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Abstract

Applying empirical likelihood method , we discuss difference of two linear model with strongly
stationary ¢ — mixing sample. We obtain the large samples property.

Keywords
Mixing sample; two linear model; empirical likelihood.
1. Introduction

Owen ( [3-4]) firstly proposed empirical likelihood. It has good characteristics. For example, the
empirical likelihood method is not necessary to estimate the variance and its shape is determined by
the data itself and so on. So, it has been widely applied in many fields.

The empirical likelihood method is applied to the two population problem ( [6-8]). Using empirical
likelihood method with ¢ —mixing dependent samples, In this paper, we obtain the large samples

property for difference of two linear model.

Definition[1] The random variable sequences are ¢-mixed. If there exists a non increasing positive
sequence {g(n)|ne N}, lim p(n) = 0,for n e N,i >1,we obtain

|P(B)—P(B|A)[<¢(n)

where Ae F',Be R}, ,F" =ofX; | j<i<m}.

Consider the two linear model:

Y.=X,f,+¢&,i=L--,n

Yi' =Xif,+¢;, i=L---,n

Where Eg, =0, E¢, =0,D¢, =07 >0,,D¢, =07 >0, ¢ and ¢, are independent.

Let (X.,Y)),(X,,Y,),--(X,,)Y,) ( n=2 ) be ¢ -mixed. random  sample.
Let (X,,Y,),(X,,Y,),-++(X,,Y,) (m=>2)be ¢-mixed random sample .

Denote that VS =S, — f,.

Put

O, =X, (Y, =Y, - X.VB), i=12---,n

Empirical likelihood is obtained by

R(Vp) :sup{f[nwi,wi zo,zn:wi =1,Zn:wi®i :O}
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empirical likelihood ratio is obtained by

I(VB)=-2logR(Vp) = ZZH: log(1+s®,).

. . 13 0O
where seR!, s is determined by TI(s) == L =0
© y 1) niZ_1:1+sG)i

2. The main conclusions and proofs Condition

Let(X,,Y,,Y,), (X,,Y,,Y,), -+, (X,,Y,,Y.) (n>2) be ¢-mixed. random sample;

» 1
mixing coefficient satisfies: Zqﬁz (i)<oos
i=1

E| X | <oo,where r>2;
Ee; =0, E¢, =0,E|é& |"<0,E|{; |'<o, & and ¢, are independent, where r > 2.

Theorem 1 If the above conditions are established, we obtained
2

o
(VB) =4 = 2@:N—> 0.
Oy

where
o} =Var{®;}+2) Cov(®,,0,,),
i=1

o. =Var{®,}.

ozand o aren’t known. We apply the following method of empirical likelihood to obtain new limit
distribution which don’t contain unknown parameters.

Write u=[n"] g = {;},where [] is the integral function, 0 <y < % ,n=2ug.
u
Write

u u
Pi = ZV2(i—l)U+j gi :ZV(Zi—l)uﬂ
j=l j=1

Pi Si :
H2i71 :U’YZi:U (fOI‘I:l,Z,---,g)
The empirical likelihood ratio is obtained by
, 29 C 29 , 29
R (Vﬂ)zsup{HZgF’i 1> P =1P >0, P VuH, =o}.
i=1 i=1 i=1
Log empirical likelihood ratio is obtained by

I'(VB) =—-2log R (VJ) = 2_229 log(1+ AVuH,).

. 12 JuH.
where 1 eR', 1 isdetermined by IT (1)=—) ————=0.
y 2 29 §1+NUHi

Theorem 2 Under the conditions of Theorem 1, we obtain
I'(V,B) —>4 ;((21) , N —> o0,
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Lemma 1[5] Write A, =max|®, |, we obtain A, =0, (n"?).

I<i<n
o 1
Lemma2 [2] Assume that {Xi [i 21}are a strongly stationary ¢ —mixing sequence, Z¢2 (i)< oo,
i=1
Assume that EX, =0,E| X, |'< o, where r >2,we obtain

EIY X [<onz Y E|X, [
i=1 i=1

1

Lemma 3 [9] Assume that {X; |i>1}are strong stationary ¢— mixing sequence, » ¢ (i) <o,
i=1

Assumed EX, =0,E| X, <o, we obtain A* = EX? +22 E(X, X,,;) is convergent,
i=1

1+i

1 n
3%
sup | P( A:: <X)—®(X)|->0,

—00< X <0

where ®(x) is the standard normal distribution.

Lemma 4[5] Let (X,,Y.,Y,),(X,,Y,,Y,),---,(X.,Y.,Y.) be ¢ -mixed. random sample. If the

conditions of theorem are established, we obtain
1 &
EiZ:l:u(Hi ) =07 +o,().
Proof of theorem 1
Since
P{0,<0}>c>0,P {0, >0}>c>0, (1)
we obtain that 0 is the set of convex hull {®,,---,0, }, and
R(F(x)) =sup(R(F) | [©,dF =0,F (F, | exist as a positive. @)
It sees that R(F(x)) =sup] [nw, , (3)

i=1
wherew, >0,> W, =1,> w®, =0.
i=1 i=1
By Lagrange multiplier method, we obtain
1

W, =———1<i<n. (4)
n(l+s®,)
where se R, s is determined by TI(s) = 1Zn: ©, =0
N 1+s0,
0= TI(s) |
|5|*Z® 1a
L L R —Z (5)
1+|s|A, nig
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's| ]
—0, ().
s, - o)

By lemma 4, we obtain

By lemma 2, we obtain
) (6)

Write y, =s0,,s is determined by T1(s) =0.
By (6) and lemma 2 , we obtain

max | 7, |= 0( )o,(n)=0,(1). (7)

N

By (6), (7) and lemma 2, we obtain
L Zn:G) ’s?
A=

B =

1 1
o =0,(yMO, (=0, ().
*Z®i2(1+ 7:) n
N
By Taylor expansion, we obtain

log(1+y,) =7, —%‘ +17,, where Ais a positive

P{m<Aly Fl<i<nf>Ln—o,

We obtain 1(VS) =-2logR(V) = ZZn: log(1+7,) = ZZn:yi - Zn:ﬁ + ZZn:ni

i=1 i=1 i=1 i=1
n(- Z@ )2
——nﬂ Z@z +2277,
72@
=T, +T,+T, (8)
By lemma 4 and lemma 3, we obtain
2
O
T, > =X » N0, 9)
Oy
=0,@. (10)
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By (6) and lemma 2 , we obtain
122 [<2A]s[|r =0,

i=1

We show that

By(9)-(11), we obtain

Proof of theorem 2

29
We obtain R'(V3) =sup] [29R,,

i=1
. 29 . 29 f
where P >0,> P =1> P JuH, =0.
i=1 i=1

By Lagrange method, we obtain

T,=0,Q1).

1(VB) =4

1<
2g(1+ AVuH,)

B 1
29
where 4 € R*, 4 is determined by IT (1) = iz& =
29 51+ AJuH,
we obtain
1—2y

max [Y; |=0,(9 *

1<i<2g

1-2y

and max | JuH, |= \/_male | —\/EOP(QT)

I<i<2g

We can obtain

1
A=0,(9 ?).
And
04 IT (1) =
T IZ1+M’H
S | 1S,
1+Z,, | 2]

where A, _malex/_H |
I<i<2g

By Lemma 3 , we get EZ\/_H =0,(-—

By (17) and (18), we obtain

1

=0,(1")=0,(g").
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=1

L |§:\/_H |
—_— u i ,
29 i3

)
Cr

i1<2g,

2;((1) , 1—o00. 0

O,(g

1
2

).

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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|21, =
=0,(9 ?).
A2g |ﬂ’| P
By lemma 4 and 6, (17) and (19), we obtain
1
|Al=0,(g ?). Write 3, = AJuH,
By (16) and (17), we obtain
1 l
max | 7, [= 0, (g 2)0,(92) =05 (1)

1<i<2g

It is shown that

29 29
0=H'(A)=iz JuH, JuH,
29 i:11+/1\/—H 29 i1 1+7

—\/_H S/1+—

Y 1+ Vi '

Write g = —Z\/ﬁHi 7—i, we obtain
20 1 1+y,

A=5"JuH+S,'4.
By lemma 4 and (17), we obtain

1 29 5 1 29 , 3 %
5;(\/6|H. ), SEE(\/UIHI ) g‘?z)é\/alH' =0,(9?).

By (20)- (22), we obtain

Vi %.ZQ(MHi D* 141 (@470 =0,(92)0,(87) =0, (g ?).

By (23) and Taylor expansion, we obtain

29 29 29 29
I'(VB) =-2log R'(VB) =2D> log(1+ ) =2D> 5, = D 7t +2D
i=1l i=1 i=1 i=1
29 29 29
=2> JuH; - > (AJuH)? +2> 7,
i=1 i=1 i=1
_ _ _ 1 29
=2nS,* (H)? + 4JugHS,* 8 - 2ug(S;*)? (H)? Z—Zqu
g4
1 29 - 1 29 29
~29(S,")? ° ==Y uH? —4JugHB— > uH?(S,")* +2> 1,
29 3 29 3 i1
_ 29
=nS,;*(Y)? -29B°S,' +2) n, =F, +F, +F,
i=1

where H== Z@

i=1

By Lemma 3 and 4, we obtain
F —, ;((21) , N—>o0.

By (24) , we obtain
69

(19)

(20)

(21)

(22)

(23)

(24).

(25)



International Journal of Science Vol.3 No.7 2016 ISSN: 1813-4890

F,=298%S,' =0,(1). (26)
By (18) and (24), we obtain

203 7, 281 2P Y (ulH, D°=0,(g) = 0,0,

F;=0,(1). (27)
By (24) - (27), we obtain
I'(VP)) =y ;((21) ,N—o00. O (28)

3. Conclusion

In the paper, we obtain the large samples property of difference of two linear model with strongly
stationary ¢ —mixing sample.
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