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Abstract 

Applying empirical likelihood method , we discuss difference of two linear model with strongly 

stationary   mixing sample. We obtain the large samples property. 
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1. Introduction 

Owen ( [3-4]) firstly proposed empirical likelihood. It has good characteristics. For example, the 

empirical likelihood method is not necessary to estimate the variance and its shape is determined by 
the data itself and so on. So, it has been widely applied in many fields. 

The empirical likelihood method is applied to the two population problem ( [6-8]). Using empirical 

likelihood method with  mixing dependent samples, In this paper, we obtain the large samples 

property for difference of two linear model. 
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empirical likelihood ratio is obtained by 
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2. The main conclusions and proofs Condition  
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Theorem 2  Under the conditions of Theorem 1,we obtain 
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Lemma 1 [5]   Write ||max
1
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Lemma2 [2]  Assume that  1| iX i are a strongly stationary  mixing sequence, 
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Lemma 3 [9] Assume that  1| iX i are strong stationary  mixing sequence, 
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where )(x  is the standard normal distribution. 
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Proof of theorem 1 
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By lemma 4, we obtain ).
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By Taylor expansion,we obtain 
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By (6) and lemma 2 , we obtain 
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By (23) and Taylor expansion, we obtain 
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3. Conclusion 

In the paper, we obtain the large samples property of difference of two linear model with strongly 
stationary  mixing sample. 
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