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Abstract 

In this paper, we study on the multiple attribute decision making problems for evaluating the 

human resource value accounting measurement with triangular fuzzy information. Inspried by 

the idea of geometric Bonferroni mean, we develop the triangular fuzzy geometric Bonferroni 

mean (TFGBM) operator and triangular fuzzy weighted geometric Bonferroni mean 

(TFWGBM) operator, based on which we design the procedure for multiple attribute decision 

making under the triangular fuzzy environments. In the end, a practical example for 

evaluating the human resource value accounting measurement with triangular fuzzy 

information is given to testify the proposed method. 
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1. Introduction 

Along with the management right and ownership separation of modern enterprise, enterprise 

accounting behavior subject independence issues become more prominent. The beginning of this 

century, Enron, WorldCom, global communications and Xerox and other well-known large 

companies financial reports fraud have been disclosed, so that the whole world capital market are 

shrouded in the financial reporting fraud deep shadow. In recent years, China has also undergone a 

number of listed companies’ financial reporting fraud incident, such as YinGuangXia, Lam tin shares, 

China Aviation Oil, etc., all are startling. Accountants fraud, financial reporting fraud triggered 
unprecedented securities market credit crisis, securities market on which the survival and 

development of credit basis and the principle of "open","fairness","justice" has been challenged, 

greatly influenced the securities market optimizing the allocation of resources the basic function of 

the play, thus caused great damage to our country’s economic life. Therefore, in order to ensure the 

independence of accountants, systematic, comprehensive and targeted research enterprise accounting 

behavior subject independence problem becomes very important, only to ensure that accountants’s 

independence, objective, fair and justice, faithfully reflect the financial position and operating results 

of enterprises, so that enterprises can be sustained and healthy development, can play to the modern 

enterprise system of ownership and the right of management separates advantage, to be able to regain 

the confidence of investors and promote the sustainable development of China’s economy[1-12]. 

In this paper, we research on the multiple attribute decision making problems[13-18] for evaluating 

the human resource value accounting measurement with triangular fuzzy information. Motivated by 

the idea of geometric Bonferroni mean, we develop the triangular fuzzy geometric Bonferroni mean 

(TFGBM) operator and triangular fuzzy weighted geometric Bonferroni mean (TFWGBM) operator, 

based on which we develop two procedure for multiple attribute decision making for evaluating the 
human resource value accounting measurement under the triangular fuzzy environments. Finally, a 

practical example for evaluating the human resource value accounting measurement with triangular 

fuzzy information is given to testify the proposed algorithm. 
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2. Preliminaries 

In this section, we will simply introduce some basic concepts and basic operational rules, which is 

corresponding to triangular fuzzy numbers. 

Definition 1[19].  A triangular fuzzy numbers a  can be defined via a triplet  , ,L M Ua a a .The 

membership function  a x is defined as: 
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where 0 L M Ua a a   , La and Ua represent the lower and upper values of the support of  

a ,respectively, and Ma  is used to represent the modal value. 

Definition 2[20-23]. Let , ,L M Ub b b b     and , ,L M Ua a a a     be two triangular fuzzy numbers, 

then the degree of possibility of a b  is defined as  
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where the value   refers to an index of rating attitude, which can reflect the decision maker’s 

risk-bearing attitude. If   is larger than 0.5, the decision maker is risk lover. If   is equal to 0.5, the 

decision maker may be neutral to risk. If the value of parameter   is smaller than 0.5, the decision 

maker is risk avertor. 

3. TFGBM and TFWGBM operators 

In the following, Zhu et al.[24] studied on the geometric Bonferroni mean (GBM) which utilizing 

both the BM and the geometric mean (GM). 

Definition 3[33]. Let , 0p q  and  1,2, ,ia i n  be a collection of non-negative real numbers. Then 

the aggregation functions:  
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is named the geometric Bonferroni mean (GBM) operator. 

But the geometric Bonferroni mean (BM) operator [10] have usually been utilized when inputting 

arguments are belonged to the non-negative real numbers. Hence, we should expand the GBM 

operators to make itself suitable to be used in the situations where the input arguments are belonged to 
triangular fuzzy information. Therefore, we focus on the problem of using the GBM operator under 

triangular fuzzy environments. Based on Definition 3, we put forward the definition of the triangular 

fuzzy geometric Bonferroni mean (TFGBM) operator. 
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Definition 4. Let  , , 1,2, ,L M U

i i i ia a a a i n     be a set of triangular fuzzy numbers, and let , 0p q  . 
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then ,p qTFGBM  is called the triangular fuzzy geometric Bonferroni mean (TFGBM) operator. 

We can know that the TFGBM operator has the following attributes. 

Theorem 1. (Idempotency) Let  , , 1,2, ,L M U

i i i ia a a a i n     be a set of triangular fuzzy numbers. If 

all  , ,L M U
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Theorem 2. (Boundedness)  Let  , , 1,2, ,L M U
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Theorem 3. (Monotonicity)  Let  , , 1,2, ,L M U
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Theorem 4. (Commutativity) Let  , , 1,2, ,L M U

i i i ia a a a i n    and  , , 1,2, ,L M U

i i i ia a a a i n        

be two sets of triangular fuzzy numbers, where  , , 1,2, ,L M U
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In the following part, we will discuss some specific problem of the TFGBM with the 

parameters p and q : 

Case 1. If 0q  , then from the TFGBM(15), it yields 
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which is namded as the triangular fuzzy generalized geometric mean (TFGGM) operator. 

Case 2. If 2p  and 0q  , then by the TFGBM(4), we have 

   
1

2,0

1 2

1

1
, , , 2

2

n

n
n i

i

TFGBM a a a a


                                         (10) 

which we call the triangular fuzzy square geometric mean (TFSGM) operator. 

Case 3. If 1p  and 0q  , then the TFGBM(15) reduces to triangular fuzzy geometric mean (TFGM) 

operator 
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which we call the triangular fuzzy geometric mean (TFGM) operator. 

Case 4. If 1p  and 1q  , then by the TFGBM(15), we have 
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which we call the triangular fuzzy interrelated square geometric mean (TFISGM) operator. 

Because the input arguments have different importance, we present the definition of the triangular 
fuzzy weighted geoemtric Bonferroni mean (TFWGBM) operator. 

Definition 5.  , , 1, 2, ,L M U
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then 
,p q

wTFWGBM  is named as the triangular fuzzy weighted geometric Bonferroni mean (TFWGBM) 

operator. 

4. The proposed multiple attribute decision making method for evaluating the 
human resource value accounting measurement with triangular fuzzy 
information 

Based on the above analysis, in this part, we study on the multiple attribute decision making problems 

for evaluating the human resource value accounting measurement with triangular fuzzy information, 

let  1 2, , , mA A A A  be a discrete set of alternatives,  1 2, , , nG G G G be the set of attributes. 

Suppose that   , ,L M U

ij ij ij ijm n m n
A a a a a

 
      is the decision making matrix. Then, we exploit the 

triangular fuzzy weighted geometric Bonferroni mean (TFWGBM) operator to develop an approach 

for multiple attribute decision making problems: 

Step 1. Normalize the value ija  into a corresponding values ijr  by using the following formulas: 
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for cost attribute jG , 

1,2, , , 1,2, ,i m j n  .                                              (15). 

Step 2. Utilize the matrix R , and the TFWGBM operator (in general, we let 1p q  ) 
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Step 3. To obtain the ranking score of these collective overall preference values  1,2, ,ir i m and 

adding all the elements which is located in each row of the matrix P , we have  
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Step 4. Ranking all the alternatives  1,2, ,iA i m  and then choose the best element according to 

the overall preference values  1,2, ,ip i m . 

5. Numerical example 

In this section, we exploit a practical multiple attribute decision making model for evaluating the 

human resource value accounting measurement. The evaluating the human resource value accounting 

measurement is to be evaluated according to four attributes: (1) G1: factors of individual; (2) G2: 

factors of organization; (3) G3: factors of society; (4) G4: factors of development. The five possible 

technology enterprises  1,2, ,5iA i   are to be evaluated adopting the triangular fuzzy numbers 

through the decision makers with the given four attributes (weighting vector of which 

is  0.3,0.2,0.4,0.1  ), and make up the following matrix  
5 4ijA a


  is shown in Table 1. 

Table 1. Evaluation matrix A  

 G1 G2 G3 G4 

A1 (0.68,0.69,0.71) (0.64,0.67,0.69) (0.50,0.52,0.55) (0.66,0.68,0.75) 

A2 (0.70,0.74,0.80) (0.67,0.70,0.74) (0.64,0.66,0.69) (0.82,0.84,0.88) 

A3 (0.69,0.76,0.82) (0.73,0.76,0.79) (0.33,0.40,0.43) (0.86,0.90,0.92) 

A4 (0.54,0.56,0.60) (0.68,0.74,0.78) (0.71,0.72,0.73) (0.74,0.76,0.79) 

A5 (0.50,0.52,0.56) (0.55,0.57,0.59) (0.56,0.58,0.61) (0.69,0.72,0.76) 

In the following, to choose the most suitable cities, the TFWGBM operator is utilized to design a 
method to multiple attribute decision making problems evaluating the human resource value 

accounting measurement with triangular fuzzy information, which can be described as following: 

Step 1. Computing the normalized decision matrix R . The results are illustrated in Table 2. 

Table 2.Decision matrix R  

 G1 G2 G3 G4 

A1 (0.178,0.194,0.216) (0.235,0.248,0.265) (0.151,0.158,0.166) (0.242,0.246,0.276) 

A2 (0.166,0.175,0.190) (0.176,0.181,0.217) (0.168,0.190,0.208) (0.241,0.248,0.257) 

A3 (0.178,0.190,0.213) (0.176,0.181,0.191) (0.178,0.187,0.200) (0.169,0.178,0.192) 

A4 (0.157,0.168,0.197) (0.187,0.195,0.213) (0.164,0.180,0.198) (0.179,0.187,0.219) 

A5 (0.229,0.233,0.252) (0.207,0.229,0.258) (0.195,0.212,0.236) (0.225,0.238,0.246) 

Step 2.  Aggregate all triangular fuzzy preference value  1,2, ,ijr j n by using the TFWGBM to 

derive the overall triangular fuzzy preference values  1,2,3,4,5ir i  of the technology 

enterprises iA .  

1
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Step 3. Utilizing the aggregating results and the equation of degree of possibility (2), ranking all the 

technology enterprises  1,2,3,4,5iA i   according to scores ip   1,2, ,5i  : 

3 5 2 4 1A A A A A , and then the most suitable technology enterprises is 3A . 

6. Conclusion 

In this work, we focus on the multiple attribute decision making problems for evaluating the human 

resource value accounting measurement with triangular fuzzy information. Inspired by the idea of 

geometric Bonferroni mean, we develop the triangular fuzzy geometric Bonferroni mean (TFGBM) 

operator and triangular fuzzy weighted geometric Bonferroni mean (TFWGBM) operator. Using the 

proposed operator, we propose the program for multiple attribute decision making with the triangular 

fuzzy environments. In the end, a practical example for evaluating the human resource value 

accounting measurement with triangular fuzzy information is given to testify the performance of the 
given approach. 
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