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Abstract 

In this paper we consider a new iteration method for solving nonlinear ill-posed problems and 

propose a stopping rule for perturbed data with noise level   . Under certain conditions, we 

obtain stable iteration, convergence, and rates of convergence.   
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1. Statement of the problem 

With the growing interest in the applied sciences, a lot of attention has been paid to the study of 

nonlinear ill-posed problems, that is, problems which can be formulated as a nonlinear operator 

equation:  

 ( ) ,F x y  (1) 

where : ( )F D F Y  with domain ( ) .D F X  We restrict our attention to Hilbert spaces X  and Y  

with inner products ( , )   and norms ·‖‖ respectively. In general, problem (1) is ill-posed in the sense 

that the solution of (1) does not depend continuously on the right hand side, which is often obtained 

by measurement and hence contains error. Let us assume throughout that (1) has a solution x , and 

that we have approximate y
 with  

 .y y  ‖ ‖  (2) 

We are mainly interested in problems of the form (1) for which the solution x  does not depend 

continuously on the right hand side data y . Such ill-posed problems need to be regularized to obtain 

reasonable approximations to x  Tikhonov regularization is the most well known method for solving 

nonlinear ill-posed problems, and it has received a lot of attention in recent years (cf.[2, 5, 6, 14, 15]). 

Iteration methods are also attractive since they are straightforward to implement for the numerical 

solution of nonlinear ill-posed problems. In [4], Landweber iteration [7] was extended to the study of 
nonlinear problems. In this paper, we contribute to the study of a finite dimensional approximation of 

iteration for nonlinear operator equations (1) ; the novel method we consider below requires a locally 

uniformly bounded Frechet derivative ( )F    of F , and is defined via the adjoint ( )F    of ( )F    as 

follows:  

 1 ( ) ( )( ( )), 0,1,2, ,k k k k kx x F x F x y F x k


      (3) 

where 0x  is is an initial guess which may incorporate a priori knowledge of an exact solution .x  If 

the iteration is applied to the perturbed problem with y
 instead of y  in (3), then we rewrite kx  
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instead of 
kx  for the iterates; we will always assume that 

0 0.x x   We emphasize that for a fixed 

number of iterations the process (1.3)  is a stable algorithm, even if y  does not belong to the range of 

.F   

We believe that in many practical examples it is almost impossible to check analytically. In addition, 

It is easy to check the following local property in a ball 
0( )R x  of radius   around 

0x :  

 ( ) ( ) ( ) ( )( ) ( ) ( ) ,F x F x F x F x x x F x F x     ‖ ‖ ‖ ‖ (4) 

where 
0

1
, , ( ) ( ).

2
x x R x D F     If y  does not belong to the range of ,F  then the iterates 

kx  of 

(1.3)  cannot converge but still allow a stable approximation of x  provided the iteration is stopped 

after ( )k k    steps according to a generalized discrepancy principle, i.e.,  

 ( ) ( ) ,0 ,  k ky F x y F x k k   
      ‖ ‖ ‖ ‖  (5) 

where   is a positive number depending on   of (1.4) , i.e.,  

 
2(1 )

2
1 2







 


 (6) 

In other words,  k  is one of the first indices for which the size of the residual ( )ky F x   has about 

the order of the data error. In this paper, we contribute to the study of stable method for solving 
nonlinear ill-posed problems. The rest of the paper is organized as follows: In Section 2 we point out 

that iteration (3) is well defined. Section 3 contributes to rates of convergence which can be derived if 

the sought solution admits some smoothness conditions.  

2. Convergence of the iteration 

As in the linear case the Landweber iteration can only converge if problem (1) is properly scaled. For 

our analysis we assume that  

Assumption 2.1. (i) Problem (1) is properly scaled, i.e.,  F  is Frechet derivative in 0( )R x , and the 

Frechet derivative ( )F x  at 0( )x R x  satisfies   

 0( ) 1, ( ) ( )F x x R x D F
   ‖ ‖  (7) 

(ii) There is a constant C  such that forever pair 0, ( )x x R x  there holds  

 ( ) ( ) ( ) ( )( ) ( ) ( ) ,F x F x F x F x x x C x x F x F x      ‖ ‖ ‖ ‖‖ ‖ (8) 

where x x‖ ‖ is sufficiently small.  

Lemma 2.1. If (4) holds and if x  is a solution of (1) in 0( )R x , then any other solution x  in 

0( )R x  fulfills ( ( ) ( )),x x N F x F x

   
    and vice versa.  ( )N   denotes the null space of an 

operator.  

Proof. It follows immediately from (4) that  

 
1 1

( ) ( )( ) ( ) ( ) ( ) ( )( ) ,
1 1

F x F x x x F x F x F x F x x x
 

        
 

‖ ‖‖ ‖ ‖ ‖ (9) 

holds for all 0, ( )x x R x  This implies the assertion.  

Lemma 2.2. Assume that x  is a solution of (1) in 2 0/ ( ),R x  and denote by k  the termination index 

of the iteration according to the stopping rule (5), (6) for the case of perturbed data y
 satisfying (2). 

If (4) and (8) hold, then we have   
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 1 ,0 ;k kx x x x k k 

       ‖ ‖‖ ‖  (10) 

and if 0,     

 
2

1

( ) .k

k

y F x




  ‖ ‖  (11) 

Proof. Let 0 .k k   Exploiting (3), (4) and (7), we obtain by induction that 
/ 02( ) ( )kx R x R x

    

and that   
2 2 2

1 1 1

2 2

2( , )

2( ( ), ( ) ( ) ( ) ( )( ) )

( ( ), ( ( ( ) ( )) )( ( ))) ( )

( ) ((2 1) ( ) 2

k k k k k k k

k k k k k

k k k k k

k k

x x x x x x x x x x

y F x F x F x F x F x x x y y

y F x I F x F x y F x y F x

y F x y F x

      

      

       

   

     



 



      

      

      

 



 





‖ ‖ ‖ ‖ ‖ ‖

‖ ‖

‖ ‖ ‖ ‖ (1 ) ) 

 

Since k k  the right hand side is negative because of (5), and we have verified (10). If 0,   then 

we have actually verified the sharper inequality  2 2 2

1 (1 2 ) ( ) ,k k kx x y F x x x       ‖ ‖ ‖ ‖ ‖ ‖ valid 

for all 0.k N  By introduction, we obtain  
2 2

0

1

1
( ) ,

1 2
k

n

y F x x x








  


‖ ‖ ‖ ‖  and assertion (11) 

follows. We remark that if 0   then we can show in a similar way that   

 
1

2 2

0

0

( )
(1 2 ) 2(1 )

k

k

k

y F x x x  

  







  
  

‖ ‖ ‖ ‖  (12) 

Theorem 2.3. If (4) and (12) are satisfied and if (1) is solvable in 
2 0/ ( ),R x  then kx  converges to a 

solution 
/2 0( )x R x  of (1). If x  denotes the unique solution of minimal distance to 0 ,x  and if in 

addition ( ( ) ( )) ( ( ) ( ))N F x F x N F x F x        for all 0( ),x R x  then kx  converges to .x
  

Proof. Let x  be any solution of (1) in 2 0/ ( ),R x  and put : .k ke x x  From Lemma 2.2, it follows 

that] ke‖ ‖ is monotonically decreasing to some 0.    

We show next that ke  is a Cauchy sequence. For j k  we choose l  with j l k   such that   

( ) ( ) , .l iy F x y F x k i j    ‖ ‖‖ ‖                                              (13) 

We have  

.j k j l l ke e e e e e    ‖ ‖‖ ‖‖ ‖                                                 (14) 

and 
2 2 2

2 2 2

2( , ) ,

2( , ) .

j l l j l j l

l k l k l k l

e e e e e e e

e e e e e e e

    

    

‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖ ‖ ‖
                                      (15) 

For ,k   the last two terms on each of the right-hand sides of (15) converge to 
2 2 0.    We 

now apply (3) and (9) to show that ( , )l k le e e  also tends to zero as :k    
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1

1

1

1 1
2

1
2

| ( , ) | | ( ( ) ( )( ( )), |

| ( ( ), ( ) ( ) ) |

( ) ( ) ( )( )

(1 ) ( ) ( ) 2 ( )

(1 3 ) ( ) ,

l

l k l i i i l

i k

l

i i i l

i k

l

i i i l

i k

l l

i l i

i k i k

l

i

i k

e e e F x F x y F x e

y F x F x F x e

y F x F x F x x x

y F x y F x y F x

y F x

 




















 

 





   

  

   

     

 







 



‖ ‖‖ ‖

‖ ‖‖ ‖ ‖ ‖

‖ ‖

 

where we have used (12) to obtain the last inequality. Similarly, one can show that  
1

2| ( , ) | (1 3 ) ) .(
j

j l l i

i l

e e e y F x




   ‖ ‖  

With these estimates, it follows from (11) that the right-hand sides of (15) go to zero as ,k   and 

then 
ke  and 

kx  are Cauchy sequences. We denote by x  the limit of 
kx  and observe that x  is a 

solution of (1) because the residuals ( )ky F x  converge to zero as .k   

It follows from Lemma 2.1, (1) has a unique solution x  of minimal distance to 0 ,x  which satisfies  

0 ( ( ) ( )) .x x N F x F x        

If ( ( ) ( )) ( ( ) ( )),k kN F x F x N F x F x        for all 0,1,2, ,k   then it is clear that  

0 ( ( ) ( )) , 1,2, ,kx x N F x F x k        

hence, 0 0 ( ( ) ( )) .x x x x x x N F x F x     

 
          

This together with Lemma 2.1 implies that .x x

   

Theorem 2.4. Under the assumptions of Theorem 2.3, if y
 fulfills (2), and if the perturbed 

iteration is stopped with ( )k   according to the discrepancy principle (5), (6), then 

( ) , 0.kx x

 
    

Proof. Let , 1,2, ,n n   be a sequence converging to zero as ,n  and let : n

ny y


  be a 

corresponding sequence of perturbed data. For each pair ( , )n ny  denote by ( )n nk k   the 

corresponding stopping index determined from the discrepancy principle (5), (6).  

Assume first that k  is a finite accumulation point of .nk  Without loss of generality we can assume 

that nk k  for all .n N  Thus, from the definition of nk  it follows that  

( ) .n

n k ny F x
  ‖ ‖                                                         (16) 

Since kx  depends continuously on y
 as k  is fixed now, we also have   

, ( ) ( ), .n n

k k k kx x F x F x n
 
                                                 (17) 

Taking the limit in (16) yields ( ) .kF x y  Thus, kx x  by Theorem 2.3, and with (17) we obtain 

, .n

kx x n


  It remains to consider the case where , .nk n  Without loss of generality we 

assume that nk  increases monotonically with .n  Then, for n m  we conclude from Lemma 2.2:  

1

.

n n n

n n m

n

m m m

k k k

k k k

x x x x x x

x x x x

  



  



    

   

‖ ‖ ‖ ‖ ‖ ‖

‖ ‖‖ ‖
                                        (18) 
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From Theorem 2.3 we deduce that we can fix m  so large that the last term on the right-hand side of 

(18) is sufficiently close to zero; now that 
mk  is fixed, we can apply (17) to conclude that the 

left-hand side of (18) must go to zero as ,n  and the proof is complete. 

3. Rates of convergence 

In Section 2 we have considered the convergence of ,n

nkx
  but we cannot obtain any information on the 

rates of convergence. In fact, the rates of convergence can be arbitrarily slow. Therefore, to guarantee 

a suitable rate, some additional assumptions should be imposed on x  and these conditions are 

called ”source conditions.” The following one is frequently used in nonlinear ill-posed problems: 

there is a 0   and an element f X  such that   

0 ( ( ) ( ))x x F x F x f                                                      (19) 

In contrast to Tikhonov regularization, assumption (19) is not enough to obtain convergence rates for 

the proposed iteration; to proceed, an additional properties of :F  we require 

 ( ) ( ( ) ( )),xF x R F x F x                                                     (20) 

where 
0{ : ( )}xR x R x  is a family of bounded linear operators :xR Y Y  with 

0, ( ),xR I C x x x R x

   ‖ ‖ ‖ ‖                                           (21) 

and C  is a positive constant. Note that in the linear case ;xR I  therefore,(20) may be interpreted as 

a further restriction of the “nonlinearity” of .F  In particular, (20) implies that 

0( ( ) ( )) ( ( ) ( )), ( ).N F x F x N F x F x x R x

         It is not difficult to see that (20), (21) imply (8) and 

thus (4) with x x for   sufficiently small, since for 
0( )x R x  

1

0
( ) ( ) ( ) ( )( ) ( ( ) ( ) ( ))( )

( ) ( ) ( )( )

3
( ) ( )( ) ( )

2

t

t

z x

F x F x F x F x x x F z F x F x x x dt

R I I R F x F x x x dt

C F x F x x x x x

    

   

    

         

     

   

‖ ‖ ‖ ‖

‖ ‖

‖ ‖‖ ‖

         (22)                                                        

holds, where : (1 ) ,0 1.tz tx t x t      

Theorem 3.1. Assume that problem (1) has a solution in /2 0( ),R x that y
 satisfies (2) and that F  

fulfills (4), (7), (20) and (21). If 0x x   satisfies (19) with some 0 1   and f‖‖ sufficiently small, 

then there exists a positive constant ,c  depending on   only, with   

( 1)kx x c f k  

  ‖ ‖ ‖‖                                                    (23) 

1( ) ( 1)ky F x c f k   

  ‖ ‖ ‖‖                                              (24) 

for 0 .k k   Here, as before, k  is the stopping index of the discrepancy principle (5), (6). In the 

case of exact data, (23) and (24) hold for all 0.k   

Proof. By Lemma 2.2, the iteration (3) is well defined, since all iterates ,0 ,kx k k

   remain in 

0( ) ( ).R x D F   Moreover, by (12), the stopping index k  is finite for 0.   To simplify the 

notation we put : ( )K F x  and : ,k ke x x   the error of the k th iterate .kx  Given 0 ,k k   we 

obtain from (3) the representation   
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1 ( ( ) ( )) ( ( ) ( ))( ( )) ( )

( ) ( ( ) ( ) ( )) ( )( ( ))

( ).

k

k k k k k k

k k k kx

e e K F x F x K F x F x y F x K y y

I K K e K F x F x K x x K I R y F x

K y y



     

   



    



     



       

       

 



          (25) 

Similar to (22),  

1
( ) ( ) ( ) .

2
k k k kF x F x K K x x C e K Ke       ‖ ‖ ‖ ‖‖ ‖ 

On the other hand, for 0 ,k k   note that 2,   and the triangle inequality imply that   

( ) 2( ( ) ) 2 ( ) ,k k ky F x y F x y F x         ‖ ‖ ‖ ‖ ‖ ‖                                (26) 

hence, by (21) and (9), note that 
1

,
2

     

( )( ( )) 4 .
k

k k kx
I R y F x C e K Ke

    ‖ ‖ ‖ ‖‖ ‖ 

Consequently, 
ke  satisfies the following inhomogeneous difference equation  

1 ( ) ( ),k k ke I K K e K z K y y  

       

with   

9
,0 .

2
k k kz C e K Ke k k

  ‖ ‖ ‖ ‖‖ ‖                                           (27) 

For 0 ,k k   this yields the “closed expression” for the error  

1 1

0 1

0 0

( ) ( ) ( ) ( ),
k k

k j j

k k j

j j

e I K K e I K K K z I K K K y y
 

    

 

 

                           (28) 

and consequently  
31 1

2
0 1

0 0

( ) ( ) ( ) ( ) ( ).
k k

k j j

k k j

j j

K Ke I K K K Ke I K K K K z I K K K KK y y
 

       

 

 

         

We now want to show that 

1

( 1) ,

( 1)

j

j

e c f j

K Ke c f j









  



 

 

‖ ‖ ‖‖

‖ ‖ ‖‖
                                                (29) 

hold for all 0 j k   with  
2

2(2 1)
2[1 ].

8 8 1
c



 



 

 
 

For 0j   (29) is always true; for 0j   the proof is done by induction: we assume that (29) is true for 

all 0 j k   with some ,k k  and we have to verify (29) for .j k  Since 1K ‖ ‖  by assumption, 

we have, cf., e.g., [16, 17],  

1

0

( ) , ( ) ( ) ( 1) ,
k

j k

j

I K K K k I K K K K k 


    



    ‖ ‖ ‖ ‖  

1

12( ) ( 1) , ( ) ( 1) .j jI K K K j I K K KK j


         ‖ ‖ ‖ ‖  

With these bounds and (28) we obtain  
11

2
1

0

( 1) ( 1) .
k

k k j

j

e k f j z k 
 



 



    ‖ ‖ ‖‖ ‖ ‖  

We apply (27) and (29) to estimate the sum on the right-hand side:  
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1 1 11 1 2
2 2 22 2 2

1

0 0

9 1 1
( 1) ( 1) ( ) ( ) .

2 1 1 1

k k

k j

j j

j k j
j z Cc f k

k k k




    


  

 

 
  

  
 ‖ ‖ ‖‖  

The sum on the right-hand side, denoted by ,kS  can be estimated from above by   

1 1
1 2

2 2

1
2

2

1
(1), 0 ,

4

1
(1 ) ( ( 1)), ,

4

1 1
(( 1) ), ,

4 2

h

k
h

O

S s s ds O ln k

O k











   




 




    



  


  

and hence,  
11

22
1

0

( 1) ( 1) ,
k

k j

j

j z C k f



 


 



   ‖ ‖ ‖‖  

where 0C   depends on 
1

(0, ]
2

  but is independent of ,f k‖‖  and .  Finally, we obtain 

(1 )( 1) .ke C f k k

    ‖ ‖ ‖‖  

Similarly, one can prove that   
1

1 2(1 )( 1) ( 1)kK Ke C f k f k

 


      ‖ ‖ ‖‖ ‖‖                                   (30) 

Because of (9) and (5), (6) we have  

1 1
2 ( )

1 2 1
k ky F x K Ke 

 
 


   

 
‖ ‖ ‖ ‖ 

Together with (30) this yields   

2
18 8 1

(1 )( 1)
2(2 1)

C f k f



 




  
  


‖‖ ‖‖                                         (31) 

Combining these estimates, we arrive at  
1)( 1) , ( 1) ,k ke c f k K Ke c f k       ‖ ‖ ‖‖ ‖ ‖ ‖‖  

with  
2

2(2 1)
[1 ](1 )).

8 8 1
c C f



 


  

 
‖‖   

Now, if f‖‖ is sufficiently small, namely if 1,C f ‖‖  then ,c c  and (29) follows for ;j k  thus, 

(23) has been verified. Assertion (24) follows from (29) by means of (26) and (9).  

Theorem 3.2. Under the assumptions of Theorem 3.1 we have  
1 1 2

1 2 1 2 1
1 2( ) , ,k

f
k c x x c f


  

 

  
   

‖‖
‖ ‖ ‖‖                                     (32) 

with some constants 1 2, 0,c c   depending on   only.  

Proof. We use the same notation as in the proof of Theorem 3.1. By (28) we can write  
1

0

( ) ( ) ( ),
k

j

k k

j

e K K f I K K K y y 


 


  



                                         (33) 

where  
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11

2
1

0

( ) ( ) ( ) ,
k

k j

k k j

j

f I K K f I K K K K z




 




  

 



     

and , 0,1,2, , 1,j jz z j k  ‖ ‖‖ ‖   

As in the proof of Theorem 3.1 we obtain  
1 11

2
2 2 2 2

0

9
( 1) ( ) ,

2

k

k

j

f f Cc f j k j
 




  

 



   ‖ ‖‖‖ ‖‖  

where C  is a finite, positive number which depends on   but not on .k  As f‖‖ has to be small 

anyway, there is no loss of generality in restricting 1.f ‖‖  Hence, 

 (1 ) .kf C f
 ‖ ‖ ‖‖                                                         (34) 

On the other hand, from (9) we have  

( ) [ ( ) ] ( )

(1 ) ( )

((1 )(1 ) 1) .

k

k k

k

K K K f Ke I I KK y y

y F x

 

 

  



 



     

   

   

‖ ‖ ‖ ‖

‖ ‖  

Thus, together with (34), the interpolation inequality yields  
1 2

2 1 2 1( ) kK K f C f


  


  ‖ ‖ ‖‖  

for some constant 0.C   

From (33) we conclude  

( ) ,k ke K K f k 
 



 ‖ ‖‖ ‖                                                  (35) 

and thus the assertion is proved if 0.k   Otherwise, we apply (31) with 1k k   to obtain  

1 ,
f

k c





 
‖‖

 with c  as in Theorem 3.1; this yields (32), and the error estimate now follows again 

from (35), and the proof is complete. 
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