
International Journal of Science Vol.4 No.12 2017                                                             ISSN: 1813-4890 

 

31 

 

Android malware detection based on Multi-Class Features 

Shuangwei Ye a, Yue Zhang b 

Dept. of Computer Science, Jinan University, Guangzhou 510632, China 

a yoga__007@163.com, b zyuninfosec@gmail.com 

Abstract 

With the Android mobile phone market share rising and the number of its malicious software 

growing, an effective detection method of malicious software is very necessary. A malicious 

software detection algorithm considering the Android software multi-class features was 

proposed in this paper. This method extract the multi-class features sets of Android software 

and selects the corresponding optimal algorithm as the main algorithm and selects the sub-

prime classification algorithm as the tuning algorithm for different feature sets. In each feature 

set, the classification results of main algorithm determine the adjustment extent of tuning 

algorithm. After that, the final result is based on the results of multi-class features sets so as to 

achieve more accurate recognition rate. The experimental results show that the accuracy of the 

method is 96%. 
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1. Introduction 

In recent years, with the mobile Internet rapidly developing and intelligent terminal equipment being 

popular, smart phones become an indispensable part of people's lives. At present, the operating system 

of smart phone market are mainly iOS, Windows Phone and Android, Android is the fastest growing 

operating system of smart phone among them. Google has released a Linux-based operating system 

named Android in 2007, due to the open source and good compatibility of system, it has attracted a 

lot of program developers. According to a survey recently released by Statista, it show that Android 
mobile phone account for about 86.2% in the smart phone market by the end of July, 2016[1].Because 

of the openness of the system and the market, Android has become the target of malware developers 

at the same time.360 Internet Security Center has intercepted 14.03 million Android malicious 

program samples, it means increase 38,000 malicious programs and 700,000 mobile phones are 

infected by malicious programs per day[2].Once the user download the software containing malicious 

code, their mobile phone is likely to produce malicious charges, privacy theft and other hazards[3]. 

Therefore, it is very necessary to accurately and effectively identify Android malware. 

At present, the research methods of malicious software detection based on Android platform can be 
divided into two types: signature-based detection and behavior-based detection which can be divided 

into static detection and dynamic detection[4]. Signature-based detection techniques is mainly based 

on the software signature, it has been widely used, but the technology must have some malware 

signature library before the detection of malware and this method will be invalid through a simple 

procedural trap. Feng.etl[5]proposed Apposcopy detection technology, which first sign the malicious 

software on the control flow and data flow. The component call graph and data flow graph of the 

application are obtained by static analysis technique, they can be matched with a known family 
signature to determine whether this application is malicious, but the method can’t detect software that 

uses obfuscation techniques. Zheng[6] proposed a detection method DroidAnalytics based on multi-

level signature, which generate the signature through the look-up table and determine whether there 

is re-packing problem by judging the similarity of the two applications, but the detection efficiency 

is low. 
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Behavior-based detection techniques primarily use static or dynamic detection to monitor the 

behavior of software and match the behavior patterns of known malware. The static detection method 

extract grammatical features through source code analysis to compare with the syntax features of 

known malware in order to detect the malicious software. Felt[7]has developed a tool called 
Stowaway that automatically detects the permissions that the software applies and the actual used 

permissions in order to determine whether the software has applied for excessive permissions, but it 

can’t solve the complex JAVA reflection mechanism. Yang Huan[8] put forward a kind of three-layer 

hybrid algorithm THEA which considers the behavior of Android and constructs different optimal 

classifiers for different characteristics to judge the behavior of malicious applications synthetically. 

But too few behavioral features are extracted and the dynamic simulation phase is too simple. Mu 

Zhang[9]proposed to use the function dependency graph to distinguish malicious software. By 

weighting the API dependency graph to prevent the malware byte code conversion from changing the 

result, the experimental results show that the accuracy of the method is 93%, but the method can’t 

detect html5 software. Qian[10]achieve a behavioral analysis by adding dynamic monitor and request 

filtering model, but the method has the problem of correctness verification, which may lead to higher 
false alarm rate. 

In addition, many researchers use machine learning to form classifiers in order to distinguish between 

benign and malware by analyzing the software's static or dynamic behavioral features recent years. 

Which machine learning algorithm are used, what features are extracted and how many features are 

extracted are the key factors that affect the validity of the classifier. Different classification algorithms 
have different detection effects on the same kind of features, and the same classification algorithm 

has different effects on different types of feature, so it is not ideal to choose a classification algorithm 

to detect many kinds of feature effects. In view of the above method, this paper proposes a multi-

algorithm collaborative decision algorithm. Different feature set select the corresponding main 

classification algorithm and tuning classification algorithm according to the classification effect of 

the algorithm, the classification results of main algorithm determine the adjustment extent of tuning 

algorithm. Finally, the result will be obtained by merging classification results of many kinds of 

feature sets. 

2. Related Information 

2.1 APK structure 

Android package is a file with “.apk” suffix name, we can get AndroidManifest.xml file, resource.arsc 

file, classes.dex file, META-INF folder, res folder by unzip the compressed package. Its internal 

structure shown in Fig.1. AndroidManifest.xml file is an essential configuration file and the 
configuration information is stored in the file for each Android software.res folder contains all the 

pictures, layout and other resource files. resources.arsc file store the compiled binary resource file. 

The classes.dex file is the byte code file generated by java source code. 

APK

AndroidManifest.xml META-INFclasses.dexresource.arse res

 

Fig.1 APK structure 

The AndroidManifest.xml file contains information about the permissions, components, and Intents 
of the software application. Permission mechanism is one of the important security mechanisms for 

Android. When the application needs to access some user information or use some system functions, 

you must apply for certain permissions in the AndroidManifest.xml. An application that does not 

have any permission does not pose a threat to the user and malware usually applies for some 

permission that will not be applied for normal software, Such as reading the content of information, 

getting user location. In addition, the component information is also an important information in the 
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AndroidManifest.xml file. There are four different types of components for Android, they are Activity, 

Service, ContentProvider and BroadcastReceivers. Activity is usually responsible for managing the 

application's user interface and an application typically contains several Activity components. Service 

is mainly used to deal with the business logic which has nothing to do with the user interface, the 
implementation of the user specified the background operation and performs user-specified 

background operations. ContentProvider defines a standard mechanism that allows an application's 

specified data set to be available to other applications, other applications can obtain or store data from 

the Contentprovider through the ContentResolver class. BroadcastReceivers can filter external events 

and only respond to specific external events. 

classes.dex is Dalvik byte code file and you can directly run it on the Dalvik virtual machine. we can 
get smali file and jar file by decompiling the Android software and get specific API calls by learning 

smali rules and reading jar source. Because some APIs have the authority to access sensitive 

information and resources in the phone, malware often calls these APIs to perform some malicious 

behavior which cause leak the user's privacy. For example the API for Internet traffic: 

execHttpRequest (). 

The algorithm proposed in this paper is mainly based on the permissions, components and API used 
in the software. Therefore, it is very important to understand the file structure of APK and the 

characteristics of its analysis. 

2.2 Machine learning 

Large data technology continues to develop in recent years, researchers began using machine learning 

and data mining techniques in malicious code detection to identify benign and malware. Decision tree 

(DT), support vector machine (SVM), neural network (NN), logistic regression (LR) are commonly 

used. 

The decision tree is a tree-like structure that is constructed from top to bottom. According to 
information gain measurement, the corresponding feature node is selected. Each internal node is a 

feature test. The branch represents the result of the test. The leaf node is a category, and the example 

of the same leaf node belongs to the same kind[11].  

A neural network is a set of interconnected input and output units, each of which is associated with a 
weight. The correspondence between the input sample and its corresponding category is realized by 

adjusting the weight in the network learning stage. 

Support vector machine is a two-class model, the core is to find a support vector in the training sample, 

so that it can build a best classification of the super-plane. That is, the distance of the support vector 
is maximum. 

Logical regression is a very widely used classification algorithm which usually fitting the data into a 

logical function to predict the value of a discrete variable. The result is a predicted probability value, 

so the output value is between 0 and 1. 

This paper mainly uses the above four classification algorithms. Each type of feature set is classified 

using four algorithms, according to the accuracy of the test results, we selects the corresponding 

optimal algorithm as the main algorithm and selects the sub-prime classification algorithm as the 

tuning algorithm for different feature sets. 

3. Design  

The malware detection process in this paper is divided into three parts: Apps sample collection 

module, feature extraction and processing module, detection module. The Apps sample collection 

module collects malicious apps and benign apps, and preprocesses the collected samples. The feature 

extraction and processing module mainly extracts the feature set and formats the features. The 

detection module uses the multi-algorithm collaborative decision proposed in this paper to classify 

the samples into malware and non-malware. as shown in Fig.2 
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Fig.2 Basic workflow of design 

3.1 Sample collection 

This article creates the Apps sample database, which contains 746 benign software and 687 malware. 
Malware samples are available from virusshare.com. Benign software samples include social, video, 

life and other types of software were obtained by writing Python scripts. We have tested the benign 

software with malicious software detection tool in order to ensure the reliability of the sample, the 

results show that benign software samples are normal. 

3.2 Feature extraction and processing 
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Fig.3 Feature extraction 

This module mainly uses the static analysis technology to analyse the software as shown in Fig.3. We 
can extract the AndroidManifest.xml file and the Dex file for each software by using the AAPT that 

comes with the Android SDK. 

Next, we extract the permissions from the AndroidManifest.xml file by writing the C ++ program. 

The tag <uses-permission/> describes the permission information that is required by the software. 
Most of the permissions are rarely applied by the literature [12], so the contribution of some 

permissions is very little in terms of detection and there may be misleading. In this paper, we carried 

out permissions feature extraction and statistics for the 746 normal software and 687 software 

malware, part of the statistical results shown in Fig.4. Frequently used permissions include: 

INTERNET, WAKE_LOCK, READ_PHONE_STATE, WRITE_EXTERNAL_STORAGE. 

We can see that some applied permission indicate some behavior of malware through analysis. For 
example, some software leaks user privacy behavior, INTERNET and READ_CONTACTS may be 
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frequently applied. Because the software get these permissions, it can read the user address book data 

and send it to the outside through the network. READ_PHONE_STATE permission is also frequently 

applied because it has the ability to obtain phone identification information, such as device ID. 

 

Fig.4 Percentage of the most frequently accessed permissions in malware and benign apps 

The four components are defined in the AndroidManifest.xml configuration file and are managed by 
the system. it is possible to detect some known malware by extracting the names of these components, 

such as the malicious applications of the DroidKungFu family tend to use some specific Service 

components, so we also counted the number of four components used. The results are shown in Table 

1, com.huajiao.lover.apk application declares 47 activities, 6 service, 3 receiver, and 1 provider. 

Table 1 Usage of components 

application activity service receiver provider 

com.huajiao.lover.apk 47 6 3 1 

com.homelink.apk 40 3 3 0 

com.iqiuqiu.apk 25 5 5 1 

... ... ... ... ... 

API is the service interface provided by the operating system for the application, the application calls 

the API to achieve file access, network access, and other important resources. it will call a similar 
API function when the program implemente certain functions, so extracting API functions sequence 

features to identify malicious program behavior has become a common method[13]. Dex files are 

decompiled to get smali files and jar files and get the number of specific API calls by learning smali 

rules and reading jar source. For examplegetDeviceID (), setWifiEnabled () and so on. 

The Weight is used when we filter some feature, the Weight is defined as  

Weight =
|Nb − Nm|

Nb − Nm

                                                                       (1) 

Nb is the number of using certain feature of benign samples, Nm is the number of using certain feature 

of malware samples. 

Each feature extracted by the static analysis technique contains multi-dimensional features. Beacause 
the large number of features will affect the detection time performance, and some features is easy to 

cause interference, so this paper uses Weight to filter the feature set. Finally, the remaining features 

are saved in vector form. For example the permission feature, a row vector represents permission 

feature of a software sample, each component attribute of the vector is called the permission name. 

the value of the attribute is 0 to indicate that the permission is not applied, the value of the attribute 

is 1 to indicate that the permission is requested.  
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3.3 MCD 

Using a single algorithm to classify malware is too simple and different classification algorithms have 

different effects for different features. Therefore, this paper proposes a multi-algorithm collaborative 

decision algorithm for software detection, the algorithm is shown in Fig.5. 

In order not to blindly choose the same algorithm to detect different feature sets, we have chosen a 

variety of classification algorithms for each feature set. Let Cj(j = 1,2, … , n) be the set of classifiers, 

based on Fi(i = 1,2, … , m), the jth classifier makes a prediction that the software belongs to a class 

Ck  with probability Pij(k) . According to the accuracy of the test results, we choose the main 

classification algorithm Zi(i = 1,2, … , m)  and the g optimal classification algorithm Zij(i =

1,2, … , m, j = 1,2, … g) for each feature set Fi(i = 1,2, … , m). 

We define that using the corresponding tuning classification algorithm Zij and based on the feature 

Fi will makes a prediction that the software belongs to a class Ck with probability Pij(k), and using 

the corresponding main classification algorithm Zi and based on the feature Fi will makes a prediction 

that the software belongs to a class Ck with probability Pi
init(k). 

Pi
init(0) = p(k = benign|Fi, Zi)                                               (2) 

                                                          Pi
init(1) = 1 − Pi

init(0) = p(k = malware|Fi, Zi)                      (3) 

1 ≤ i ≤ m 
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Fig.5 MCD 

Each type of feature set gets g Pij(k) by the corresponding tuning classification algorithm. We will 

get a difference probability Pi
assist(k) by comparing the difference between Pij(k) and Pi

init(k) for 

the same type of feature set. The formula is as follows: 

Pi
assist(k) =

∑ (Pij(k) − Pi
init(k))

g
j=1

g
                                           (4) 

The decision result of each feature set Pi
finally

(k) is not only determined by the main classification 

algorithm Pi
init(k), but also by the difference probability Pi

assist(k): 

Pi
finally(k) = (1 − ωi)Pi

init(k) + ωi ∗ Pi
assist(k)                                (5)  

1 ≤ i ≤ m, ωi =
1

2
− |

1

2
− Pi

init(k)|. we can see that when Pi
init(k) is closer to 1 or 0 and the smaller 

ωi  will be, the results Pi
finally(k) are mainly determined by the results of the main classification 

algorithm. On the contrary, Pi
finally(k) will be adjusted by the tuning algorithm. 

The final result of the software classification will be determined by Pi
finally

(k). 

P(k) = ∑(
acci

acc
∗ Pi

finally
(k))

m

i=1

                                           (6) 
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acc = ∑ acci

m

i=1

                                                                   (7) 

acci indicates that the accuracy of using the main classification algorithm Zi for the feature set Fi. 

The higher the accuracy is, the greater the final decision is. When P(0) > 𝑃(1), the software will be 
determined as benign software. 

4. Results and analysis 

4.1 Data sets  

The experiments were carried out on a computer armed with an Intel(R) i5-3337U CPU @ 3.30GHz, 
8GB memory, 500GB hard disk space. In our experiments, we creates the Apps sample database, 

which contains 746 benign software and 687 malware. Malware samples are available from 

virusshare.com. Benign software samples be obtained by writing Python scripts. The sample database 

is shown in Table 2 

Table 2 Apps sample database 

sample number source 

Malware apps 746 virusshare.com 

Benign apps 687 Google Play 

4.2 Evaluation  

In this paper, benign software is defined as a positive tuple, and malware is defined as a negative 

tuple. True positive (TP) is a tuple that the classifier will correctly determine benign software as 

benign software. True negative (TN) is a tuple that the classifier will correctly determine malware as 

malware. False negative (FN) is a tuple that the classifier will determine benign software as malware. 

False positive (FP)is a tuple that the classifier will determine malware as benign software. In the 

experiments, the performance of each classification algorithm is evaluated using Precision, Recall, 

Accuracy and F-measure. 

This experiment is divided into training part and testing part. First, the Apps database is divided into 

two parts: 80% of the software samples (including 597 benign software, 550 malware) as training 

sample set, 20% of the software samples (including 149 benign software, 137 malware) were used as 

test sample sets. Then, we need extract the feature for each sample, the original feature is filtered by 

Weight in order to reduce the operation time and the influence of some useless features. 

Next, the main classification algorithm and the tuning classification algorithm of each feature set are 

selected by training the sample set. We use SVM, NN, LR, DT[14] algorithm to test the three types 

of features to get the average of the accuracy of the results. The results are shown in Table 3, The 

main classification algorithm of each feature set is selected: the DT algorithm performs better for the 
permission feature; the SVM algorithm works better for the component features; the SVM algorithm 

works better for the API feature. 

Table 3 accuracy of various algorithms for three features 

algorithms Permission Components API 

SVM 0.885 0.944 0.900 

NN 0.899 0.936 0.871 

LR 0.838 0.938 0.884 

DT 0.904 0.936 0.894 

According to the above experiments, the main classification algorithm and the tuning classification 

algorithm of each features are selected and the final result is obtained by multi-algorithm cooperative 

decision (MCD). In order to highlight the effectiveness of multi-algorithm collaborative decision 

method, the test results obtained by MCD are compared with the test results using a single 
classification algorithm as shown in Table 4. We can know that the multi-algorithm collaborative 
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decision method proposed in this paper has obvious effect on the recognition of malware and the 

accuracy rate is 96.0%. 

Table 4 Experimental result 

algorithms Precision Recall Accuracy F-measure 

SVM 0.934 0.890 0.910 0.911 

NN 0.953 0.903 0.926 0.927 

LR 0.897 0.869 0.881 0.882 

DT 0.922 0.918 0.917 0.920 

MCD 0.986 0.936 0.960 0.960 

5. Conclusion  

This paper presents a collaborative decision algorithm that takes into account features of Android 

software to detect Android malware. Extracting the multi-class feature set of Android software, the 
main classification algorithm and the optimal classification algorithm are selected for different feature 

sets and the classification results of main algorithm will determine the adjustment extent of tuning 

algorithm. After that, the final result is based on the results of multi-class features sets. This 

experiments show that this MCD improves the overall detection accuracy. The advantage of this 

approach is that the experiment not only uses three different types of features, but also detect each 

type of feature with the corresponding optimal algorithm, it focuses on samples that can’t be 

determined by the main classification algorithm. But there are some shortcomings in the approach. 

For future work, we plan to use more types of features such as hardware device information and 
utilize more types of algorithm to classify Android malware. Due to the approach is static, we hope 

to be able to combine dynamic detection techniques with static technology. 
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