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Abstract 

In this paper we consider nonlinear ill-posed problems in a Hilbert space setting. We propose a 

class of principle strategies for Tikhonov regularization that lead to optimal convergence rates 

toward the minimal-norm, least-squares solution of an ill-posed nonlinear operator equation in 

the presence of noisy data. Our results cover the special case of discrepancy principle of 

Tikhonov regularization and extend recent results of the convergence rate. In addition, we give 

conditions that guarantee the convergence rate 2 2

2( 1)( )

q p

qO 

 


 and 

1( )

p

qO  
 for the regularized 

solutions, respectively, where   is a norm bound for the noise in the data.   

Keywords  

Nonlinear ill-posed problems; Generalized discrepancy principles; Convergence and rates of 
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1. Introduction 

This paper is devoted to a study of non-linear ill-posed problems  

  0( )F x y  (1) 

especially of their treatment by Tikhonov regularization; here : ( )F D F X Y   is a non-linear 

operator between Hilbert spaces X  and Y .  

As a notion of a "solution" of problem (l.l), we choose the concept of an x minimum-norm 

least-squares solution 0 ,x  i.e.:  

                         0 0( )F x y  (2) 

and 

                          0 0min{ : ( ) , ( )}.x x x x F x y x D F     ‖ ‖ ‖ ‖  (3) 

A solution of (2), (3) need not exist and, even if it does, it need not be unique, since F  is non-linear. 

In the ensuing discussion we assume existence of an x minimum-norm least-squares solution for 

the data 0 .y Y  In addition, the choice of x
 is of course crucial. An available priori information 

about the location of least-squares solutions (defined by (2)) has to enter into the selection of x
 In 

the case of multiple least squares solutions,  x
 plays the role of a selection criterion. By the choice of 

x
 we can influence which (least-squares) solution we want to approximate. 

Throughout the paper we assume that 
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0 0min{ : ( ) , ( )}.x x x x F x y x D F     ‖ ‖ ‖ ‖                                   (3) 

(i).  F  is continuous and Frechet differentiable with convex domain ( )D F  and 
0 ( ).y R F    

(ii).  F  is weakly (sequentially) closed, i.e. for any sequence ( ),nx D F  weak convergence of 
nx  to 

x  in X and weak convergence of ( )nF x  to y  in  Y  imply  ( )x D F  and  ( ) .F x y  (Weak 

convergence and norm convergence will always be denoted by  " "  and   respectively.)  

Now for exact data 
0 ,y  the existence of x -MNS 

0x  of (1) can be guaranteed. We also assume that 

,x x

   are interior points of ( )D F  for each 0   and sufficiently small 0,   this guarantees that 

the first order necessary optimal conditions for x  and x  are valid.  

   The problem of solving (1) is, in general, ill-posed. By ill-posedness, we always mean that the 
solutions do not depend continuously on the data. In the case of multiple solutions this is understood 

in the sense of multivalued mappings. To cope with the ill-posedness, problem (1) has to be 

regularized. A well-known and effective technique is Tikhonov regularization. In this method a 

solution of problem (1)  is approximated by a solution of the minimization problem  

 
2 2

( )
min { ( ) },

x D F
F x y x x  


  ‖ ‖ ‖ ‖  (4) 

where   is regarded as the regularized parameter,  x  is the Tikhonov regularization solution, and 

y  is a  -approximation of 0y  i.e.  

 0 .y y  ‖ ‖  (5) 

In the linear case aspects of stability, convergence and convergence rates have been extensively 
studied, e.g. in [l, 3, 6-9, 12, 16, 19, 21, 24]. In the non-linear case, the role of Tikhonov regularization 

to stabilize parameter estimation problems has been studied in [4, 5, 13]. Weak stability and 

convergence for general non-linear problems have been treated in [23].  

This paper is organized as follows. In Section 2 we will present a new simple selection criterion for 
regularized parameter and study the convergence of the Tikhonov regularization solution. In Section 

3 we will show the optimality of convergence for Tikhonov regularization solution under appropriate 

conditions. 

2. Parameter choice and convergence 

Under the assumptions on F  in Section 1, the Tikhonov regularization solutions ,x x

   always exist. 

Without loss of the generality, we assume ( )x D F  and   

 0( ) ( ( ) ) 0.F x F x y    ‖ ‖  (6) 

To obtain the main result, we make the following assumptions:  

1( ).H  There exists a constant 0K  such that for every ( , , ) ( ) ( ) ,x z v D F D F X    there exists 

( , , )k x z v X  such that   

 ( ( ) ( )) ( ) ( , , ),F x F z v F z k x z v     (7) 

where  

 0( , , ) .k x z v k v x z ‖ ‖ ‖‖‖ ‖ (8) 

2( ).H  There exists constants 1 2,K K  such that every ( , , ) ( ) ( ) ,x z y D F D F Y    there are 

1 2( , , ) , ( , , ( ) )l x z y Y l x z F x y X   such that   

 1 2( ( ) ( ) ) ( ) ( , , ) ( , , ( ) ),F x F z y F z l x z y l x z F x y          (9) 

where  
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 1 1( , , ) ,l x z y K y x z ‖ ‖ ‖‖‖ ‖ (10) 

 2 2( , , ( ) ) ( ) .l x z F x y K F x y x z   ‖ ‖ ‖ ‖‖ ‖ (11) 

Lemma 2.1. Let the assumption 
1H  be fulfilled and let   

 0 0 1,K x x ‖ ‖  (12) 

then the regularization solution x  is continuous with respect to   for 
0( , ),    where  

 

2 2

0
0 2

0 0

.
(1 )

K

K x x







 ‖ ‖
 (13) 

 

Proof. Refer to [25, Lemma 2.1] by choosing 0 0

0 0

.
1

K x x

K x x









 

‖ ‖

‖ ‖
 For actual computations, one 

wants to determine an appropriate value for the regularization parameter from the computations, e.g., 

from the residual. The discrepancy ( , )D y  is defined as the norm of the residual, i.e.,  

( , ) : ( ) ( ( ) )D y F x F x y 

     ‖ ‖ 

In [26], the parameters choice rule was defined as follows:  

1/2
( , )D y





  

   We’ll extend the parameters choice rule above and obtain generalized results. Now in the following, 
the generalized parameters choice rules will be defined. Now we define a function  

 ( ) .f x x

   ‖ ‖ (14) 

   We will use the solution : ( )    of the equation  

 ( ) p qf      (15) 

as the regularized parameter and show that the convergence of ,x  where 0, 0.p q   Therefore we 

have the first order necessary optimal condition for ,x  as follows:  

 ( ) ( ( ) ) ( ) 0.F x F x y x x  

          (16) 

This implies  

( ) ( ) ( ( ) ) .f F x F x y 

    ‖ ‖ 

Lemma 2.2. Assume 1 2( ), ( )H H  and (12) hold, Then the function f  defined by (14) is continuous 

on 0( , ).   Moreover, 

lim ( ) ( ) ( ( ) ) ,f F x F x y


   


 ‖ ‖ where  p>0, q>0.  

Proof. The continuity of ( )f   on 0( , )   is an immediate consequence of Lemma 2.1. To verify 

the assertion, noting that   
2 2 2( ) ( ) ,F x y x x F x y 

         ‖ ‖ ‖ ‖ ‖ ‖  

from the continuity of F , we have   

( ) ( ) ,F x y F x y

  

  ‖ ‖‖ ‖ 

and   
2lim 0, lim 0.x x x x 

 
 

 

 
   ‖ ‖ ‖ ‖  
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By the assumption 
2( )H    

1 2( ( ) ( ) )( ( ) ) ( ) ( , , ( ) ) ( , , ( ) ( ( ) )).F x F x F x y F x l x x F x y l x x F x F x y      

         

                 

Hence, we have 
2

1 2( ( ) ( ) )( ( ) ) ( ) ( ) .F x F x F x y K F x x x F x y K x x   

                    ‖ ‖ ‖ ‖‖ ‖‖ ‖ ‖ ‖  

Now from the continuity of F  we obtain 

lim ( ) ( ( ) ) lim ( ) ( ( ) )

( ) ( ( ) ) .

F x F x y F x F x y

F x F x y

  

    
 



  

 

  

   

 

‖ ‖ ‖ ‖

‖ ‖
 

Then the proof is complete.  

Lemma 2.3. Let the assumption in Lemma 2.2 be fulfilled, then for sufficiently small 0   there 

exists : ( )    such that   

( ( )) .p qf x x

       ‖ ‖                                                 (17) 

Moreover,   

1

0 2

0

1 1
( ) : min{ , } .

2

p

q

x x
    


 

‖ ‖
 

Proof.  Note that for sufficiently small 0,   there holds 0 0.   Therefore, by using (6) and 

Lemma 2.2, we can derive that ( )f   is continuous on 0[ , )   and lim ( ) .f





    

    Since  

0

2 2 2

0 0 0 0 0

2 2

1
1

1

( )

1

2

q p
pq

q

p

q

f x x x x

    






 

 






    






‖ ‖ ‖ ‖

 

for sufficiently small 0,   we have   

0 0( ) ,q pf    

which together with the continuity of ( ),q f   gives the assertion, then the proof is complete.  

Now we give the convergence result of the Tikhonov regularization solution .x  

Theorem 2.4. Let the assumptions in Lemma 2.3 be fulfilled, for each sequence n  such that 

0n   as ,n  let : ( )n n    be determined by (15) with   replaced by n  and let n

n
x


  be the 

solution of (4) with y  replaced by ,
n

y  where 
n

y  denotes the perturbed data of 0 0, .
n ny y y  ‖ ‖  

Then the sequence { }n

n
x


  has a convergent subsequence. The limit of every convergent subsequence 

is an x
-MNS. If in addition, the x MNS 0x  of  (1) is unique, then 0lim .n

nn
x x





  

Proof. Suppose there is a subsequence 
kn  of n  such that 0lim

kn
k

 


  for some positive constant 

0.   

By virtue of 

,nk

k n k kk

p q

n n nx x


    ‖ ‖ where 0, 0,p q   
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hence 2lim 0, lim 0.n nk k

n k nk k

q

n
k k

x x x x
 

  

 
   ‖ ‖ ‖ ‖  

It follows from assumption 
2(H )  that   

1

2

2

( ( ) ( ) )( ( ) ) ( ) ( )

.

n n nk k k

n n n n nk k k k k

nk

k nk
n

F x F x F x y K F x F x y x x

K x x

  

    





      



      



‖ ‖ ‖ ‖‖ ‖‖ ‖

‖ ‖
 

Therefore   

0( ) ( ( ) ) lim ( ) ( ( ) )

lim ( ) ( ( ) )

lim 0,

nk

n nk k

n nk k

n n nk k k

k k

k

k

p q

n n
k

F x F x y F x F x y

F x F x y



 

 

  

 

    











   

 

 

‖ ‖ ‖ ‖

‖ ‖ 

which is a contradiction to (6). Hence  

lim 0n
n




                                                                 (18) 

Notice   
2 2 2 2

0( ) ,n n

n n nn n nF x y x x x x
 

          ‖ ‖ ‖ ‖ ‖ ‖  

we have 
2 2 2

0( ) ,  n

n n n nF x y x x


       ‖ ‖ ‖ ‖                                           (19) 

2
2 2

0 ,n

n

n

n

x x x x








    ‖ ‖ ‖ ‖                                                   (20) 

which together with Lemma 2.3 gives that n

n
x


  is bounded, hence n

n
x


  has a weakly convergent 

subsequence. Without loss of generality, we assume that n

n
x x


  as .n  From (18) and (19), we 

obtain 0lim ( ) .n

nn
F x y






  By virtue of the weak closedness of ,F we derive that ( )x D F  and 

0( ) .F x y  From the weak lower semicontinuity of the Hilbert space norm and (20), we obtain  

inl f ms pim li un n

n nn n

x x x x x x
 

 

  

 

    ‖ ‖ ‖ ‖ ‖ ‖, 

0x x x x   ‖ ‖‖ ‖. 

Notice 0x  is an x MNS, we have 0 .x x x x   ‖ ‖‖ ‖ Therefore, x is an x MNS, and  

0lim .n

nn
x x x x




 


  ‖ ‖‖ ‖ 

Since  
2 2 22( , ) ,n n n

n n n
x x x x x x x x x x
  

  

          ‖ ‖ ‖ ‖ ‖ ‖  

we have         lim 0.n

nn
x x





 ‖ ‖  

3. Rates of convergence 

The purpose of this section is to show that the optimal convergence rate can be derived under suitable 

smoothness conditions according to the regularized parameter chosen in Section 2.  

Lemma 3.1. Let the assumptions in Theorem 2.4 be fulfilled. Then, there are constants 1 2, 0C C   

such that, for sufficiently small 0,   the relation   

1

1 2( )p qC C                                                               (21) 
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holds.   

Proof. From (14) and (16), we have   

( , )f y x x

    ‖ ‖for all 0, .y Y    

This with Theorem 2.4, implies that   

1 1

0
0 0

lim( ( ) ) lim( ( ) ( ( ), )) 0,p q f y x x
 

         

 
   ‖ ‖  

because of (3). Then it implies the assertion.  

Lemma 3.2. Let the assumption in Lemma 2.3 be fulfilled and let : ( )    be determined by (15). 

If  
0 0 0( ( ) ( ))x x R F x F x    and 

0 2 0( ) 1,K K x x  ‖ ‖  then there exist constants 
3 0C   and 

0 0   such that for all 
00 ,    there holds 

( ) 0 3 ( )x x C    ‖ ‖  

Proof. Refer to [26, Lemma 4] by choosing ( ( )) .p qf        

Lemma 3.3. Let the assumption 
1( )H  hold and let  

0 0 1,K x x ‖ ‖ then for each 0   and 0,   

there holds  ( ) 4 ,x x C  




 ‖ ‖ where   

4

0 0

4
.

1
C

K x x


 ‖ ‖
 

Proof. Refer to [26, Lemma 5].  

Theorem 3.4. Let the assumptions 1 2( ), ( )H H  hold, let ( )   be determined by (15).  If 

0 0 0( ( ) ( ))x x R F x F x     and  0 2 0( ) 1.K K x x  ‖ ‖   

Then the following statements are true.  

(i). If 1 0,p q    then 
1

2
( ) 0 ( ),x x O

   ‖ ‖  as 0.    

(ii). If 
3

1 0,
2

p q    then 
2

3
( ) 0 ( ),x x O

   ‖ ‖  as 0.    

Proof. (i). Lemma 3.1 and 3.2 are applicable and yields, together with by now standard estimates of 

Lemma 3.3, for suitably small 0,     

( ) 0 ( ) ( ) ( ) 0

1

2
3 4

1 1 1

2 2
3 1 4 2

1

2

( )

( ),

p p

x x x x x x

C C

C C C C

O

 

       

  

 







    

 

 



‖ ‖ ‖ ‖‖ ‖

 

with suitable constants 3 4, 0C C   and 1 2,C C  as in Lemma 3.1. 

(ii). Similarly as above, Lemma 3.1, 3.2 and 3.3 yield  

( ) 0 ( ) ( ) ( ) 0

1

2
3 4

2 12 2

3 33 3
3 1 4 2

2

3

( )

( ),

p p

x x x x x x

C C

C C C C

O

 

       

  

 







    

 

 



‖ ‖ ‖ ‖‖ ‖
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with suitable constants 
3 4, 0C C   and 

1 2,C C  as in Lemma 3.1.  

Similarly, we can prove  

Theorem 3.5. Let the assumptions 
1 2( ), ( )H H  hold, let ( )   be determined by (15). If 

0 0 0( ( ) ( ))x x R F x F x     and  
0 2 0( ) 1.K K x x  ‖ ‖   

Then the following statements are true.  

(i). If 
2

,
1 3

p

q



 then 

2 2

2( 1)

( ) 0 ( ),

q p

qx x O

  

 

 ‖ ‖  as 0.   

(ii). If 
2

0 ,
1 3

p

q
 


 then 1

( ) 0 ( ),

p

qx x O

    ‖ ‖ as 0.    
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