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Abstract 

In this paper, we study the distributed optimization problem with a common state set 

constraint. And the objective function is the summation of local objective function, where each 

component is only known to particular node. In order to further reduce the number of times 

about update in the controller and the number of exchanges, the state in the controller is 

further sampled based on previous work. It is shown that the constrained optimal consensus 

can be achieved under event-based distributed control with fixed undirected graph. 
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1. Introduction 

From the eighties of last century, [1] discusses the situation of global target optimization functions 

that each individual knows. Due to the huge practical value of distributed optimization, more and 

more scholars have joined the research on related issues[2][3][21][22].[2][11] first discussed the 

more special but also more practical goal optimization function on the basis of the above work[1]. 

The objective optimization function is composed of a set of local objective functions. Each local 

objective function is only for the individual. Obviously, this form of objective function has more 

obvious practical engineering significance. In the actual project, people do not want the state to reach 

a certain intolerant range, which is mathematically represented by state constraints at this time.[4] 

further proposes a distributed optimization algorithm with state constraints. Over the past few years, 

many scholars have also discussed the abstract constraint range or the concrete equality constraint 

inequality constraint for distributed optimization [5] [6]. In the study of distributed optimization 
problem, whether the objective function can achieve global optimization extremely depends on joint 

design of information connection structure and the control decision made by the individual in time 

and space. Because of the special structure of the optimization function (the weighted average sum 

about all local functions), the global objective optimization is dependent on the balance analysis of 

the graph under the control algorithm of states convexity. The article[7][8]takes the push-sum[9][10] 

algorithm, which make Implementation of global goals strengthen the ability to resist interference 

from the graph, and the achievement of global goals no longer depends on the balance of graphs.[2] [4] 

[8]shows that it is extremely important for the distributed system individual to collaborate to 

complete the global target task and to design a sufficient distributed control algorithm. 

As the consistent algorithm based on domain information is proposed in the article [12], the multi 

-agent  system has received more and more attention in recent years. Many scholars have developed a 

large number of practical engineering value of the control algorithm under the idea of above control 

decision. Such as an event-based control algorithm[13][14][15]that can reduce the controller update 

calculation and reduce the number of individual exchanges. When this problem is transformed into a 
mathematical model, its analytical nature will belong to the analysis of the stability of the hybrid 

system analysis. This paper will focus on the application of this kind of engineering algorithm based 

on event control in distributed optimization. 

Many important distributed optimization works is based on discrete models. However, with the depth 
of the study about distributed optimization problems, the discussion 
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of continuous model about it began to be introduced, because of obvious geometric significance 

under the continuous model. The system of the continuous mode would discuss whether the trajectory 

of the solution state under the differential state equation converges to the target region in the state 

space. In the article [16], under the time varying joint strongly directed graph, a control input 
compose of the state-averaged term and the local optimal term is designed about the continuous 

system. Through the joint action above two terms, the state would achieve consistent and gradually 

converges to the global optimal set (the intersection of all local optimal sets). In this paper [17], 

a control algorithm composed of uniform average term, constrained projection term and local 

objective function gradient optimization term under continuous system is proposed under the time - 
varying joint connected undirected graph. Under these three conditions, states of system reach 

consensus and convergence the global optimal set. When the system is considered of the continuous 

model, how to reduce update and calculation in the controller and reduce the number of exchanges is 

inspired by the event control based on continuous model naturally. In the article [19], the author 

designs a novel driving function and control algorithm to achieve event-based distributed 

optimization. In addition to the above work to consider event-based distributed optimization 

problems, there are some works to discuss this issue[18][20][23][24][25],which no longer be 

elaborated one by one. 

To Summary, the state of the controller would do a further sampling processing based on[19], in order 
to further reduce the controller update. When the latest sampling state and the true state of the error is 

equal to the dynamic boundary we design, the controller updates. We use the way of analysis 

proposed in[19], which is dependent on design skills based on property of step. In this paper, we 

prove that the state converges to the set of constraints and the consistent set, and the states achieve the 

global optimization would be proved, finally. 

2. Mathematical Preliminaries 

2.1 Graph Notation 

The communication topology among these agents is represented by ( , )G ,  1,2,...,n  is 

the set of nodes:  is the set of edges which are represented by a pair of node indices  ,i j  . We shall 

write  ,i j   if node I can send its information to node j . 

The matrix ,

n n

i j
A a      is called the weighted adjacency matrix associated with ; 0

ij
a   if 

 ,i j   and  0
ij
a   ,otherwise. A graph has a spanning tree if there exists a node such that there is 

at least one directed path from the node to each of the other nodes. A digraph  is "balanced" if the 

in-degree ,
( )

out j i
j

d i a


  and the out-degree ,
( )

out j i
j

d i a


  are equal for i   . We denote 

max ( )
i in

d d i  the degree of  and { (1),..., ( )}
in in

D diag D D n  the degree matrix of  . The 

Laplacian matrix  is defined as D A   .Some properties of  are summarized in the following 

lemma: 

Lemma 2.1[29] If a graph  is balanced ,then there exists a standard orthogonal matrix
1
[ , ]n

n
   

with 1n n    such (0, )diag    where ( 1) ( 1)n n    If   further contains a spanning 

tree, then all eigenvalues of   have positive real parts. 

2.2 Convex Analysis 

A set m  is convex, if ,x y   and (0,1)   , (1 )x y     A function ( ) : mf    

is convex if ,x y   and  (0,1)  , ( (1 ) )f x y    ( ) (1 ) ( )f x f y    . 
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For the convex is non-differentiable, a sub-differential is introduced. Consider a function 

: mf   the set: ( ) { ( ) ( ) ( ) ( ), , }m m

f f
f x s x f y f x s x y x x           is the "sub- 

differential of f   at point x   ".The element  ( )f
s x  is called "the subgradient of f   at x  ".A function 

f   is " -Strongly convex" with respect to the Euclidean norm, if for all x  , y  in relative interior of 

domain of f ,and (0,1)  :
21( (1 ) ) ( ) (1 ) ( ) (1 )

2
f x y f x f y x y              . 

One property of a -strongly convex function f  is 
21( ) ( ) ( ),

2f
f y f x s x y x x y       . 

For a closed convex set m . ( ) : mP x   denote a projection function satisfying: 

( ) inf , m

v

x P x x v x x


    
 

A non-expansive property of ( )P   is given below: 

( ) ( ) , , mP x P y x y x y      . 

The following lemma will be used in subsequent parts of this work: 

Lemma 2.2[17] Given a closed convex set m  and , mx y   ,we have 

( ), ( )x P x y x x y x        

Consider the following ordinary differential equation: 

0 0
( ) ( ( ), ), ( ) mx t f x t t x t x                                                       (1) 

Where (, ) : mf     is not necessarily continuous. Classical solution may not exist due to the 

discontinuity of f .Now we consider the solution of (1) in term of the following differential inclusion: 

0 ( ) 0
( ) ( , ) { ( ( , ) \ , )}

s
x t f x t co f B x S t

 


 

     

Lemma2.3[27] the function ( , )f t x is upper semi-continuous and is compact convex for any 

0 0( , )x t . 

Let ( , )x t  for all [ , ]t a b  . ( )x t  is absolutely continuous on[ , ]a b  and 0 0( ) ( ( ), ), ( ) x t f x t t x t x  

holds almost everywhere. 

2.3 Non-smooth  Analysis and Discontinuous Differential Equation 

Lemma 2.4[28] Let ( , ) : m

i
V t x    , 1,2,...,i n  be continuously differentiable and 

1,2,...,
( , ) max ( , )

ii n
V t x V t x


  , if ( )t i  : ( , ) ( , )

i
V t x V t x  denotes the of indices where the maximum 

( , )V t x is reacted at t  ,then ( , ) max ( , )
ii

D V t x V t x


  .  

3. Problem Formulation And Algorithm Design 

3.1 Problem Formulation 

In this section, we define the considered optimal consensus problem. Consider the following 

continuous-time multi-agent system 

                                                     ( ) ( ), {1,..., }
i i
x t u t i n                                                    (2) 

Where each ( ) m

i
x t   is the state of agent i  . The communication topology can be represented 

by a directed graph .The connectivity of the communication graph is assumed as follows: 
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assumption 3.1 The Graph is balanced and contains a spanning tree. 

Each agent i  is assigned with a cost function : m

i
f   ,i   . The local cost 

is represented by ( )i i
f x   which is only known to agent i . The objective is that as t     

 the states of all agents approach a global minimum point of the function ( ) ( )
ii

F x f x


  within 

constrain set m  by designing ( )iu t  based on local information, i.e. 

limsup ( ) 0,
i

t
x t i





    .                                                (3) 

Where { : argmin ( )}v F v    is the optimal set. To facilitate our subsequent analysis, the 

following assumptions are imposed: 

assumption 3.2 The constraint set X is a closed convex set. 

assumption 3.3 Each if  is  -strongly convex. 

As a consequence of Assumption 2 and 3, the global optimal set  is a singleton, which is denoted as 

x  . 

3.2 Algorithm Design 

We propose the following algorithm: 

, 1( ) ( ) ( ( )) ( ( ( )) ( )) (( ) ( )), [ , ).   



      i i i j i i i

i i i k i k i k i j k k k k

j

u t t s x t P x t x t a t t t t t                (4) 

Where ( ( ))i is x t is a subgradient of if at ix and ( ) t  is a positive gain function of time t . and   are 

positive gainon the projection and averaging terms,respectively.{( ), 1,2 }i

kt k are triggered time 

instants for agent i  to broadcast its state 

information.Boradcasting only happens when ( ) 0iT t with ( )iT t the triggered function of agent i  to 

be designed. We use
i

kt to indicate the last triggered time of agent i  at time instant t ,i.e. 

max { : ( ) 0}    i

k it t T .The corresponding Laplacian matrix is denoted as .Without loss of 

generality, we assume that max 1 i ind d .Otherwise,we can rescale  and ,i ja to make this hold. 

For each agent i  in system,we choose trigger function of the form: 

                                          ( ) ( ) ( ) | ( ) | , ( ) ( ) ( )     i

i i i i k iT t t t e t e t x t x t .                                             (5) 

where ( ) t is a uniformly bounded positive continuous function. Note that agent i  broadcast its state 

information only when | ( ) |ie t  goes beyond the time-varying threshold ( ) ( ) t t . We impose the 

following assumption: the function ( ) t  is differential and lim ( ) 0



t

t . 

( ) t is continuously differentiable and satisfies the following conditions: 

0
( ),  lim ( ) 0, ( ) ( ( )).   




  t

t t t o t                                             (6)  

3.3 Convergence Analysis Results 

In this section,we should analyze the convergence of the proposed algorithm.Note that due the 

subgradient being discontinuous and the fact that the neighbours' information may jump at triggering 

time instants, the following inclusion should be considered: 

           ,( ) [ ( ) ( ( )) ( ( ( )) ( )) (( ) ( ))]  


     i i i j i

i i i k i k i k i j k k

j

u t t s x t P x t x t a t t
                         (7) 

Substituting into and considering yield that: 

           ,( ) [ ( ) ( ( )) ( ( ( )) ( )) (( ) ( ))]  


     i i i j i

i i i k i k i k i j k k

j

x t t s x t P x t x t a t t
                          (8) 
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We will regard the states ( )ix t  as the Filippov solutions to the above differential inclusions.By 

assumption,for any  ,there exists t such that: 

                                  
1( ) (0, ), ( ) ( , ),| ( ) ( ) | , .            t t t t t t                                (9) 

Before giving the convergence analysis of proposed algorithm,The following preliminary results are 
introduced. Proposition 4.1 establishes boundedness of the states and Proposition 4.2 shows 

asymptotic convergence of states of agents to a agreement which lies in constraint set . 

Proposition 4.1. We apply (4) to multi-agent system(2),and the communication among the agents is 
triggered based on trigger function (5). We can obtain The states of all agents are uniformed bounded. 

Proof: Consider ( ) ( )i i id t max d t  with 
2( ) | ( ) | , i id t x t y  and ( ) { : ( ) ( )}  it i q t q t . Thus 

 represents the set of indices of agents whose states are farthest from y . According to Lemma 

1 ,for all i  and j . 

According to Assumption, if  is strongly convex and there exists 0ir  such that ( ) ( )i if x f y  if 

| |  ix y r , in light of  , ( )  ix y s x 2( ) ( ) | |
2


   i if x f y x y  , we can find , x y ( )is x   

2| |
2


x y   . Then r  can be selected as max  i ir r . 

.

,( ) 2 ( ) , ( ) ( ( )) ( ( ( )) ( )) (( ) ( ))  


        i i i j i

i i i k i k i k i j k k

j

d t x t y t s x t P x t x t a t t                               (10) 

Then from (10), if ( ) d t r , according to lemma 2 and lemma 3, we have 
.

( ) 2 ( ) , ( )( ( ( )) ( ( ))) ( ) ( ( ))      i

i i i k i i i id t x t y t s x t s x t t s x t                                 

( ( ( )) ( ( )) ( ( )) ( ) ( ) ( ))     i i

i k i i i i i kP x t P x t P x t x t x t x t                  (11) 

, ( ( ) ( ) ( ) ( ))


    i j j i j i

j

a x t x t e t e t                                                             

Because subgradient ( )is x  is bounded,so there exists a positive constant L , | ( ( )) ( ( )) |i

i i k i is x t s x t , 

| ( ) ( ) | i

i k iL x t x t  , and in light of lemma, 

| ( ( )) ( ( )) | | ( ) ( ) | | ( ) | ( ) ( )     i i

i k i i k i iP x t P x t x t x t m e t m t t  

2( ) , ( ( )) ( ) | |     i i i ix t y P x t x t x  

then we get 
.

( ) ( ) ( ) 2 ( ) ( ) | ( ) |    id t t d t d t t L e t                                                      

              4 ( ) ( ) ( )   m t t d t + ,( ) , ( ( ) ( ))


   i i j j i

j

x t y a e t e t
          (12) 

                      ( ) ( ) 2 ( ) ( ) ( )    t d t t L t md t                                                    

and then, we show that: 

2 ( ) 4( ) ( )
sup ( ) max{ (0lim ), }

( )

    



 


i

k

i
t k

t L m t m
d t d

t
                              (13) 

where  , t  are defined in (9). 

Suppose 
22 ( ) 4( ) ( )

( ) max{ ,( ) }
( )

    




 
 

i

k

i

k

t L m t m
d t d

t
 for  ( , ) t t , where d  is a 

positive constant.According to (11), we have 
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( ) 0d t  

which show that ( )d t   would asymptotically convergence to 0 . The arbitrariness of  .                     

From Proposition 4.1, we know that there exists such that max sup | ( ) |





i i
t

x t q . Then, we can define 

max {| ( ) | : ,| | }   i i i is s v s f v q  and note that 
  

t
sup s . 

Proposition 4.2. Consider multi-agent system (2) with iu  given in (4). Under Assumption 3.1-3.3, 

then ,i j   

                                                    1

| (
li

) |
s

)
m up

(

i

t

x t
C

t
,                                                     (14) 

                                                     2

| ( )
l

( ) |
sup

(
im

)




i j

t

x t x t
C

t
,                                            (15) 

Where 1






s
C , 2

2

2 (1 )






ns
C . 

Proof: To measure the distance of the states to ,  we introduce 
2( ) max | ( ) | i ih t x t  and 

2( ) { :| ( ) | ( )}  it i x t h t , where ( )t  is the set of indices of agent whose states are farthest from 

the constraint set  at time t . Convergence to constraint set  is equivalent to the requirement 

lim ( ) 0



t

h t . According to (4) and lemma  2.2 , we have 

( ) 2 ( ) ( ( )), ( ) ( ( ))    i

i i i i kh t x t P x t t s x t  ,( ( ( )) ( )) (( ) ( )) 


    i i j i

i k i k i j k k

j

P x t x t a t t         

,2 ( ) ( ( )), ( ) ( ( )) ( ( ) ( ) ( ) ( )) 


        i

i i i i k i j j i j i

j

x t P x t t s x t a x t x t e t e t               (16) 

( ( ( )) ( ( )) ( ( )) ( ) ( ) ( ))     i i

i k i i i i i kP x t P x t P x t x t x t x t                                               

According to non-expansion of projection  and  lemma 2.2 we can obtain: 

| ( ( )) ( ( )) | | ( ) ( ) | | ( ) | ( ) ( )     i i

i k i i k i iP x t P x t x t x t m e t m t t  

( ) 2 ( ) ( ( )), ( ) ( ( ))    i

i i i i kh t x t P x t t s x t 2 ( ) 4 ( ) ( ) ( ) 4 ( ) ( ) ( )        h t m t t h t m t t h t (17) 

Due to the property of ( ) t  and ( ) t , there exists ( ) ( )  t t  when ( , ) t t  

( ) 2 ( ) 2 ( ) ( )   h t h t t s h t 4 ( ) ( ) 4 ( ) ( )    m t h t m t h t                         (18) 

We make 2

( )ˆ( )
( )

h t
h t

t
, 

then. 

2 3

( ) ( )ˆ( ) 2 ( )
( ) ( )



 
 

h t t
h t h t

t t

 

( ) ˆ ˆ( 2 2 ) ( ) (4( ) ( ) 2 ) ( )
( )


   


     

t
h t m t s h t

t
                                  (19) 

Since the above inequality holds for any   , we consider (0, )  .We consider the following 

ordinary differential equation 

ˆ ˆ ˆ( ) ( 2 2 ) ( ) (4( ) 2 ) ( )          h t h t m s h t  

with initial equation ˆ( )h t ,we can obtain 
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( ( )) 22 ( ) 2 ( )ˆ ˆ( ) [ ( ( ) )] 



       

   

     
   

 

t tm bar s m bar s
h t e h t                (20) 

and that  
22 ( )ˆlim ( ) [ ]

   



 


t

m bar s
h t , which implies (14) by the arbitrariness of  . 

Next we would prove (15), for Laplacian matrix  of communication graph , there exists a 

standard orthogonal matrix [ , ]  n

N

1
 such that 1(0, )   diag . 

Define ˆ ( ) ( ) ( )  mX t I X t , 
1( ) [ ]  nX t x x . Then from (8) we have: 

( ) ( ) ( ) ( )   mX t I X t v t  

And   

1
ˆ ˆ( ) ( ) ( ) ( ) ( )     m mX t I X t I v t                                              

 

                                                          1
ˆ( ) ( ) ( ) [ ( )]    m mI X t I v t                                        (21) 

Where 

1 1 1 1 1( ) ( )[ ( ) ( )] [ ( ( )) ( )      i i

n k kv t t s x s x P x t x t 1( ( )) ( )] ( )[ ]    i i

n k n k m nP x t x t I e e  

due to the conclusion (14), such 1 1| ( ( )) ( ) | ( ) ( )   i i

i k i kP x t x t C t , 

1 1| ( ) | ( ) ( ) ( ) ( )           m

nv t t ns t n C t mn . 

Define
ˆ ( )

( )
( )




X t
X t

t
By defining ( ) ( ), ( )   W t X t X t , 

we have 
.

1

( ) 1
( ) ( ) ( ) [ ( )]

( ) ( )
 


 

 
    m m

t
X I X t I v t

t t
 

.

1

( ) 1
( ) 2 , 2 ( ), ( ) ( ) ( ) [ ( )]

( ) ( )
   


 

 
         m m

t
W t X X X t I X t I v t

t t
 

2 1 1

( ) ˆ2( ) ( ) 2 ( ( ) ( ( ) )) ( )
( )


     


       m

n

t
W t n s C m t W t

t
 

In light of the proof of (14),we can obtain 

 
21

2

sup ( ) ( )
ˆ

lim
 



 


m

n

t

s C
W t n

m
,                                                   (22) 

where 2 , n  is the smallest and biggest eigenvalue of 1 1

2


,respectively. Let , 

n

i jI  be the 

vector with i -th and j -th components being 1 and 1  respectively and the other components being 

zero. We find that ˆ( ) ( ) ( , ) ( )  i j i mx t x t I j I X t . | ( ) ( ) | 2 | ( ) | 2 ( ) ( )   i jx t x t X t W t t , 

1
, . t t so we obtain 

2

| ( ) ( ) | 2 (
l

1 )
sm up

)
i

(



 

 


i j

t

x t x t ns

t
. 

From Proposition 4.2, we know that there exists 
1

[ , )  t t  such that 
1

, ,    i j t t ,where   and 

t  are defined in (9). We will next show that all the states of agents converge to a bounded region of 

optimum point. 
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Theorem 1.  Consider system (9) with ( )iu t  given in (4). Under the same condition as in Proposition 

4.2, (3) is achieved. 

Proof:  Denote 
2( ) | ( ) | i iV t x t x , and ( ) ( )


 ii

V t t . 

Then we have 

.

( ) 2 ( ) , ( ) ( ( )) ( ( ( )) ( ))      i i i

i i i i k i k i kV t x t x t s x t P x t x t , (( ) ( ))


   j i

i j k k

j

a t t  

2 ( ) , ( ) ( ( )) ( ( ( )) ( ( )) ( ( )) ( ) ( ) ( ))          i i i

i i i k i k i i i i i kx t x t s x t P x t P x t P x t x t x t x t

, (( ( ) ( ))


  j i

i j i k i k

j

a x t x t  

.

( ) 2 ( ) , ( ) ( ( )) ( ( ( )) ( ( )) ( ( )) ( ) ( ) ( ))          i i i

i i i i k i k i i i i i kV t x t x t s x t P x t P x t P x t x t x t x t

, ( ( ) ( ) ( ) ( ))


     i j j i j i

j

a x t x t e t e t  

Recalling lemma 2.1 and , ,i j j ia a , we have 

,2 ( ) ,    i j i j i

i j

a x t x x x  

,2 ( )( ( ) ( ))  i j i j i

i j

a V t V t V t  

2

, ( ( ) ( )) 0    i j j i

i j

a V t V t  

So we can obtain 
.

( ) 2 ( ) , ( ) ( ( )) ( ( ( )) ( ( )) ( ( )) ( ) ( ) ( ))          i i i

i i i i k i k i i i i i kV t x t x t s x t P x t P x t P x t x t x t x t

, ( ( ) ( ))


  i j j i

j

a e t e t  

| ( ( )) ( ( )) | | ( ) ( ) | | ( ) | ( ) ( )     i i

i k i i k i iP x t P x t x t x t m e t m t t  

2( ) , ( ( )) ( ) | |     i i i ix t x P x t x t x  

So we can obtain: 
.

,( ) 2 ( ) , ( ) ( ( )) 2 ( ) 2max {| ( ) |} 4 ( ) ( ) ( )    





       i

i i i i k i i j i i i

j

V t x t x t s x t V t a e t mV t t t

2 ( ) , ( ) ( ( )) 4 ( ) ( ) ( ) 4 ( ) ( ) ( )            i

i i i k i ix t x t s x t mV t t t mV t t t  

Next let we deal with the ( ) , ( ) ( ( ))   i

i i i kx t x t s x t , 

.

( )2 ( ) , ( ) ( ( )) 4 ( ) ( ) ( ) 4 ( ) ( ) ( )           i

i i i i k i iV t x t x t s x t mV t t t mV t t t

2 ( ) , ( ) ( ( )) ( )( ( ( )) ( ( )) 4( ) ( ) (\ ) ( )             i

i i i i i k i i ix t x t s x t t s x t s x t mV t t t  

2 ( )( ( ) ( ( ))) 2 ( ) | ( ) | ( ) 4( ) ( ) ( ) ( )         i i i i i it f x f x t t L e t V t mV t t t  

Where we make use of the property about sub-gradient and | ( ( )) ( ( )) | | ( ) ( ) |i i

i i k i i i k is x t s x t L x t x t   , 

| ( ) |iL e t  , due to boundedness of ( )ix t  and ( )is . 

Now, we think the average state 
1

( ) ( ( ))


 i

i

x t x t
n

.By recall (14)(15),when 
1

[ , ) t t  we further 

implies the following inequality: 
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( ) ( ( )) ( ) ( ( ) ( ( ) ( ) ( ) ( )       i i i i i i i i if x f x t f x f P x f P x f x f x f x 1( ) ( ( ))    i ix f P xf  

Where 1 1 2( 2 ) ( )    s C C t  

On both sides of inequality sum at the same time, and we have 
.

1( ) 2 ( )( ( ) ( ( )) ) 2 ( ) ( ) ( ) ( ) ( )4 ( )( ) ( )             i i i i iV t t f x f P x t t L mV t t t t mV t        (23) 

Since F  is  -strongly convex, we have 

2( ( )) ( ) | ( ) | .
2

   F P x F x P x x  (*) 

On the other hand, we have 
2( ) |( ) ( ( )) ( ( ) ) |



      i

i

V t x x x P x P x x 2

2| ( ) |   n P x x  

Which together with (*) implies that 

2

( )
( ( )) ( ) ( )

2


  

V t
F P x F x

n
                                                 (24) 

Where 
2 2

2 1 2 1 22 ( 2 ) ( ) ( 2 ) ( )         q C C t C C t , 

Combing (23) and (24) yields that 
2

 t t  

1( ) 2 ( )( ( ) ( ( ) ) 2 ( ) ( ) ( ) ( )    

 

    i i i

i i
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Where we make use of ( ) ( )


 i

i

V t nV t . Finally, so when t  becomes sufficiently large, we would 

discuss following inequation: 

3 1 2
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              V t t V t L mnV t mnV t n

n
 

And next, 
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Where 
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0
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L
, 4 1 22   n  

And analysis ( )V t  by above inequality, we would show that inim f )l ( V t V , 

where
2 2

0 0 43 2
ˆ ˆ2( )( ) 4( ) ( )

( )
        



     


n
V mn . we assume that inim f )l ( V t V , 

which implies the existence of 0  ,and  t t , 2( ) ( ( ) ) V t V t ,then from (34) one can obtain 

that  t t ,
2 3 2 2

0 4
ˆ( ) ( )( 2 4 ( ) ( ) )


            V t t mn n

n
  .Since 

0
( )



  t , ( )V t  will 

be negative when t  is sufficiently large, which leads to a contradiction. 

From the right hand side of (34), we can know the ( )V t  never escape [0, ( )]V t .which implies that 
3 2 2

2

ˆ16 ( )
su (li p )m

  






mn
V t .  Eventually , we have lim limsup ( ) sup | |

 

 i
t t

V t n x x .   



International Journal of Science Vol.4 No.11 2017                                                             ISSN: 1813-4890 

 

124 

 

4. Conclusion 

In this paper, we hope that the controller update is less on the distributed optimization problem 

through the redesign of the controller on the basis of the article [19]. We would achieve less update by 

completely sampling the state in the controller. In the new controller algorithm, we prove that the 

states converge to the constraint set, and the states is gradually consistent , finally ,the global optimal 

is achieved. 
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