
International Journal of Science Vol.4 No.3 2017 ISSN: 1813-4890

458

Scheduling Algorithm for Real-time Multi-core Operating System
Based on Multi-Master Mode

Jianpeng Zhao, Tieliang Ren, Zehan Shi and Jialong Li

College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065,

China

Abstract

The traditional master-slave multi-core operating system (RTOS), which is responsible for the

resource allocation and task scheduling of the management system, is only responsible for the

implementation of the kernel, which is easy to cause the performance bottleneck due to

overloading the main core , Thus reducing the multi-core parallel processing capabilities,

affecting the overall multi-core operating efficiency. In this paper, a multi-core scheduling

algorithm based on multi-master mode is designed. In the aspect of task management, a

multi-master scheduling strategy based on event and priority preemption is adopted.

Combining the token mechanism and the high priority task search algorithm is designed and

implemented. Task scheduling and dynamic task assignment task scheduler, a good solution to

the master and slave scheduling of the main core performance bottlenecks, while the dynamic

task allocation is conducive to improving the processor load balancing, and because there is no

task migration, Reduced scheduling overhead to ensure real-time, token mechanism to

effectively reduce the shared scheduler when the access conflict, to ensure that the kernel

multi-task synchronization and efficient operation.

Keywords

RTOS; Multi-Master Mode Multi-Core Scheduler; Scheduling Token; Load Balancing

1. Introduction

There are two main multi-core operating system architectures that support SMP: Master-slave

single-core structure and symmetric multi-master single-core structure. Most of them use

master-slave architecture such as Linux, Vxworks and so on. Through a main core to manage all the

resources of the operating system, including task scheduling and communication, but in the
increasingly complex practical applications, the increasing number of processing cores, the main

need for the management of the core from the allocation of resources and scheduling, Can only deal

with a time from the core of the scheduling or resource applications, low efficiency, easy to overload

due to the main performance bottlenecks, affecting the multi-core parallel processing capacity [1].

The kernel structure based on multi-master mode allows the entire kernel to have the right to manage

system resources and active scheduling, effectively solve the above problems.

Consider the SMP architecture of the processor is mainly based on the bus shared memory structure
[2-3], multiple processor cores can access the processor peripherals and shared memory through the

internal high-speed bus and enable data via cache and main memory Inter-nuclear transmission.

Using a kernel architecture based on a multi-master single kernel, by placing the kernel code in the

shared main memory and using a lock mechanism with inter-core mutex, it is possible to allow

multiple processors to pass through the sequential bootstrap process The core concurrently performs a

shared set of kernel code [4]. Compared with the multi-core architecture of multi-core architecture,

this method can greatly reduce the memory consumption, improve the efficiency of memory, while

the task of communication design and scheduler design is also easier, reducing the complexity of the
system kernel design.

International Journal of Science Vol.4 No.3 2017 ISSN: 1813-4890

459

2. Design and Implementation of Multi - core Scheduler with Multiple Master
Scheduling Dynamic Allocation

2.1 Multi-core scheduling based on token and multi-master mode

The so-called multi-master mode is the use of multi-master scheduling strategy design scheduler for

multi-task scheduling. Multi-master scheduling is relative to the single master or master-slave

scheduling strategy in terms of [5], that is, each processing core in the system can get the kernel

scheduler resources, and then take the initiative to schedule the task, rather than by a fixed The main

core is responsible for resource management and task allocation, and other cores perform only task

procedures. This method effectively solves the performance bottleneck caused by the overloading of
the main core in the master-slave mode, and can fully implement the multi-core parallel execution

ability. At the same time, through the token mechanism to synchronize multiple cores to the shared

scheduler resource competition request, did not get the token processing core does not need to wait

for the release of the scheduler, but automatically give up the scheduling, continue to implement the

original program, which Way to effectively improve the overall operating efficiency of multi-master

single-core operating system. The token-based multi-master scheduling model is shown in Figure 1

below:
CPU0作为启动主核，初始化OS内核

从核启动并进行同步，运行Idle任务

启动多任务调度，置令牌有效

CPU0运行任务i CPU1运行任务j CPU2运行任务k CPU3运行任务m

T0时刻触
发调度

T1时刻触
发调度

T2时刻触
发调度

T3时刻触
发调度

nono no no申请调度令牌

令牌有效？

yes

T31时刻获得调度
器，并置令牌无效

任务动态分配，向
其它核发送本地调

度信息

T32时刻调度完
毕，并指令牌有效

对本地就绪任务池
进行任务切换，运
行最高优先级任务

令牌有效？

yes

T01时刻获得调度
器，并置令牌无效

任务动态分配，向
其它核发送本地调

度信息

T02时刻调度完
毕，并置令牌有效

对本地就绪任务池
进行任务切换，运
行最高优先级任务

令牌有效？

yes

T21时刻获得调度
器，并置令牌无效

任务动态分配，向
其它核发送本地调

度信息

T22时刻调度完
毕，并置令牌有效

对本地就绪任务池
进行任务切换，运
行最高优先级任务

令牌有效？

yes

T11时刻获得调度
器，并置令牌无效

任务动态分配，向
其它核发送本地调

度信息

T12时刻调度完
毕，并置令牌有效

对本地就绪任务池
进行任务切换，运
行最高优先级任务

Figure 1. Token-based multi-master scheduling model

2.2 Global preemptive task dynamic allocation algorithm based on priority preemptive
strategy

First create two mapping tables: assignable task mapping table and assignable processor core
mapping table, respectively, to record the priority of assignable high priority tasks, and the

corresponding assignable task processor core ID number. At the same time, add two members for

each task's task control block, one for recording whether the task occupies the processor's state, and

one for recording the processor ID number occupied by the task. And then copy a copy of the global

task ready table, while locking the scheduler through the token, and through the spin lock to protect

the global ready table.

And then from the global task ready table to find a copy of the processor core number of the same set
of the same set of the new highest priority tasks, and in accordance with the task control block records

the processor occupancy status and the corresponding core ID number, The tasks on the processor

core also mean that the corresponding processor cores for these tasks are not assignable, so the bits

corresponding to those processor cores need to be set to non-assignable flags in the assignable

processor core mapping table. After the completion of this process, the remaining new high priority

tasks must be assignable, the priority of these tasks will be stored in the assignable task mapping table,

International Journal of Science Vol.4 No.3 2017 ISSN: 1813-4890

460

and in the assignable processor core mapping table in the remaining significant bit corresponding Of

the processor core must also be the core of the distribution, the core of the task will be running the

new high priority task to seize.

Finally, these assignable new high-priority tasks are assigned to individual assignable processor cores
based on the assignable task mapping table and the assignable processor core mapping table, and the

priority of the comparison task is no longer required The assignments with the highest priority

assignments are assigned in the order in which the assignable processor core IDs are numbered from

low to high.

2.3 Priority-based global task ready table

The global task control block queue, which is stored in the shared memory as a global array, and is

accessed by pointing to the pointer array of the task control block. It mainly includes the task control

block array OSTCBTbl [] and the pointer array OSTCBPrioTbl []. The subscript of the pointer array

is the priority of the task. The basic element of the pointer array is the pointer to the created task

control block. OSTCBTbl [] is stored in the task control block entity, the kernel of the queue insert
and delete operations will only be in the task creation and deletion stage, and the task, whether in the

scheduling of the allocation and switching phase, the task entity exists in the global queue.

The basic elements of the task-ready table are the priority of the task, and the task control block and

the resources owned by the task are managed by the kernel. This is mainly to improve the

maintenance efficiency and reduce the insertion and deletion of the task. The structure of the task
ready table is shown in Figure 2:

0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 Y Y Y X X X

Priority

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

1 0 0 1 0 0 1 0

OSRdyX

OSRdyY[i]

Y

X

Figure 2. Priority task ready bitmap structure

3. Experimental results and analysis

3.1 multi-core task scheduling test

First create 6 tasks and a message queue event. Task Tsk3-Tsk6 these four tasks send a message to

task Tsk2, respectively, and sending a message primitive triggers a task schedule. Task Tsk2 is only

responsible for receiving messages, and then print messages, if there is no message to block them and

trigger scheduling. Task Tsk1 does not send a message, but Tsk1 runs 10 times after the active call to
suspend the function to suspend itself and trigger the dispatch. Then, each task by calling the kernel

delay function to block themselves and drive the task scheduling, which task Tsk1 delay 20 rhythms,

Tsk2 no delay, the remaining tasks are delayed 80 beats. Finally open the kernel clock beat interrupt,

download the test code to run in shared memory, start multi-core run mode.

A total of test and statistics of the three tasks between the communication and scheduling, were tested
20 times, 40 times and 60 times the task of communication, corresponding to the task of sending four

messages in the three tests, respectively, to the task Tsk2 send 5, 10, 15 messages, and then through

the serial port to print test data, and statistical analysis. Task Tsk1 does not send a message, blocks

itself through the kernel delay function, and runs only 10 times, where the first test to print the

received message value of the situation and six tasks in the three core of the operation to verify the

correctness of the message data transmission. The message print format is as follows: Sq.cid

represents the core of the task of sending the message, Sq.tid represents the ID of the task that sent the

message, and Rd.mes represents the received message value, that is, the task count value of the

International Journal of Science Vol.4 No.3 2017 ISSN: 1813-4890

461

message task. The remaining two tests only print each task in the core of the operation to analyze the

multi-task allocation and scheduling situation.

T1 T2

T3 T4 T5 T6

Sen
dMs
g()

TimeDyl()

TimeDyl() PendMsg()

Printf()

Se
nd
Ms
g(
)

TimeDyl()

SendMsg()

TimeDyl()

SendMsg()

TimeDyl()

TskSuspend()

Figure 3. The relationship between the six test tasks

3.2 Test results

The data in Fig. 4a is analyzed. First, the content of the message Tsk2 received is consistent with the
message content sent by the sending task, and the total number of messages received by task Tsk2 is

20 and the number of messages sent in total with the task Tsk3-Tsk6 Equal, message sending and

receiving is correct, indicating that the message queue module can achieve the basic task

communication function. Second, from the multi-core start-up process and the distribution of tasks on

each core in Figure 4a, it can be seen that task Tsk1 is run on three cores, and other tasks that send

messages are running on different cores, Note that the kernel delay function can block the task and

trigger the scheduling, indicating that multiple cores can successfully start and multi-task scheduling

and message communication.

Figure 4b, Figure 4c, Figure 4d print the data, a total of six columns, each column represents a task of
a group of records, respectively, record the number of tasks in each of the three cores. Where the last

row of data in the first column indicates the core ID of the task Tsk2 and the number of times the task

is run.

Figure 4a. 20 times the data reception of communication

Figure 4b. 20 times communication and task scheduling situation

International Journal of Science Vol.4 No.3 2017 ISSN: 1813-4890

462

Figure 4c. 40 times communication and task scheduling situation

Figure 4d. 60 times communication and task scheduling

The total number of runs of the four sending tasks in the test result is equal to the number of times the

task Tsk2 has been run, further verifying the correctness of the communication between the sending
task and the receiving task. Second, in the first two tests, each task can basically be scheduled to run

on different cores, and the total number of tasks on each core task is not much difference, but in the

third test, the emergence of nuclear 2 Relative to the phenomenon of overload, in which the task Tsk2

on the nuclear running 48 times, Tsk2 reason to run on a certain high frequency, because it is the

second task of the second high priority task, and the task Tsk1 Run 10 times after being suspended,

behind the dozens of communications, there is no task to seize Tsk2, unless it is due to the application

of the message and blocked; Second, because it does not delay function, will not delay their own due

to delay , And there are four tasks to send a message to it. So, on the whole, the scheduler can achieve

multi-core task dynamic allocation and scheduling, and can basically achieve multi-core processor

load balancing.

4. Summary

Based on the multi-master single-core architecture, the search algorithm is based on the token

mechanism and the high-priority task, based on the event-based priority preemptive scheduling and

multi-master scheduling strategy, the global task ready table and the dynamic task assignment

algorithm of multi-task scheduler. Which is solves the performance bottleneck caused by the

overloading of the main kernel. The task is based on the global readiness table and the priority

preemptive scheduling to ensure the real-time performance of the kernel. Dynamic task allocation

effectively solves the problem that the load Equalization problem, because there is no task migration,

but also reduces the scheduling overhead; token mechanism effectively reduces the multi-core access

shared scheduler code conflict, improve the scheduling efficiency.

References

[1] J.C. Jiang, F.D. Meng, B. He, etc. A multi-core real-time operating system multiple ready task

fast search and scheduling method. China, 201410042680.3 [P]. 2014.

[2] Wolf W, Jerraya A A, Martin G. Multiprocessor system-on-chip (MPSoC) technology [J].

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 2008, 27

(10): 1701-1713 The

International Journal of Science Vol.4 No.3 2017 ISSN: 1813-4890

463

[3] Khan G N, Tino A. Synthesis of NoC Interconnects for Multi-core Architectures [C] //

International Conference on Complex, Intelligent and Software Intensive Systems. IEEE, 2012:

432-47.

[4] Taylor Michael. The Raw Prototype Design Document V5.02 [C] // Proceeding of the IEEE
International Conference on Solid State Circuits, 2005: 1-107.

[5] Yuan Q, Zhao J, Chen M, et al. GenerOS: An asymmetric operating system kernel for multi-core

systems [C] // IEEE International Symposium on Parallel and Distributed Processing. IEEE,

2010: 1-10.

