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Abstract 

Fast Fourier Transform (FFT) is widely used in signal processing applications. For a 2n-point 

FFT, split-radix FFT costs less mathematical operations than many state-of-the-art algorithms. 

Most split-radix FFT algorithms are implemented in a recursive way which brings much extra 

overhead of systems. In this paper, we propose an algorithm of split-radix FFT that can 

eliminate the system overhead. Ternary tree schedule algorithms for split-radix FFT will be 

introduced. Additionally, we use some optimizing technologies such as loop unrolling, data 

prefetching and instruction pipeline adjustment to enhance performance. For large size 

split-radix FFT, we propose an efficient algorithm that uses "BFS+BFS"   traversal model in 

the ternary tree to reduce the overhead of memory access. In the end, experimental results on 

Godson-3A2000 show that the algorithm in an iterative way performs 20% better than the 

algorithm in a recursive way. Compared with standard library FFTW3, the performance of the 

optimized algorithm in an iterative is promoted by 30%. 
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1. Introduction 

Fast Fourier Transform (FFT), proposed by Cooley and Turkey in 1965 [1], is the fundamental 

algorithm in digital image processing which greatly enhances the performance of Discrete Fourier 
Transform (DFT). It reduces the number of mathematical operations, making a breakthrough in the 

research on image processing. At present, it is widely used in image filtering, noise reduction and 
image compression. According to the characteristics of twiddle factors, FFT uses the buttery structure 

and recursively expresses a DFT of length N in terms of two smaller DFTs of length 2/N , reducing 

many operations. For a size- N  transformation, the mathematical operations complexity of DFT is 

)( 2NO  while the complexity of FFT is only )log( 2 NNO . For example, for the Radix-2 algorithm, 

which is the most common FFT algorithm, its specific calculation amount is NN 2log5 . 

In 1968, Yavne [2] presented what became known the base of split-radix FFT algorithm, and he gave 

the record op count of 86log4 2  NNN . In 1984, Duhamel et al.  [3] Proposed split-radix FFT 

algorithm which was a variant of the Cooley-Turkey algorithm. Split-radix FFT uses a blend method 
of radix-2 and radix-4. By using the divide and conquer methodology, split-radix FFT recursively 

decomposes an N -point DFT into one 2/N -point DFT and two 4/N -point DFTs. The 

mathematical number of operations of split-radix FFT is NN 2log4 , which almost 20% is less than 

radix-2 algorithm. 

Different from Radix-x algorithms, split-radix FFT divides the original DFT into three sub-DFTs, 

then recursively divides the sub-DFTs. The implementation of a split-radix FFT algorithm in a 

recursive way is very easily achieved. Due to the extra overhead of recursive function calls, the 
iterative form will perform much better when compared with recursive form. After repeated partitions, 

there will be many small DFTs and intermediate processes to be calculated. It seems difficult to 
compute the calculation methods and twiddle factors. Considering the similarity of split-radix FFT 

algorithm and ternary tree, this paper combines them together, and proposes a new implementation. 
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In this implementation, we first build the ternary tree by pre-calculating the partitions. We calculate 
the sub-DFT from root to leaves, and record the information for FFT in the corresponding node 

according to the ternary tree. 

With recursive partitions processing, there will be many leaves that only have a few calculations, such 

as DFT4 and DFT2. The number of operations in DFT4 and DFT2 are so small that calculation ability 
of hardware could not be fully used. To get higher performance, this paper changes the computation 

unit from 2 & 4 to 4 & 8. This solution will greatly reduce the number of leaves that have a few 
operations. In the implementation, when the size of the sub-DFT reduces to the size of the computing 

unit, we will stop dividing the sub-DFT. simultaneously, we optimize the calculation of 
computational unit with Single Instruction Multiple Data (SIMD) instructions. Moreover, we fully 

incorporate the features of microstructure, such as instruction pipeline and the multi-emission 
mechanism of hardware to finish the code level optimization. 

The remainder of this paper is organized as follows. In Section 2, the related work is given. Section 3 

introduces the background. The proposed TTSSR is presented in Section 4. In Section 5, 
optimizations for split-radix FFT based on hardware features will be put forward. In Section 6, 

experimental results are presented, and finally Section 7 presents the conclusion. 

2. Related Work 

In order to improve the performance of split-radix FFT, much attention has been devoted to searching 
for new algorithms. So far, much work on reducing the mathematical operations complexity has been 

completed. In 2004, Van Buskirk [4] became the first person to contribute to improving the number of 
mathematical operations and he managed to save eight operations over Yavne [2] by hand 

optimization for 64-point split-radix FFT. Later, Lundy and Van Buskirk developed an automatic 

code-generation implementation that achieved almost NNN
27

38
log

3

2
2   fewer operations than 

Yavne [5], given an arbitrary fixed rN 2 . In light of Van Buskirk's [4] code-generation framework, 

Johnson et al. [6] presented a simple recursive modification of the split-radix algorithm that computed 
the DFT with asymptotically about 6% fewer operations than Yavne in 2007. 

Moreover, Bouguezel et al. [7] presented an efficient split-radix FFT algorithm for computing the 
r2 -point DFT. The new algorithm substantially reduced the operations such as data transfer, address 

generation, twiddle factor evaluation, or accessing the lookup table, which had contributed 
significantly to the execution time of FFT algorithms. Bouguezel et al. [7] made adjustments so that 

radix-2 and radix-8 index maps were used instead of radix-2 and radix-4 index maps, as in the 
classical split-radix FFT to prove the improved algorithm. Later, Takahashi [8] extended split-radix 

FFT algorithm, which had the same asymptotic arithmetic complexity. This algorithm costs fewer 
load and store instructions than the conventional split-radix FFT algorithm. 

In order to obtain efficient performance on various platforms, Ocovaj et al. [9] presented an 

implementation of a conjugate-pair variant of split-radix FFT that was optimized for platforms with 
an SIMD instruction set extension. Karishma et al. [10] exploited the lower arithmetic obscurity of 

split-radix FFT to lower dynamic energy by gating the multipliers during trivial multiplication. In this 
paper, Watanabe et al. [11] proposed a new architecture to compute the RFFT on Field Programmable 

Gate Array (FPGA). Bouguezel et al. [12] proposed a new radix-2/4 FFT algorithm for computing the 

discrete Fourier transform of an arbitrary mq 2  -point, where q is an odd integer. Ma et al. [13] 

proposed a new address scheme for efficiently implementing mixed radix FFTs, and they designed an 

elaborate accumulator that could generate access addresses for the operands, as well as the twiddle 
factors.  

In the literature, people have only analyzed the algorithm itself and optimized the algorithm from 

mathematical operation numbers. However, they have not considered the implementation of 
algorithm and make little optimization on concrete hardware. 
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3. Backgrounds 

Godson is a family of general-purpose CPUs developed at the Institute of Computing Technology, 
Chinese Academy of Sciences in China. Godson-3A2000 [14] is the latest product which is built on 

GS464E architecture. It is a general-purpose RISC quad-core CPU whose instruction set is a 
self-developed MIPS64 instruction set. Compared to the x86 instruction set, the structure of the 

MIP64S instruction set is more simple and efficient. Thus, the MIPS architecture is more suitable for 
scientific computing. More, its floating point capabilities are very powerful. However, it is 
significantly different from the x86-based CPU in architecture. Various softwares (e.g., ATLAS, 

FFTW) that use self-turning technology for optimization cannot get ideal performance. 

Godson-3A2000 is a 4-way superscalar processors built on a 9-stage, super-pipelined architecture. It 

has the same characters of MIPS. It is configured with out-of-order execution units, two 

floating-point operation units, a memory management unit and an innovative crossbar interconnect. 
Unlike the random cache replacement policy for the Godson series, the Godson-3A2000 uses the 

LRU cache replacement for data and instruction cache. 

4. Implementation of TTSSR 

The split-radix FFT algorithm divides a large point DFT into smaller-point DFTs recursively. In order 
to intuitively represent the recursive partitions, the proposed ternary tree for split-radix FFT will be 

described in this section. First, we briefly introduce the basic algorithm of split-radix FFT. Then we 
propose the TTSSR in detail, and introduce several algorithms for building the ternary tree, traversing 

the ternary tree in BFS, and using the "BFS+BFS" model to optimize. 

4.1 Split-Radix Basic Algorithm 

For an N-point array 1210 ,,,, Nxxxx  , the DFT of x is defined in (1). 
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Where )( /2 Nij

N eW 
 is the primitive root-of-unity and 1j . For N that can be divided by four, we 

perform a decimation-in-time decomposition of nx  into three smaller DFTs. They are respectively 

kx2  (the even elements), 14 kx , and 34 kx . According to the periodicity of NW , we obtain the 

derivations from (1), that are shown in (2). 
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The first stage of split-radix FFT is decimation-in-frequency decomposition. After the decomposition, 

N-point DFT changes to a coalition of three small DFTs. We can then calculate the small DFTs 
independently. For each small DFT, we can recursively call the split-radix FFT algorithm to solve it. 

If the DFT is small enough, that is, if DFT size equals the size of computational unit, we need only 
call the unit calculation function for the rest calculation, without any partition. In total, split-radix 

FFT algorithm takes advantage of the character of DFT, recursively callings the split-radix algorithm 
until the size of DFT reaches the size of computational units. Fig. 1 shows the procedure for a 

16-point DFT that uses a split-radix FFT algorithm. The "L-shape" in the Fig.1 represents the 
partition level of the DFT with the split-radix FFT algorithm. 
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The basic recursive split-radix FFT algorithm is shown as Algorithm 1. In the basic algorithm, the 

split-radix function recursively invokes itself until all sub-DFTs finish calculating. For large scale 

DFT, this algorithm takes much system time to recursively invoke itself. 
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Fig. 1 16-point split-radix FFT algorithms 

4.2 TTSSR 

In the ternary tree representation, each node represents one DFT. Data structure spnode is assigned to 

each node, as shown in Listing 1. spnode. n represents the size of the DFT to be calculated. spnode. 
pos represents the beginning address to be calculated in the spnode. Additionally, spnode. posOmega 

represents the position of the twiddle factor in the twiddle factor array. The spnode. father points to 
the father node of the spnode. Similarly, spnode. left, spnode.mid and spnode. right point to its three 

children nodes. When the tree structure is finalized, all the leaves correspond to computational 
elements, and internal nodes represent the calculations for partition that are required to update the 

data for sub-DFTs. 



International Journal of Science Vol.3 No.5 2016                                                             ISSN: 1813-4890 

 

104 

 

 

For example, in a 
m2 -point )2( m  split-radix FFT, the FFT is divided into one 

12 m
-point FFT and 

two 
22 m
-point FFTs. In implementation, we use p to represent the root of a ternary tree. Meanwhile, 

nodes i, j and k, respectively represent the left child, middle child and right child. p. n equals to 
m2  

and i.n equals to 
12 m
. Similarly, j.n and k.n set to

22 m
. p.pos, i.pos, j.pos and k.pos are respectively 

assigned to 0, 0, 2/n , 4/3n . Then, p.left, p.mid, p.right will be set to i, j and k. i.father, j. father and k. 
father will be set to p. As shown in Fig. 2, p. pos Omega, i. pos Omega, j.pos Omega and k. posOmega 
are assigned to 1, 2, 4 and 4. 

Building Ternary Tree for split-radix FFT 

As noted above, the definition of the ternary tree for split-radix FFT decides the procedure to build the 

tree. The algorithm for building the ternary tree for split-radix FFT is presented in Algorithm 2. This 
algorithm is implemented in a recursive way. First, the root node is initialized and information for 

calculation is stored in the data structure. Then, the roots of the sub-trees are initialized, and 
recursively invoke this algorithm to build the sub-trees. Finally, we update the root's information for 

the children trees and father information for the sub-trees. If the partition size reaches 4 or 8, we stop 
dividing it and quit. According to the Build Tree algorithm, a ternary tree can be constructed for the 

given transformation length. During the procedure of the establishment of a ternary tree, the variables 
root. Post Omega for each sub-DFTs are calculated and stored at the respective positions in memory. 

Fig. 2 illustrates a ternary tree for 64-point split-radix FFT. For the same point split-radix FFT, the 
ternary tree is the same. In order to enhance the performance, we can pre-build the ternary tree for 

split-radix FFT. 
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Fig. 2  Ternary Tree for 64-point split-radix FFT Algorithm 

Split-Radix Algorithm Based on Ternary Tree 

After the establishment of the ternary tree, the procedure for the split-radix FFT is straightforward. In 

split-radix FFT, we need to traverse all the nodes of the ternary tree. Depending on the information in 

the node, we finish all the calculations presented by the variables. When all the nodes have been 



International Journal of Science Vol.3 No.5 2016                                                             ISSN: 1813-4890 

 

105 

 

visited and all calculations finished, the split-radix FFT ends. For the ternary tree, there are two kinds 
of traversal methods DFS and BFS. DFS corresponds to recursively split-radix FFT while BFS 

corresponds to iteratively split-radix FFT. In order to obtain better performance, this paper will use 
the BFS algorithm as the traversing algorithm. In BFS, we save traversal paths with a queue that has 

the characteristics of first in first out (FIFO) and visit the sub-tree from left to right. First, we initialize 
one queue and put the root node of the ternary tree into the queue. Then, we recursively visit the head 
of the queue, putting the child of visited node into the queue, until the queue becomes empty. When 

one node is visited, we should finish the calculations presented by the node. Generally speaking, the 
BFS algorithm visits the ternary tree by levels, and the split-radix FFT runs in an iterative way. The 

concrete realization method is shown in Algorithm 3. 

 
Blocked Split-radix Algorithm 

Traversing the ternary tree by level means that all the data will be accessed in each level. If the size of 

split-radix exceeds the cache size, the cache content will always be replaced in each level. Because of 

the cache miss, simple BFS model will cause much time of memory access. In accordance with the 
characteristics of ternary trees, all the sub-trees of one node are independent and the calculation data 

presented by the each node are consequent. It will greatly reduce memory access to independently 
finish the calculations presented by nodes in a sub-tree of the node. After processing one sub-tree, we 

continue to deal with the other sub-trees. In the optimized algorithm, memory access of one block's 
data are performed many times. Now, this approach accesses the block data only once. 

Correspondingly, this independent computing in the ternary tree is a blocked algorithm for split-radix 
FFT. 

Considering the relationship between split-radix FFT algorithm and the parameters of microstructure, 

it is necessary to discuss its quantity of memory access. For k -point split-radix FFT, k  twiddle 

factors and k source complex numbers will be accessed. So as to minimize the rate of cache misses, 

we have to ensure that there are enough places for all data to be used in the calculation in cache. In 
other words, (3) must be satisfied. On the other hand, in order to obtain a higher ratio of calculation to 

memory access, we should maximize the k . 
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According to the size of cache, we could easily calculate the appropriate k . When k  is selected, we 

can use "BFS+BFS" traversal method to reduce the time of memory access. In the ternary tree, the 
sub-tree of one node with knNode .  presents one k -point split-radix FFT. We utilize BFS 

algorithm to traverse the ternary tree. When one node with knNode .  is visited, we stop the outer 

BFS and directly use BFS algorithm to traverse all sub-trees of Node and finish the calculation. 

Meanwhile, the offspring nodes of Node will not be visited anymore in the outer BFS. In short, 

"BFS+BFS" model will be chosen to improve our algorithm. The blocked split-radix FFT algorithm 

based on ternary tree is shown in Algorithm 4. 

)  () ()  ( sizecachesizeoffactorstwiddlesizeofkelementsourcesizofk                 (3) 

5. Optimization for Spit-Radix FFT 

In this section, we will make use of hardware features of Godson-3A2000 to optimize the 

performance of split-radix FFT. 

In the kernel of split-radix FFT, most additions (or subtractions) need the results of multiplications, 

and they have read-after-write relationships. Addition instructions need to wait several cycles for 

result to return, and this causes some pipeline idleness. Only by inserting additional instructions, can 
idle pipelines be reduced. With the floating function units supporting multi-add instructions, addition 

and multiplication can be combined. This method can reduce the number of instruction, which can 
reduce the overhead of the registers. 

Instruction scheduling is one technology to reduce the idle pipeline by adjusting the instruction 

pipeline ordering. There are two floating point arithmetic units and two memory access units in the 
Godson-3A2000. Two load instructions and two floating multi-add instructions will launch in each 

cycle. If there are no fixed instructions, the instruction position will be replaced by "nop" instruction 
to avoid conflicts between pipelines. The Godson-3A2000 provides a 128-bit memory access 

instruction. It can be used to simultaneously access two double floating numbers between registers 
and memory. In split-radix FFT, the imaginary part of complex numbers stored next to the real part. 

Also, the complex number is 16 byte aligned. With one 128-bit memory access instruction, we could 
access one complex number, reducing the number of memory access instructions. 
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Generally, in split-radix FFT, the larger the computational unit, the fewer the stages will be required 

for the calculation process. However, if the computational unit is too large, the registers required will 

exceed the supply by platform. Considering the performance and register, we chose 8 and 4 as the 
computational unit in godson-3A2000. According to Formulary 3, with 64KB L1cache, we can 

compute 2048-points in L1cache without cache misses. 

When dealing with computational unit, several numbers will be multiplied by the imaginary 

number j . For reducing the number of multiplications, we can directly exchange the real part with 

imaginary part and make the real part negative. Considering the common denominator of twiddle 

factors in 8-point computational unit, all twiddle factors numbers could be expressed by 2/2 . To 

reduce the amount of memory being accessed for twiddle factors, we accessed one number 2/2  

instead of 8 complex factors. Moreover, we modified the execute instructions to satisfy the 

calculations for 8-point. In addition, we manually used MIPS64 assembly language to write kernel 
functions for computational units. 

6. Experimental Results 

The experimental results were performed on the Godson-3A2000 which is clocked at 800Mz. The 

platform is configured with two 2GB dual-channel DDR3-1000 memory chips. The operating system 
is Loongson system with version "Linux 3.10.84". The GCC compiler with optimization level-O2 

was used for all cases. 

The FFT are tested whose sizes are powers of 2 and arrange from 
72  to

172 . The input array and the 

twiddle factors array are double complex numbers. The original iterative and recursive algorithms are 
implemented in the C language. The optimized iterative algorithms are implemented in C and 

MIPS64 assembly language. FFTW3 is used as the performance reference, and FFTW 
EXHAUSTIVE flag and wisdom mechanism were used. FFTW3 was executed once with the FFTW 

EXHAUSTIVE flag to discover the optimal plan. Then the wisdom mechanism saved the plan into 
memory for reloading many times. 
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Fig. 3 Performance of Original Algorithms 

Performance is compared between the original iterative and the recursive algorithms. As shown in Fig. 

3, the iterative algorithm performs better than the recursive algorithm. When FFT size exceeds 102 , 

the performance drops markedly. For the recursive algorithm, because of the extra system overhead, 

its performance drops 100 MFLOPS between 102 -points to 112 -points. With the size increasing, the 

overhead of memory access becomes the main limiting factor and performance decreases. 

 
Fig. 4 Comparison between four algorithms 

As shown in Fig. 4, optimized split-radix FFT algorithm performs better than the original algorithm. 

Unlike FFTW, its performance increases from 
72 -points to 

102 -points. When the size arranges 

increases 
112  to

122 , there is a large performance decrease. This occurs when the data size is larger 

than the data cache. When data size is larger than the data cache, cache access tremendously increases, 

and performance rapidly degraded. The best performance by the optimized algorithm was 1285 

MFLOPS which occurs at 
102 points. The performance of the split-radix FFT algorithm is improved 

by 20% compared with FFTW3.3.4. 

Compared with the optimized algorithm, the blocked split-radix FFT algorithm uses blocking 

technology to enhance the reusability of data in cache. When the size of split-radix FFT ranges 

from
122   to

172 , its performance increases 95 MFLOPS better over the optimized algorithm. Because 

the judgment condition statements are added, the performance of FFT for small sizes drops about 20 
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MFLOPS. On the whole, blocked split-radix FFT algorithm brings 30% performance improvement 
over FFTW3.3.4. 

7. Conclusion 

In this paper, a new split-radix FFT methodology that achieves superior performance is presented. 

This methodology combines split-radix and ternary tree procedures. By utilizing the BFS method, we 
traverse the ternary tree and record the calculation for split-radix FFT. Moreover, we exploit 
optimizing the split-radix FFT algorithm on a Godson-3A2000 CPU. Experimental results show that 

the new algorithm surpasses FFTW by 30%. 

Future work includes an analysis and implementation of parallel split-radix FFT algorithms on a 

multi-core platform. Moreover, we will optimize the parallel split-radix FFT performance by taking 

advantage of the features of the ternary tree. 

References 

[1] J.W. Cooley, J.W. Tukey: An algorithm for machine computation of complex Fourier series, 
Math. Comput.,  Vol . 19 (1965) No.9, p.297-301. 

[2] Yavne R.: An economical method for calculating the discrete Fourier transform. the ACM  fall 
joint computer conference (Dec 9-11, 1968), p.115-125. 

[3] P. Duhamel, H. Hollman: Split-radix FFT algorithms, Electron. Letters, Vol. 20 (1984), p.14-16. 
[4] J. Van Buskirk: comp.dsp Usenet posts Jan. 2004. 

[5] Lundy T, Buskirk J V.: A new matrix approach to real FFTs and convolutions of length 
k2 , 

Computing, Vol. 80 (2007), No.1, p.23-45. 
[6] Johnson, S.G.; Frigo, M.: A Modified Split-Radix FFT With Fewer Arithmetic Operations, IEEE 

Transactions on signal processing, Vol. 55 (2007), No.1, p.111-119. 
[7] Saad Bouguezel, M. Omair Ahmad, M. N. S. Swamy: An efficient split-radix FFT algorithm, the 

2003 International Symposium on Circuits and Systems  (2003), Vol. 4, p.65-68. 
[8] Takahashi, D.: An extended split-radix FFT algorithm, IEEE Signal Processing Letters, Vol. 8 

(2001), No.5, p.145-147. 
[9] Ocovaj S, Lukac Z.: Optimization of conjugate-pair split-radix FFT algorithm for SIMD 

platforms, 2014 IEEE International Conference on Consumer Electronics (2014), p.373-374. 
[10]  Karishma A. Deshmukh, P. R. Indurkar, D. M. Khatri: High performance split radix FFT, 

International Journal of Innovative Research in Advanced Engineering (IJIRAE), Vol. 1 (2014) , 
No.6, p.380-386. 

[11] Watanabe, C., Silva, C., Muñoz, J.: Implementation of Split-Radix Fast Fourier Transform on 
FPGA, Programmable Logic Conference (24-26 March, 2010), p.167-170. 

[12]  Saad Bouguezel, M. Omair Ahmad: A New Radix-$2/8$ FFT Algorithm for Length-
mq 2 , 

IEEE Transactions on circuits and systems, Vol. 51 (2004), No. 9, p.1723-1732. 

[13] Cuimei Ma, Yizhuang Xie, He Chen, Yi Deng, Wen Yan: Simplified addressing scheme for 
mixed radix FFT algorithms, IEEE International Conference on Acoustics, Speech and Signal 

Processing (4-9 May, 2014), p.8355-8359. 
[14] Ruiyang Wu, Wenxiang Wang, Huandong Wang: Godson processor core architecture GS464E, 

Scientia Sinica Informationis, (2015), No.4, p.480-500. 


