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Abstract 

In the traditional SPH method, pressure instability will cause the agglomeration of particles 

and even collapse in the progress of calculation. In this paper, a new quartic spline smoothing 

function was putted forward, which can eliminate the pressure instability with high accuracy 

and smoothness. And an example were presented to verify the applicability and accuracy of the 

function. The results show that the pressure instability can be resolved effectively by this 

smoothing function, and the smoothing function could be used more widely. 
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1. Introduction 

Stress instability is always a important defect and restricted the development of Smoothed Particle 
hydrodynamics method (SPH). When the particles are in compress or tensile stress state, the motion 

of the particle becomes unstable, and leads to particles agglomerated or scattered or even lead to 
calculation collapse[1]. 

According to the theory of stability analysis, Swegle pointed out that the sufficient condition for the 

unstable growth is >W " 0 [2] (Where W" is the second derivative of the smoothing function, and   
is stress state). By using the method of dispersion equations, Morris studied the stability of different 
discrete format of SPH and demonstrated that there are no smoothing function can both eliminate the 

compress and tensile instability [3].However, for the fluid problems which do not existed tensile state, 
we could construct a smoothing function of which the second derivative is nonnegative. In this paper, 

in order to solve the pressure instability problem, the basic properties of smoothing function is 
discussed, and the defect of conventional smoothing function is analyzed. Then, in the full 

consideration of the smoothness, precision, stability, a new quartic spline kernel was established. 
Finally, through two typical numerical examples, the practicability of the improved smoothing 

function is verified. 

2. Basic theory of SPH 

2.1 Basic properties of smoothing function 

For any meshless method, a key problem is to approximate the discrete points by function. For SPH 

method, the progress is realized by smoothing function, and can be expressed by the following 
equation: 

( ) ( ) ,f x f x W x x h dx


  ＇ ＇（ - ＇）＇                                              (1) 

Where ( , )x x hW  ＇  is the smoothing function, it not only determines the form of function 

approximation, and also definite the support domain, the consistency and accuracy of approximation. 
Therefore, smoothing function is of great important in SPH method. Usually, the more smooth the 

smoothing function is (included the one and two order derivative), the fewer it will be affected by the 
irregular distribution of particles. 
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2.2 Control equations in the form of SPH 

Under the Lagrangian description, control equations of flow can be written as partial differential 
equations as follow: 
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The above differential equations are the famous Nervier-Stokes control equations. The formulas (4), 

(5) are mass conservation equation, momentum conservation equation respectively, and its 
corresponding SPH expression can be written as follow: 
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Where   indicates density, m  represents mass,   denotes velocity, e  represents energy,   are the 

total stress tensor of particles.  

3. A new quartic spline smoothing function 

According to the basic properties of the smoothing function described above, combined with the 

'' 0W   condition and the central peak condition, a new quartic spline kernel (in the following text, 

we use NQS kernel to represent the function) was constructed in this paper to solve the pressure 

instability problem: 
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Where 'R x x h  , and the values of d  are 
1

88h
, 

2

1

46 h
, and 

3

105

8464 h
  

corresponding to first-, second-, and three-dimensional spaces respectively. The NQS smoothing 

function and its derivatives can be seen as follows: 

 
Figure 1 The NQS kernel and its one- and two-order derivative 

In addition to meet the basic properties of smoothing function, the NQS smoothing function also has 

the following characteristics: 
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1. The two order derivative of the NQS smoothing function is constantly greater than 0, so pressure 

instability problem can be eliminated when using the NQS kernel, and especially suitable for fluid 
mechanics problems which does not exist tensile stress. 

2. The one- and two-order derivatives of the NQS kernel are more smooth than traditional kernals, so 

it will be fewer affected by the irregular distribution of particles.  

3. Central peak was considered when constructed the function, so the approximate solution will be 

more accurate by using NQS kernel. 

4. Numerical examples 

In this section, a numerical examples were simulated to verify the effectiveness of the NQS kernel. 

The case is a hydrostatic pressure test, and the purpose is to verity the effectiveness of NQS kernel of 
eliminate the pressure instability problem. 

A certain amount of fluid is placed in a quadrate tub. The width and depth of the fluid is 1m and 0.5m 

respectively. The density and gravity acceleration is 3 3=10 /kg m  and 29.8 /g m s  respectively. In 

order to observe the pressure instability phenomenon, the initial smooth length was set as 4/3 times as 

the distance between the particles (Where the second derivation of qunitic spline smoothing function 

is zero). The time step is 52 10 s , 10000 time steps was calculated. 

Four points were selected to monitor the pressure of the fluid, and the coordinate of the points is (0.5, 

0.1), (0.5, 0.2), (0.5, 0.3), (0.5, 0.4) respectively. The results of particle distributions after 10000 time 

steps were shown at figure 9, 11, 13, and the pressure changes of the monitor points were shown at 
figure 3 and 5, which use qunitic spline kernel and NQS kernel respectively. 
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Figure 2 Particle distributions when using      Figure3 Pressure of monitored points when using 

qunitic kernel                       qunitic kernel 
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Figure 4 Particle distributions of NQS kernel   Figure5 Pressure of monitored points of NQS kernel   

As shown in the figure 2and 3, when using the qunitic spline kernel, the particles near the bottom and 

side wall had obvious trend of aggregation (figure 2), significant pressure fluctuations can be seen in 
each monitor points, and had a trend of increase (figure 3). 
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When using NQS kernel, the distribution of the particles is basically stable (figure4). After a short 

time of pressure fluctuation, the pressure became stable in figure 5. Proved that the NQS can removed 
the pressure instability. 

5. Conclusions  

In This article, the reason of the stress instability was discussed, and a new quartic spline smoothing 

function was represented to solve pressure instability. A typical example was discussed and proved 
that, compared to the traditional smoothing function, the NQS kernel can not only solve the pressure 

instability, but also has higher accuracy and stability. 
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