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Abstract 

Efficient parallel iterative algorithm is investigated for solving block-tridiagonal linear systems 

on distributed-memory multi-computers. Based on Galerkin theory, the communication only 

need twice between the adjacent processors per iteration step. Furthermore, the condition for 

convergence was given when the coefficient matrix A is a symmetric positive definite matrix. 

Numerical experiments implemented on the cluster verify that our algorithm parallel 

acceleration rates and efficiency are higher than the multi-splitting one, and has the 

advantages over the multisplitting one of high efficiency and low memory space.  
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1. Introduction 

In recent years, the high-performance parallel computing technology has been rapidly developed. The 
large banded linear systems are frequently encounted when finite difference or finite element 

methods are used to discretize partial differential equations in many practice scientific problems and 
engineering computing. These systems can be efficiently resolved on sequential computers but are 

difficult to solve on parallel computers, where the communications take a significant part of the total 
execution time. So we need more efforts study to investigate more efficient parallel algorithm to 

improve the experimental results. 

The parallel algorithms on the problem have been widely investigated in Refs. [1-8]. Especially, the 

multisplitting algorithm in Ref. [1] is the most popular at present. In Ref. [3], the authors provide a 

method for solving block-tridiagonal linear systems in which local lower and upper triangular 
incomplete factors are combined into an effective approximation for global incomplete lower and 

upper triangular factors of coefficient matrix based on two-dimensional domain decomposition with 
small overlapping. The algorithm is applicable to any preconditioner of incomplete type. In Ref. [4], a 

parallel strategy based on the Galerkin principle for solving block-tridiagonal linear systems is 
presented. In Ref. [5], a parallel direct algorithm based on Divide-and-Conquer principle and the 

decomposition of the coefficient matrix is investigated for solving the block-tridiagonal linear 
systems on distributed-memory multi-computers. The communications of the algorithm is only twice 

between the adjacent processors. Ma et al developed an alternating direction parallel algorithm for 
banded linear systems in Ref. [6]. In Ref. [7], a direct method for solving circular-tridiagonal block 

linear systems is presented. Some parallel algorithms for solving the linear systems can be found in 
Refs. [9-17]. In Ref. [15], for solving two-dimensional Poisson equation, a new quadratic PEk 

method is proposed. Based on GPU, Liu developed iterative algorithm for complex linear equations 
of symmetric positive definite sparse matrices. The algorithm in this paper is discussed on the basis of 

the advantages of the one in Ref. [2]. 

The goal of this paper is to develop an efficient parallel iterative method on distributed-memory 

multi-computer, and to give some theoretical analysis. The organization of this paper is as follows. In 

section 2, the parallel iterative algorithm is described and the parallel iterative process is discussed. 
The analysis of convergence is done in Section 3. The numerical results are shown in Section 4. 

Finally, the results analysis is given in Section 5. Section 6 summarizes the conclusion of this paper.  



International Journal of Science Vol.3 No.5 2016                                                             ISSN: 1813-4890 

 

209 

 

2. Organization of the Text 

2.1 Parallel algorithm 

Parallel calculation scheme 

Let a block-tridiagonal linear equations Ax b  can be represented as  
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where , ,i i iand  A B C  are all t t  real square matrices, 
i iand x b  are t -dimensional real column 

vectors with 1,2 ,2i n ， . In general, assuming that there are p  processors available and 

 2,n pm m m Z    , we denote the ith processor by  for 1,2, ,iP i p  . 
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When k  is an odd, T

m mV AV  is a block-diagonal matrix, then (2) can be written as  
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When k  is an odd, T

m mV AV  is also a block-diagonal matrix, then we get 
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The above is the detailed parallel calculation procedure. 

Cycle process 

(1) 
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cycling until all inequalities are satisfied. 

2.2 Analysis of convergence 

Theorem 1. Let n nR A  is a symmetric positive definite matrix. Then the following expression is 
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2.3 Numerical examples 

 Example 1. Consider a block-tridiagonal linear system Ax b , here 
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stopping criterion 101 10   . The numerical results are shown as Tables 1, 2 and 3. 

Example 2. Consider an elliptic partial differential equation 

   
2 2

1 2 1 22 2
sin 2 sin 2 0,0 , 1x y

u u u u
C C C x C D x D Eu x y

x xx y
 

   
        
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equipped with the boundary conditions 
0 1| | 10 cosx xu u y    , 0 1| | 10 cosy yu u x    , here 

1 2 1 2, , , , ,x yC C C C D D  and E  are all constants. We denote 1 2 1 21, 0x yC C E C C D D       , respectively. 

Using the finite difference method, we obtain two block-tridiagonal linear systems on condition that 
the step sizes 1/100h  . Then, we apply this algorithm with the optimal relaxation factor to the 

systems on the HP rx2600 cluster. The numerical results are shown in Table 4, Table 5 and Table 6, 
here P is the number of processor, T is the run times(seconds), the S is speedup(T of one processor/T 

of all processors), L is iteration times and E is the efficiency( /E S P ). 

Table 1  The results for model 1(the algorithm given in the paper) 

P 1 2 4 8 

T 30.4938 15.6170 7.9818 4.2221 

S  1.9526 3.8204 7.2224 

E  0.9763 0.9551 0.9028 

L 162 206 178 209 

  1.3159e-11 1.3159e-11 2.5228e-11 1.3159e-11 

Table 2  The results for model 1(the multisplitting method) 

P 1 2 4 8 

T 22.7881 15.4051 7.7742 6.3529 

S  1.3149 2.6056 3.1886 

E  0.6575 0.6514 0.5314 

L 177 480 257 493 

Table 3  The results for model 1(the row operation method) 

P 1 2 4 8 

T 34.4938 26.1079 25.7147 22.8668 

S  1.3212 1.3414 1.5085 

E  0.6606 0.3354 0.2515 

L 3248 3248 3248 3292 

 
  Fig. 1 The parallel speedup of Example 1    Fig. 2 The parallel efficiency of Example 1 

 



International Journal of Science Vol.3 No.5 2016                                                             ISSN: 1813-4890 

 

212 

 

Table 4  The results for model 2(the algorithm given in the paper) 

P 1 2 4 8 

T 963.9996 492.8244 251.7298 132.3971 

S 

E 

 

 

1.9746 

0.9873 

3.8658 

0.9664 

7.3501 

0.9188 

L 4114 4124 4126 4126 

  9.8879e-11 9.9845e-11 9.8893e-11 9.8908e-11 

 

Table 5  The results for model 2(the multisplitting method) 

P 1 2 4 8 

T 134.2484 69.4497 39.6882 25.3379 

S  1.9330 3.3826 5.2983 

E  0.9665 0.8456 0.6623 

L 1053 1067 1067 1067 

  1.0002e-10 1.4842e-10 1.4842e-10 1.4842e-10 

 

Table 6  The results for model 2(the row operation method) 

P 1 2 4 6 

T 39.2353 28.3779 23.9006 21.6830 

S  1.3826 1.6416 1.8095 

E  0.6913 0.4104 0.3016 

L 3344 3344 3344 3389 

  1.1763e-09 1.1763e-09 1.2059e-09 1.1763e-09 

 
  Fig. 3 The parallel speedup of Example 2    Fig. 4 The parallel efficiency of Example 2 

 

From Table 1 to Table 6, we can get the following conclusion.  

• By the numerical results, it can be known that the parallel one has good parallelism. 

• As to the Examples 1 and 2, the results of the examples show that the efficiency of the algorithm is 

better than the multisplitting ones and the row action ones. Our algorithm has good parallel speedup 

same as BSOR methods to the Examples. 
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• The parallel algorithm is easily implemented on parallel computer and more flexible and simple 

than [1] in practice. 

• The requirements on communication and memory space are low. 

Obviously, our algorithm has better parallelism compared with the multisplitting method and the row 

operation method from Fig. 1 to Fig. 4. 

3. Conclusion 

An efficient parallel iterative method on a distributed-memory multi-computer has been presented for 

solving the large banded linear systems. Only twice requires the communications of the algorithm 
between the adjacent processors. Theoretical analysis and experiment show that the algorithm in this 

paper has good parallelism and high efficiency. When the coefficient matrix is a symmetric positive 
definite matrix, we know that the parallel algorithm is convergent. Our algorithm has an advantage 

over the multisplitting one of high efficiency. In summary, our method is more suitable for solving 
large-scale banded linear equations in MIMD distributed storage environment. 
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