. The two interrupt addresses shouldn’t be overlapped.

Otherwise it will cause the interrupt conflict so that the application couldn’t run normally. Due to
different applications have different sizes, and their own application entry address, we must fix on the

application entry address, insuring the ECU can jump to application normally.

Start

DiagnosticSessionControl $10 $03

(ExtendedSession)

DiagnosticSessionControl $10 $02

(ProgrammingSession)

SecurityAccess $27

(request Seed / send Key)

Download Flash Driver

（Download data Block）

End

STP2

STP2

More data files to download?

WriteDataByIdentifier $2E

ECUReset $11 $01

N

Y

STP3

STP3

(a) Pre-programming sequence

RoutineControl $31

(Activate Flash Driver)

RoutineControl $31

(Erase Flash Sector)

Download APP

（Download data Block）

RoutineControl $31

(Check Logical Block)

DiagnosticSessionControl $10 $03

(ExtendedSession)

DiagnosticSessionControl $10 $01

(DefaultSession)

CommunicationControl $28

(Enable Non Diagnostic Communication)

ControlDTCSetting $85

(Enable DTC Storage)

CommunicationControl $28

(Disable Non Diagnostic Communication)

ControlDTCSetting $85

(Disable DTC Storage)

RoutineControl $31

(Check Programming Dependencies)

ReadDataByIdentifier $22

(b) Programming sequence

(c) Post-programming sequence

Fig. 5 Flash reprogramming process

javascript:void(0);

International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

103

4. Transplantation and verify the software

We transplanted the flashloader to two vehicle instruments and updated their application. The chip

platforms of the two instruments are Freescale MPC5645S and TI TMS320F28035, both of which are
32-bit micro controllers, and their internal flash can be divided into different size of sections. Users

can erase and write single or multiple sections assigned, and the detail memory allocation is shown in
Fig. 6. To avoid happening the situation of erasing application by mistake, when the application is

updated the flash driver is downloaded to the RAM by CAN bus. When power off the data of the flash
driver will be lost, and not always stored in the flashloader programs.

We test the software on the two instruments. Firstly, we should connect the target ECU to the PC by

USB - CAN adapter, and configure the detailed information of PC. Secondly, we should import the
object files to the download tool and start to update the application. When the online upgrade process

had been finished, the data which are stored in the target ECU flash memory as is shown in Fig. 7. The
application image files of the two instruments as are shown in Fig. 8 and Fig. 9. By comparing the

data we can find that all the data are exactly the same, which means that the target files have been
written to the specified space accurately, and the online upgrade function is achieved.

0x003E8000

0x003E8021
startup

0x003F2000

0x00008000

0x00008C00
RAM

Reserved

0x003F7FFF

Flash Driver

Other Programs

All Drivers

0x00010000

startup

0x00012000

startup

Offset Interrupt

vector

App Section

0x00200000

0x40000000

0x40010000
RAM

Reserved

Flashloader Secton

Original Interrupt

vector

0x00004000

0x00000000

Flash Driver

Other Programs

All Drivers
0x003F7F80

Download to RAM

by CAN bus

(a) MPC5645S Memory

Allocation

(b) TMS320F28035 Memory

Allocation

Offset Interrupt

vector

App Section

Flashloader Secton

startup

Original Interrupt

vector

Realize based

on MCU

Transplantable part

Fig. 6 Memory allocation map

USB-CAN

Adapter

Download Tool

CAN Bus

Flash address Data

RAM Flash Driver

AppFlash

Flashloader

Flash address Data

MPC5645S MCU

TMS320F28035 MCU

ECU1

ECU2

RAM Flash Driver

AppFlash

Flashloader

PC

Fig. 7 The data of the target ECU

javascript:void(0);
javascript:void(0);

International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

104

Address ChecksumData

Fig. 8 Application image file of the MPC5645S platform

High address

Low address Data Checksum

Fig. 9 Application image file of the TMS320F28035 platform

5. Conclusion

This paper has designed and implemented a flashloader software architecture for vehicle ECU which
can be applied to different hardware platforms. The software architecture adopts hierarchical design

thought. The upper software calls the underlying drivers through HIS standard function interfaces,
and ignores the details of the different hardware platforms. This software integrates the diagnostic

protocol stack which is based on international diagnostic agreement ISO 14229 and ISO 15765, ruled
the format and the content of the online upgrade message which should adopt the international

standard. We have tested the flashloader on two different vehicle instruments in which the hardware
platforms are different, and the result is that the software can be transplanted easily and can realize the

online upgrade function normally.

References

[1] Yang J, Zhao G. The transplant and compile of Bootloader in embedded system[J]. Journal of
Sichuan University, 2007, 44(4): 835-839.

[2] Zhang A Y, Zhu X M, Yang C. Development of the Bootloader Function of Electronic Control
System[J]. Modern Vehicle Power, 2010, 4(4): 17-19.

[3] Deng H. Design of TMS320C6713 Flash Application Upgrading Online Based on the Serial
Port[J]. Ship Electronic Engineering, 2009, 29(5): 120-122.

[4] Zhang H, Zhan D A. Design of Vehicle Fault Diagnosis System Based on CAN Bus[J].
Automotive Engineering, 2008, 30(10): 934-937.

[5] Tan T, Tang H, Zhou Y. Design and Implementation of Bootloader for Vehicle Control Unit
Based on Can Bus[C]// Proceedings of the FISITA 2012 World Automotive Congress. Springer

Berlin Heidelberg, 2013: 447-457.
[6] Mu C Y, Sun L N, Du Z J, et al. Research and Development of Device for Downloading and

Updating Software of Product ECU Based on Extended CCP[C]//2nd IEEE Conference on
Industrial Electronics and Applications. IEEE, 2007: 2865-2869.

[7] I Zhang Y, Bao K J. Design and Implementation of BootLoader for Vehicle Control Unit[J].
Computer Engineering, 2011, 37(12): 233-235.

[8] Wang Y, Lin Z. Stable In-circuit Programming of Flash Memory in Freescale's MC9S12 MCU
Family[C]// Proceedings of the 2010 International Conference on Measuring Technology and

Mechatronics Automation - Volume 03 IEEE Computer Society, 2010: 477-480.
[9] DaimlerChrysler AG. HIS Flashloader Specification Version 1.1[S]. 2006.

International Journal of Science Vol.3 No.1 2016 ISSN: 1813-4890

105

[10] Cheng A, Yao Y, Duan Z, et al. ECU loader design of in-vehicle CAN network based on

ISO15765[C]// Information Science and Technology (ICIST), 2011 International Conference on
IEEE, 2011: 1215-1217.

[11] Fahrner D I A, Geese D I M, Happel D I A. Data compression algorithms for EOL flash
programming of automotive electronic control units[J]. Atzelektronik Worldwide, 2010, 5(2):

22-26.
[12] Zhang D, Wu Y. The research and implementation of flash EMIFA bootloader[C]// Image and

Signal Processing (CISP), 2012 5th International Congress on IEEE, 2012: 1911-1914.
[13] Yan J. Design of Secondary Bootloader for Embedded System based on DSP [J]. International

Journal of Computer Science Issues, 2013, 10(1): 544-548.
[14] Xu Y, Wang R G, Cheng A Y, et al. Design of Online Upgrade System for the Software of

Vehicle ECU based on CAN-Bus[J]. International Journal of Advancements in Computing
Technology, 2013, 5(1): 79-87.

[15] Liu C, Luo F. Implementation of CAN Bootloader Based on Freescale MCU [J]. Journal of
Suzhou University, 2010, 30(2): 57-61.

