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Abstract 

In this paper, reconstruction algorithm for compressive sensing is based on smoothed ℓ0 norm. 

The smoothed function sequence is introduced into the SL0 algorithm to approximate the ℓ0 

norm, and the minimization problem of ℓ0 norm is transformed into the optimization problem 

of smoothed function.This paper has proposed a reconstruction algorithm with a modified 

Newton direction (ONSL0 algorithm) which is based on an optimized projection direction in ℓ0 

norm.The numerical simulation results show that the ONSL0 algorithm is better than both the 

SL0 algorithm and the OSL0 algorithm at the peak signal-to-noise ratio and relative error. 
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1. Introduction 

Over the past decades, the sparse representation of signals have been in-depth study. The concept of 
signal sparsity and ℓ1 norm based on recovery techniques can be traced back to the work of Logan in 

1965 [1], the work of Santosa and Symes in 1986 [2], Donoho and Stark's work in 1989 [3]. It is 
generally accepted that the cornerstone of the compressive sensing theory (CST) is based on Candès 

et al. [4], Donoho [5], and Candès and Tao [6] in 2006. CST can achieve simultaneous sampling and 
compression of the signal, and even dissatisfying the Nyquist sampling theorem, it is possible to 

achieve a better approximation of the original complete signal with only a few sampled data. The 
central problem in CST is how to reconstruct sparse signals with finite measured values. The essence 

of the above problem is to find the most sparse solution of the undetermined system of linear 

equations y Dx , where,given the signal my , the dictionary
m nD   (

m n
is a collection of n 

atoms with n m ), the goal is to represent y as a linear combination of the atoms of D in a 

parsimonious way. To this end, the following problem has to be solved 

min
x 0

x . .s t y Dx  

Where 
0
is the so-called ℓ0 (pseudo) norm, defined as the number of non-zero entries.ℓ0 norm 

function is very discontinuous and non-differentiable, which makes the above problems difficult to 
solve [7] [8]. In order to solve the above-mentioned shortcomings, it is necessary to introduce an 

alternative sparse promoting function. The most famous estimating function is the ℓ1 norm function, 
which is the nearest convex norm relative to the ℓ0 norm function [7]. By using the ℓ1 norm function, 

the sparse signal recovery problem can be expressed as 

min
x 1

x . .s t y Dx . 

Various algorithms have been proposed to solve the above-mentioned sparse recovery problems; e.g. 

[9]. 
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The algorithms include iterative re-weighted least squares (IRLS) [10], iterative hard thresholding 

(IHT) [11], and smooth ℓ0 (SL0) norm [12] [15] [16] [18], which have used the sparse promoting 
function (sparse than ℓ1 norm). In particular, SL0 estimates the non-smooth ℓ0 norm by a 

differentiable function with a smooth parameter (expressed as in [12]). 

The rest of the paper is organized as follows. In Section II, the basic principle of this algorithm is 

briefly presented. Section III is about the experimental simulations and analytical results. The paper is 

finally concluded in Section IV. 

2. The basic idea of the algorithm in this paper 

2.1 Multi-parameter smoothed ℓ0 norm algorithm based on approximate hyperbolic tangent 
function 

The SL0 algorithm needs to select the appropriate smooth continuous function to approximate the ℓ0 
norm and solve the minimum solution of the continuous function to obtain the minimum solution of 

the ℓ0 norm. Now, using the Gaussian function to approximate the ℓ0 norm is a major method. In this 
paper, we will use the following approximate hyperbolic tangent function (1) to approximate the ℓ0 

norm, which can further improve approximation performance of the ℓ0 norm. Among (1),  ,as a 

parameter, determines the estimated performance of the function. 
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In this paper, the approximate effect between the approximate hyperbolic tangent function and the 

Gaussian function (2) used in [14] is shown in Fig.1. It can be seen from Fig. 1 that the approximate 

hyperbolic tangent function is more cliffy than the Gaussian function, so the approximate effect of the 
Gaussian function on the ℓ0 norm is less than that of the approximate hyperbolic tangent function.  
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Figure 1. Comparison about the approximation effect between the approximate hyperbolic tangent 

function and the Gaussian function with sigma = 0.01 

For an arbitrary  the above conclusion is true. Its proof is as follows. Make 

( ) ( ) (1 ( ))u s f s s    .We know ( ) 0u s  from the definition of ( )u s , when there are 0s  or 

s   . ( )u s is discussed below 0 s   . 
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Thus, there is 0 ( )u s  and ( )f s has a better convergence than ( )s when they approximate ℓ0 norm. 

From (1) and (2), it can be clearly seen that the smaller the  is, the more the local extreme values of 

objective function would be, and it would increase the difficulty of obtaining the global optimal value 

of the objective function. The 𝜎 determines the smoothness of the objective function. 

The greater the 𝜎 is, the smoother the objective function, and it will have less accuracy to estimate the 

ℓ0 norm. On the contrary, the smaller the 𝜎 is, the more excellent the approximate accuracy of the ℓ0 
norm would be. 

It is possible to construct a set of attenuated sequences  1 2 j  , ,? …, to optimize each 

corresponding objective function until 
j is sufficiently small. This will eliminate the effect of local 

extremes and make it possible to obtain the global optimal value of the smoothed function. Figure 2 
and Figure 3 respectively show the comparison of the approximation effect between the Gaussian 

function and the approximate hyperbolic tangent function with =0.01 0.06 0.11 0.16,0.21 ， ， ， . It can be 

seen from Fig. 2 and Fig. 3 that under =0.01 the Gaussian function and the approximate hyperbolic 

tangent function are all the steepest in the five sigma values. 
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Figure 2. Comparison of the approximate hyperbolic tangent function at different sigma values 
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Figure 3. Comparison of the Gaussian function at different sigma values 

The result obtained by finding the limit of the approximate hyperbolic tangent function is shown in 

the following equation (3). 

0 =0

1 00
lim ( ) {

i

i

s

i
s

f s
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
，

，
                                                                      (3) 

Therefore, if there is a formula (4), then the limit value of ( )if s  at 0   is equal to the number of 

elements that are not zero and in the vector s .This is consistent with the definition of ℓ0 norm,so we 

can gain (5) . 

N
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Using the Newton direction instead of the steepest descent direction can avoid the "jagged" 

phenomenon, which can speed up the convergence rate of the SL0 algorithm. The formula for 

correcting the Newton direction is shown in (6). 
2 1( ) ( )d F s F s 

                                                                   (6) 

Substituting equations (1) and (4) into equation (6) can yield equation (7) [13]. 
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               (7) 

 

Hessian matrix is shown in the following equation (8), and its eigenvalues may be non-positive and 

not necessarily positive resulting in that d is sometimes not descending. Therefore, the Hessian matrix 
needs to be corrected and then the corrected Newton direction needs to be calculated.  
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The following equation (9) [17]is obtained by performing the second-order partial derivative 

operation on (1). 
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Now we build the matrix G on the basis of the original Hessian matrix to make G a positive definite 

matrix. The corrected method is 2G= ( )+ kF s I  ,where 
k is a group of proper positive numbers, 𝐼 is 

an identity matrix, and the diagonal elements in matrix 𝐺 are all positive. When G's eigenvalues are 

all positive, G is positive definite matrix. If you can find out the right k which can guarantee that G's 

diagonal elements are all positive, then G is a positive definite matrix.  

After looking for many k ,we gain 
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At this moment there is 
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The last Newton direction has become 
T
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2.2 Multi-parameter Smoothed ℓ0 norm algorithm based on the approximate hyperbolic 
tangent function 

Unoptimized algorithm (SL0) is as follows. 

(1) Initialize every parameter of the SL0; 

Let  
1

= .


  s y  

Select an appropriate descending sequence for , i.e. 1 2 1= .j j j     , ,? …, ,  

(2) External loop: = J.j 1，2，3，……，  

Let = .j   

 Let
^

1s= .js   
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 Let
0 =0.r  

 Internal loop: 

(a) Calculate the corrected Newton direction
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……，-  

(b) Update the reconstructed signal +d.s s  

(c) According to the gradient projection principle, gain    
1

.


     s s s y  

(d) Calculate the margin .y sr=  

(e) If there is
0 2

r r e  ，the internal loop with current is ended; otherwise, 
0 =r r. 



^

= .js s  

(3) Obtain a reconstructed signal
^ ^

= js s . 

The iterative Newton SL0 algorithm described above sometimes iterates many times before 

satisfying 
0 2

.r r e  This will cause an unnecessary extension on the computation time, and even 

be in an infinite loop. We can set a maximum iterative number about an internal loop( maxL ) with 

reference to the optimized SL0 algorithm(OSL0). We cannot set the parameters of ONSL0 with 

reference to OSL0 under affecting the reconstructed precision.  

The optimized iteration Newton SL0 algorithm (referred to as the ONSL0) is as follows. 

(1) Initialize every parameter of the OSL0; 

Let  
1

= .


  s y  

Select an appropriate descending sequence for , i.e. 1 2 1= .j j j     , ,? …, ,  

(2) External loop: = J.j 1，2，3，……，  

Let = .j   

 Let
^

1s= .js 
 

 Let 0 =0.r  

 Internal loop: L max .=1，……，L  

(a) Calculate the corrected Newton direction
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(b) Update the reconstructed signal +d.s s  

(c) According to the gradient projection principle, gain    
1

.


     s s s y  

(d) Calculate the margin .y sr=  

(e) If there is
0 2

r r e  ，the internal loop with current is ended; otherwise, 0 =r r. 



^

= .js s  

(3) Obtain a reconstructed signal
^ ^

= js s . 
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3. Experimental Simulation and Results Analysis 

3.1 Experimental Environment 

This part will give performance analysis and comparison between the ONSL0 and the main 
reconstruction algorithm: SL0, OSL0. In order to fairly compare the reconstruction performance 

about different algorithms, all experiments are performed under Windows 10 and MATLAB V8.0 
(R2012a) running on an ASUS notebook with an Intel (R) Core(TM), CPU i3 at 2.40GHz, and 4GB 

of memory. 

In this experiment, the object of the reconstruction algorithms are three 512512 gray-scale images 

which are named after Debbie, Peppers and Barbara respectively. Debbie contains a lot of flat areas, 

in which edge areas and texture areas are relatively simple.Peppers contains a lot of edge areas and 
flat areas, and its texture details are less than Barbara’s. Barbara also contains a large number of flat 

areas, but its edge areas and texture areas are richer than Debbie’s. 

Measurement matrix  is a Gaussian random matrix, which satisfies the restricted isometric 

properties (RIP) and is easy to generate. Since the Gaussian random matrices are random, this would 

lead to the fluctuation on the reconstructed image quality and the reconstructed time. Therefore the 
PSNR value, the relative error and the reconstruction time are all the average values after 

independently testing 5 times. The compression ratio (assuming its size is M * N) is a result which 
equals the number of rows of  (assuming its size is M * N)divided by the number of columns of 

 ;i.e. M N . M N is denoted by the sampling rate because the lower the sampling rate is, the smaller 

the compression ratio is. For sparse base , using a wavelet transform matrix symlets8 is an optimal 

selection. 

3.2 Results and Analysis 

Table 1 tabulates the PSNR value about the three reconstruction algorithms mentioned above.  

From  Table 1, it is clear that average PSNR value about the three images under ONSL0 is 0.334dB 

higher than that under OSL0 and is 1.009 dB more than that under SL0.Especially, the psnr value for 

the Debbie image under ONSL0 reaches 40.695dB. 

As can be seen from Table 1, for the all images, under the compression ratio 0.5 the reconstruction 

time of OSL0 is the shortest, and it is 4.464s on average; the reconstruction time of ONSL0 is 2.415s 

smaller than that of SL0 and is 3.090s higher than that of OSL0 on average. 

It can also be seen from Table 1, for the all images, under the compression ratio 0.5 the reconstruction 

relative error of ONSL0 is the smallest. Especially for the Debbie image, the relative error of ONSL0 

is only 0.0169, and this is the smallest oneof all the relative error values in Table 1. 

Figure 4, Figure 5 and Figure 6 are all the contrast about reconstructed visual effects of SL0, OSL0 

and ONSL0 under compression rate 0.5. 

Table 1. Compression rate 0.5, the reconstruction performance of SL0, OSL0 and ONSL0 for Debbie, 
Peppers and Barbara 

Image Name Algorithm PSNR/dB Runtime/s Relative Error 

Barbara 

SL0 29.077 11.079 0.0550 

ONSL0 30.262 9.701 0.0480 

OSL0 29.958 4.954 0.0497 

Debbie 

SL0 40.236 8.902 0.0180 

ONSL0 40.695 5.768 0.0169 

OSL0 40.523 3.847 0.0173 

peppers 

SL0 31.982 9.927 0.0417 

ONSL0 33.365 7.193 0.0353 

OSL0 32.840 4.590 0.0376 
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(a)Original Barbara

PSNR=29.077dB

(b) SL0

PSNR=29.958dB

(c) OSL0

PSNR=30.262dB

(d) ONSL0  
Figure 4. Barbara image, compression ratio 0.5, contrast about reconstructed visual effects of SL0, 

OSL0 and ONSL0 

(a)Original Debbie

PSNR=40.236dB

(b)SL0

PSNR=40.523dB

(c)OSL0

PSNR=40.695dB

(d)ONSL0  
Figure 5. Debbie image, compression ratio 0.5,contrast about reconstructed visual effects of SL0, 

OSL0 and ONSL0 

(a) Original Peppers

PSNR=31.982dB

(b) SL0

PSNR=32.840dB

(c) OSL0

PSNR=33.365dB

(d) ONSL0  
Figure 6. Peppers image, compression ratio 0.5, contrast about reconstructed visual effects of SL0, 

OSL0 and ONSL0 
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Figure 7. Debbie image, at different compression rates, psnr value comparison among SL0, OSL0 and 

ONSL0 
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Figure 8. Debbie image, at different compression rates, reconstruction time(runtime) comparison 

among SL0, OSL0 and ONSL0 

Under different compression ratios, Figure 7 and Figure 8 show the contrast curves about PSNR value 

and reconstructed time for the Debbie image with SL0, OSL0 and ONSL0. It can be seen from Fig. 7 

that the PSNR value of ONSL0 is significantly higher than that of SL0 and OSL0 in the range of 0.1 
to 0.3. Especially at compression ratio 0.2 difference value between SL0, OSL0 and ONSL0 is the 

maximum value. Difference value between SL0, OSL0 and ONSL0 is all very small  where M N  

varies in the range between 0.3 and 0.7.The PSNR values of these three algorithms all increase 

gradually along with addition in M N , where M N  varies in the range between 0.1 and 0.7. 

It can be seen from Fig. 8 that , when M N ranges from 0.1 to 0.7,the reconstruction time (runtime) of 

these three algorithms all increase gradually along with addition in M N . Besides, the difference 

value between OSL0 and ONSL0 increases gradually as M N  increases, and the difference value 

between SL0 and ONSL0 is same as that between the OSL0 and ONSL0. When there is a same 

M N the runtime of SL0 is greater than that of the ONSL0 , and the runtime of ONSL0 is higher than 

the runtime of OSL0. 

In summary, the reconstructed PSNR value of ONSL0 which is almost unchanged when M N ranges 

from 0.3 to 0.7. 

But the reconstruction time of ONSL0 is fairly longer than that of OSL0 and at the compression rate 

0.7, it has almost reached a maximum 3s. This is equivalent to that the reconstruction time of ONSL0 

is used in exchange for a small increase on the PSNR value of ONSL0. 

However, it should be noted that as M N increases, the increment of reconstruction time would 

increase gradually, while the increment of reconstructed PSNR value remains almost constant. 

When M N is relatively large, we should make a choice between the precision of reconstructed PSNR 

value and the reconstruction time. 

Either we can select ONSL0 to further improve accuracy, or we can select OSL0 to shorten runtime 

while the reconstructed accuracy of PSNR is slightly lower. 

4. Conclusion and Future Work 

This paper based on SL0 and OSL0 has proposed ONSL0 with regard to the shortcomings on 

estimated function of ℓ0 norm and iterative termination condition. It uses a hyperbolic tangent 
function which is of better quality to approximate the ℓ0 norm and applies the modified Newton 

method to achieve the optimal value in solution. Through the previous numerical simulation 
experiments, we can see that the reconstructed quality of ONSL0 is superior to that of SL0 and OSL0 
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regarding objective data, but we can hardly see any difference in subjective visual effect. However, 

ONSL0 involves the Hessian matrix, that is, the inverse problem of ( )F s , which will waste a 

certain amount of runtime. If we can further find a sequence of functions which can better 

approximate the ℓ0 norm and replace ( )if s  to reduce the cost of runtime, then this new algorithm 

will become a reconstruction algorithm with a good performance. This will be one of the next steps 

that needs to be studied. 
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