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Abstract 

Considering the convergence speed and easy trapping into local optimum in robot path 

planning based on the adaptive firefly algorithm (AFA), a novel algorithm is presented in this 

paper. Initially, a new chaotic firefly algorithm (CFA) that utilizes chaotic sequences using 

Lozi’s map to tune the control parameters is developed. This scheme avoids the limitation of 

the adaptive firefly algorithm concerning the local minimum. Subsequently, CFA is enhanced 

to take advantage of the optimization adjustment strategy (OAS) with the Gauss disturbance to 

maintain the search capability. Simulation results are compared with those of the adaptive 

firefly algorithm via a Monte Carlo simulation. It is demonstrated that the proposed CFA-OAS 

outperforms AFA in terms of the convergence speed and the path length. Moreover, the 

current study also applies CFA-OAS for robot path planning on robot operating system (ROS). 

An analysis is conducted to verify feasibility and efficiency of the chaotic firefly algorithm, 

which is more skillful to pass the narrow area. It can shorten the computation time and search 

the shorter path. 
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1. Introduction 

Robot Path Planning is one of the key technologies in robot’s offline decision making algorithms. 

Robot’s aim is to find a collision free path from its start position to the target position in this issue [1]. 

In recent years, with the enlargement of the robot’s application range, it has more and more high 

requirement for path planning technology. Some of new artificial intelligence (AI) technologies 

gradually are introduced in path planning. Especially, swarm intelligence (SI) algorithms have been 

widely used in path planning now. For example, the robot path planning can be solved by the ant 

colony algorithm, Garcia [2] presented a novel method based on ant colony optimization 

meta-heuristic to solve the robot path planning, and proved it is appropriate for global planners in 

static and dynamic environment. Some researchers proposed the path planning methods using 

improved particle swarm optimization methods. Gong [3] put forward a global path planning 

approach based on multi-objective particle swarm optimization, which is a self-adaptive mutation 

operation to improve the feasibility of a new path. A phase angle-encoded and quantum-behaved 

particle swarm optimization (θ-QPSO) was proposed by Fu [4]. It was demonstrated good 

performance in path planning. Some novel optimization algorithms, such as artificial bee colony 

(ABC) and artificial fish swarm (AFS), were also used to solve the robot path optimization problem. 

In [5], a novel artificial bee colony algorithm was improved by a balance-evolution strategy (BES). It 

is fully utilized to balance between local exploitation and global exploration capabilities. Peng [6] 

improved the foraging behavior of artificial fish swarm algorithm to enhance the adaptability of the 

robot global path planning.  

Firefly algorithm (FA) is a more promising optimization algorithm put forward by Dr. Yang [7]. It is 

relatively simple both in theory and in implementation compared with other biological inspired 
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algorithms. The existing research results show that FA had been applied to path planning with good 

results. Li [8] used firefly algorithm and Bezier curve to locate the shortest feasible (collision-free) 

path. Some improvements based on firefly algorithm have been put forward in [9,10]. Although these 

methods were proved effective in solving path planning problems, they inevitably faced some matters 

in practical applications, such as slow convergence speed, heavy calculation burden, poor stability 

and easily falling into the local optimum because of a complicated space in the robot working. 

A novel path planning method based on the firefly algorithm is presented in this paper. Initially, a 

new chaotic firefly algorithm (CFA) that utilizes chaotic sequences using Lozi’s map to tune the 

control parameters is developed, which avoids being trapped into the local optimum. Subsequently, 

the optimization adjustment strategy (OAS) with the Gauss disturbance is for maintaining the search 

diversity of the newly proposed chaotic firefly algorithm. Superiority of the proposed CFA-OSA in 

terms of the convergence speed and the path length have been demonstrated utilizing a precise 

analysis on simulation through a comprehensive comparative study with the adaptive firefly 

algorithm (AFA) [10]. Moreover, CFA-OSA is compared with AFA in narrow path planning problem. 

The experimental results show that CFA-OSA outperforms AFA in success rate while passing the 

narrow area within the shorter time-consuming and path length. 

The rest of the paper is organized as follows. The basic firefly algorithm is described in Section 2. 

Section 3 is devoted to the development of a chaotic firefly algorithm with the optimization 

adjustment strategy. Section 4 models the robot path planning problem using CFA with OAS. Section 

5 provides the results of the numerical simulation and experiment, presenting the comparison of 

CFA-OSA with AFA. Additionally, this section contains a comprehensive analysis for robot path 

planning on ROS. Section 6 summarizes the results. 

2. Basic firefly algorithm 

The firefly algorithm (FA) is a swarm intelligence algorithm, inspired by the flashing behavior of 

firefly group. Yang formulated FA by three idealized constraints [7] as, 1) All fireflies are no 

gender-specific, so that one firefly will be attracted to other more larger brightness fireflies. 2) 

Attractiveness is proportional to their brightness, and for any two fireflies, the less bright one will be 

attracted to the brighter one; however, the brightness can decrease with distance increases between 

individuals. If there are no fireflies brighter than a given firefly, it will move randomly. 3) The 

brightness or attractiveness should be determined by the objective function. For the optimization 

problem, the luminous intensity is proportional to the value of the objective function.  

In FA, the value of objective function is represented by the absolute brightness of fireflies and the 

solution of the problem to be solved is represented by the position of the fireflies. A firefly’s 

attractiveness is proportional to the light intensity seen by adjacent fireflies. So the attractiveness β of 

a firefly in terms of Cartesian distance between firefly i and firefly j as 
2

0( ) ijr

ij ijr e


 


                                                                               (1) 

The movement of a firefly i is attracted to another brighter firefly j determined by 

( )( ) ( 0.5)i i ij ij i jr rand     x x x x                                                         (2) 

where the second term is due to the attraction. 0  represents the biggest attractiveness at r = 0.   is 

the absorption coefficient, which controls the change in light intensity and determines convergence 

speed. ijr represents the Cartesian distance between firefly i and firefly j. The third term is 

randomization with   being the randomization parameter, which controls the range of movement. 

The value of rand is a random number generator uniformly distributed in [0, 1]. The pseudo-code for 

implementing FA can be summarized in Algorithm1. 
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Algorithm 1:The firefly algorithm 

Begin 

Objective function f(x), x = (x1, ..., xd)T 

Initialize population of fireflies xi (i =1,2,…,n) 

Light intensity Ii at xi is determined by f(xi) 

Define light absorption coefficients γ 

While (t< MaxIteration) 

    For i=1:n 

       For j=1:i 

          If (Ij > Ii) 

Move firefly i towards j in d-dimension 

                  End If 

                  Attractiveness varies with distance r via exp[−γr] 

                  Evaluate new solutions and update light intensity 

End For j 

End For i 

Rank the fireflies and find the current best 

End While 

Output result 

End Begin 

As described above, fireflies are randomly distributed within the search area at the initial period of 

algorithm running. The distance between each of them is greater, while ( )ij ijr  is small leading to the 

small range of movement, so the exploring ability of FA is insufficient with slower convergence speed. 

At the later stage of the algorithm running, fireflies gather around the optimal fireflies, the distance 

between each other is smaller leading to the bigger ( )ij ijr . At the same time, random motion is still 

taking place, which is not useful for the convergence of FA [7]. In general, one can improve the search 

capacity and convergence speed of FA by tuning the parameters   and   before the run or control 

them during the run. 

3. Chaotic firefly algorithm with the optimization adjustment strategy 

The performance of FA is sensitive to the choice of control parameters. It is important to address the 

value of  and in equation (1) and (2). The parameter  determines the convergence speed of FA, 

and the parameter  determines the global search capability. In terms of this paper, the absorption 

coefficient and the randomization parameter in FA are designed by chaotic sequences using Lozi’s 

map. The control parameters are tuned by using the ergodicity property of chaotic sequences, which is 

beneficial to escape from the local minimum. At the same time, the optimization adjustment strategy 

is introduced, which maintains the search capability in optimization procedures. 

3.1 Chaotic firefly algorithm 

Chaos is a kind of a feature of nonlinear dynamic system. It exhibits bounded unstable dynamic 

behavior, ergodicity and non-period behavior, which depends on initial condition and control 

parameters. Chaos with the ergodicity property can be used for enriching the searching behavior and 

avoiding being trapped into the local optimum in optimization problems. In this paper, the improved 

FA uses chaotic sequences using Lozi’s map to tune  and   given by constant values in the equation 

(1) and (2), determining the tradeoff between diversity and convergence rate of FA. Lozi’s map has 

the better ergodicity and the mapping points are more uniform distribution then logistic map [11]. The 

equations above are modified to 
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
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with 

1 1( ) 1 | ( 1) | ( 1)t a t t                                                              (4) 

1( ) ( 1)t b t                                                                       (5) 

and 

1 1( ) 1 | ( 1) | ( 1)t a t t                                                            (6) 

1( ) ( 1)t b t                                                                      (7) 

where t is the iteration number. a1, b1, a2, b2 are control parameters, and a1= a2=1.7, b1=b2=0.5, these 

values suggested by [12]. The value of ( )t  and ( )t  are greatly changed with the variation of a1, b1, 

a2 and b2, and they are normalized in the range [0, 1] to each decision variable in N-dimensional space 

with chaotic dynamics, which determine ( )t  and ( )t  behave chaotically in unpredictable patterns, 

other than stabilize at constant sizes. A very small difference in the initial value (t=1) of (1)  and 

(1)  can cause large differences in its long-time behavior.  

In this context, FA based on Lozi’s map can be useful in robot path planning for escaping from local 

optima due to the ergodic and dynamic properties of Lozi’s map. This approach is employed to 

prevent the premature convergence of FA. 

3.2 The optimization adjustment strategy 

In order to avoid being trapped into the local optimum, an optimization adjustment strategy (OAS) is 

introduced. For the position of current optimal fireflies, they already tend to be the optimal solution. 

Thus Gauss disturbance used in the optimal fireflies can maintain the search diversity in CFA. The 

optimization adjustment equation as  

(0,1)G

best best best N   x x x 　                                                          (8) 

where 
G

bestx  is the position of the current optimal fireflies after Gauss disturbance, 
bestx is the position 

of the current optimal fireflies,   is the control parameter. The position updation of a new global 

optimal firefly in the next iteration as 

( ), ( ( )) ( ( ))
( 1)

( ),

G G

best best best

best

best

t f t f t
t

t others

 
  



x x x
x

x

　　

　　
                                         (9) 

In this paper, the current optimal fireflies uses the optimization adjustment strategy to update the 

position of the next iterative optimal firefly, which is employed to increase the diversity of fireflies’ 

population, and it is advantageous to jump out of local optimum, improving the search speed in CFA 

at the same time. 

4. Robot path planning based on CFA with OAS 

4.1 Modeling the path planning problem using CFA 

Robot path planning problem is transformed into a numerical optimization problem, which can be 

solved by CFA-OSA to find a suitable collision-free path between the start position and the end 

position. The path is planned by encoding of CFA-OSA firstly, establishing the cost function of path 

planning and then searching for the optimal path using CFA-OSA. In this case, each firefly is defined 

as a candidate path, and the dimensions of position for them are a set of route points. The path could 

be completely made by connecting them sequentially. The number of fireflies stands for the candidate 

path number. In addition, the brightness of a firefly represents the path quality. If the brightest firefly 

is found, the optimal path will be obtained.  
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The other important part is establishing the cost function of path planning. In this paper, the cost 

function is consist of the path length 
LE  cross the risk value 

DE , which is used to evaluate the path 

quality and can be calculated as follows 

1 2(1 )L DE E E                                                               (10) 

where 
1 2 1   . We can search the shortest path by calculating min(E).  

The path length can be calculated by the following equation 

1

1

1
n

n

L SP i P E

i

E L L L




                                                             (11)  

where ( , )i ix y , i=1…n-1, is the coordinate of the i-th route point between the start position and the 

end position. 
1SPL  is the distance from the start position to the first route point. 

iL  is the distance 

from the i-th route point to the (i+1)-th route point, and 
2 2

1 1( ) ( )i i i ii x x y yL      . 
nP EL  is the 

distance from the last route point to the end position. 

The risk value measures the cost of the robot and the obstacle, which is judged by calculating the 

average cost value of each obstacle in the environment. The risk value can be calculated as follows 

1

1/ (1 / )
m

D j j

j

E m L R


                                                         (12)  

where ( , )i ix y , j=1…m, is the coordinate of the j-th obstacle. 
jL is the distance between the robot 

and the j-th obstacle. Rj is the radius of the j-th obstacle. 

4.2 Robot path planning method base on CFA with OAS 

The pseudo-code of robot path planning method based on CFA with OAS is shown in Algorithm 2. 

Algorithm 2: Path planning method based on CFA with OAS 

Begin 

Sort the firefly population xi (i =1,2,…,n) according to the cost function 

Light intensity Ii at xi is determined by (10),(11),(12) 

Initialize light absorption coefficients γ, randomization parameter α and  

control parameters a1, b1, a2, b2,   

While (t< MaxIteration) 

    For i=1:n 

       For j=1:i 

               Calculate γ according to (4) and (5) 

               Calculate α according to (6) and (7) 

               If (Ij > Ii) 

Move firefly i towards j in d-dimension 

               End If  

               Attractiveness varies with distance r via exp[−γr] 

               Reconstruct a path according to xj 

               Evaluate the path 

               Update light intensity of xj 

        End For j 

     End For i 

Rank the paths and find the current best 

     Use the OAS to adjust the position of the current best path  

End While 
Output the optimal path 

End Begin 
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5. Experimental results and analysis 

5.1 Simulation research 

Evaluate the efficiency of path planning method based on chaotic firefly algorithm (CFA) with 

optimization adjustment strategy (OAS) by simulation, making a comparison with the adaptive firefly 

algorithm (AFA) in [10] using MATLAB 7.0 on a standard PC with 2.19 GHz processor, 1.96 GB 

RAM. The calculating way between simple environment and complex environment is different which 

helps to test the adaptive capacities of two algorithms in different environment.  

The parameters of CFA-OAS are shown in Table 1 and the parameters of AFA are the same as [10]. 

For the comparable methods, the population size is set at 40 and the maximum iteration is 100. Each 

method is run via a 50-independent-run simulation. Average path length and success rate of searching 

a shorter collision free path are as evaluation to measure the performance of two path planning 

methods. 

Table 1. Parameters initialization of CFA-OAS 

Parameter Value Parameter Value 

γ 0.8   0.75 

α 0.2 β0 1 

a1 1.7 a2 1.7 

b1 0.5 b2 0.5 

1) Simple environment 

Fig. 1 shows the map including three obstacles as the simple environment to carry out path planning. 

Where the position of three obstacles are respectively (4, 4), (8, 6), (8, 2) and the radius is respectively 

1.5, 1.5, 1.2. The starting position and the end position are from (1, 1) to (11, 7).  
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Fig. 1 Path planning in simple environment 

 

Fig. 2 indicates the path length changes with iteration number of two path planning methods in simple 

environment. From Fig. 2, the method based on CFA-OAS searches the shorter path, and the path 

length is 11.85 cm. As the same time the CFA-OAS has more quickly convergence speed. It obtains 

the optimal path after 14 iterations. The reason why this phenomenon appears in CFA-OAS is that 

chaos with ergodicity property is used to tune control parameters, which enriches the searching 

behavior and avoids being trapped into local optimum earlier.  
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Fig. 2 The path length changes with iteration number in simple environment 

The test results are listed in Table 2. The time-consuming of CFA-OAS is similar to AFA. The 

success rates of two methods in 50 runs are also seen in Tab. 2. The success rate of CFA-OAS is 93%, 

while the success rate of AFA just achieves 89%. The results suggest that CFA-OAS is more skillful 

to escape from local trap and search the global optimum. This is because that CFA-OAS adopts the 

optimization adjustment strategy to maintain the search diversity and enrich the exploitation ability.  

Table 2. The test results in simple environment 

Algorithm Iteration number Time-consuming(s) Path length(cm) Success rate(%) 

AFA 48 41.05 12.41 89 

CFA-OAS 14 43.12 11.85 93 

2) Complex environment 

Fig. 3 shows the map including eight obstacles as the complex environment to solve path planning. 

The center coordinates of them are (2.8, 2.8), (4, 5.8), (6.3, 4.5), (8.3, 6.8), (9.5, 2.7), (4.2, -0.3), (6, 

1.6) and (8, 0) respectively. The radius of them is respectively 0.8, 0.8, 0.8, 1.1, 1, 0.8, 0.7 and 0.8. 

The starting position and the end position are also from (1, 1) to (11, 7) as Fig. 3. 
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Fig. 3 Path planning in complex environment 

The path length changes with iteration number in complex environment and the test results are 

respectively shown in Fig. 4 and Table 3. It can be found that CFA-OAS still has several advantages 

on the average path length and the convergence speed than AFA. The success rate in 50 runs of 

CFA-OAS is much higher than AFA in complex environment, while success rates of both methods 

are decreased compared with the simple environment. 
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Fig. 4 The path length changes with iteration number in complex environment 

Table 3.The test results in complex environment 

Algorithm Iteration number Time-consuming(s) Path length(cm) Success rate(%) 

AFA 43 63.17 12.32 81 

CFA-OAS 11 65.02 11.71 90 

From the two environment tests, we can see that the path planning method based on CFA-OAS has 

the stronger adaptability with better searching result and quicker convergence speed than AFA in 

different environment. It is more suitable to apply in robot path planning system. 

5.2 Robot path planning using CFA on ROS 

In the experiment, AFA algorithm and CFA-OAS algorithm are verified, respectively. Pioneer3-DX 

robot is equipped with a standard PC with 2.19 GHz processor, 1.96 GB RAM, installing robot 

operating system (ROS) [13], which collects data using a URG-hokuyo laser ranger. The 

environment as shown in Fig. 5 is the area of 4.8 m×6 m, consisting of the walls and three obstacles. 

The map of this environment is build using the slam gmapping node in ROS with resolution 0.050 

m/pix as Fig.6, where A and B are the starting position and the target position, respectively. ①,②,

③ are static obstacles, where ①,② are circular obstacles and ③ is rectangular obstacle. The 

measurement error and the movement error of robot are mixture-Gauss set to be 40cm/3m with 

probability 0.95. Robot translation speed is set to 0.2m/s. Initial position of robot is unknown, 

realizing robot self-localization using the amcl node in ROS, and completing robot path planning by 

two methods on a known environment map finally. 

     
         Fig.5 The environment of mobile robot                   Fig.6 The map of this environment 

The paths of the robot from A to B using AFA algorithm and CFA-OAS algorithm are shown as Fig.7 

and Fig. 8, respectively. From Fig. 7, AFA algorithm is used, which selects a longer path faced with 

an obstacle between the two walls; in reverse, the robot searches a shorter path in CFA-OAS and it is 

more easily to pass a narrow area between the wall C and the obstacle ③. The CFA-OAS determines 
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① ②
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the distance between the narrow areas more accurately, as shown in Fig. 8, which is that control 

parameters in CFA-OAS are tuned by chaos with ergodicity property to enrich the searching 

behavior.   

     
Fig.7 Path of the robot in AFA                               Fig.8 Path of the robot in CFA-OAS 

Further on, Table 4 compares the path planning performance of both algorithms. The time-planning 

in the narrow area of CFA-OAS is superior to AFA. The robot using CFA-OAS can pass the narrow 

area (between the wall C and the obstacle ③, two walls D and E) more quickly and search the shorter 

path with 5.23m, leading to shorter time-consuming in the whole path planning from A to B. The 

success rates of the robot path planning using two algorithms in 50 runs are also shown in Table 4. 

The success rate of CFA-OAS is 94%, while the success rate of AFA just achieves 82% because of 

the failure of passing the narrow area.  

Table 4. Path planning performance in both algorithms 

Algorithm 
Time-planning in 

small area(s) 
Time-consuming(s) Path length(m) Success rate(%) 

AFA 37 123.16 7.81 82 

CFA-OAS 15 75.24 5.23 94 

6. Conclusion 

A novel chaotic firefly algorithm with the optimization adjustment strategy (CFA-OAS) is developed 

for the robot path planning. The proposed CFA combines the standard firefly algorithm (FA) with the 

control parameters designed by chaotic sequences using Lozi’s map. It plays the important role in 

firefly algorithm, and the ergodicity property of chaotic sequences is for tuning the control parameters, 

which is beneficial to jump out of the local minimum and it is more skillful to pass the narrow area. In 

addition to the optimization adjustment strategy (OAS), the Gauss disturbance is utilized in the 

optimal fireflies to maintain the diversity of fireflies’ population in CFA, avoiding being trapped into 

local optimum. Finally, simulation and experiment show that the comparison verifies the superiority 

of the proposed CFA-OAS over the AFA in terms of path length and computation time. 
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