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Abstract 

Considered is a spectrum-sharing network consisting of a primary user and a secondary 

decode-and-forward relaying system with a direct source-destination link, then a transmit 

antenna selection (TAS) scheme for the secondary relaying system are investigated over 

Rayleigh fading channels, and an exact closed-form expression for the outage probability are 

derived. Furthermore, Monte Carlo simulations are presented to confirm the analytical result, 

and show that the TAS scheme can also improve the diversity gain in the spectrum-sharing 

network. 
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1. Introduction 

Transmit antenna selection (TAS) schemes have been extensively investigated in two-hop relaying 

systems [1-4], and it has been shown that these TAS schemes can not only improve the diversity gain 

but also reduce the system complexity. In addition, the performance analysis for cognitive radio with 

applications to relaying systems has gained much attention in the research community [5, 6]. But 

there are few works to evaluate the TAS schemes for relaying systems in the spectrum-sharing 

scenario. 

In this Letter, we investigate the performance of a TAS scheme over Rayleigh fading channels for a 
secondary decode-and-forward (DF) relaying system which coexists with a primary user (PU) in a 

spectrum-sharing network. An exact closed-form expression for the outage probability is derived and 

corroborated by Monte Carlo simulations. Moreover, the analytical result shows that the TAS scheme 

can achieve more diversity gain with more transmit antennas at the secondary source. 

2. System and Channel Model 

We consider a spectrum-sharing network where a secondary two-hop relaying system coexists with a 

primary user ( PU ). In the secondary two-hop relaying system, a source S  employs a relay R  to 

communicate with a destination D  using the DF protocol, and the direct link between S  and D  

exists and can not be neglected. We assume that S  is equipped with tN  antennas and both R  and D  

have a single antenna. The secondary relaying system operates in half-duplex mode, and then the 

end-to-end information transmission occupies two time slots. During the first time slot, S  selects a 
certain transmit antenna to broadcast its signal to R  and D . During the second time slot, if the source 

information can be fully decoded at R , then R  regenerates and transmits the source information to 

D ; otherwise, R  remains idle. 

Let 
 i

S  denote the thi  transmit antenna at S , and the channel coefficients of the links 
 

PU
i

S  , 
 i

S D , 
 i

S R , PUR  and R D  are denoted by ig , SD,ih , SR,ih , f  and RDh , respectively. 

To ensure that the secondary system does not cause any harmful interference on the PU , the transmit 

power at 
 i

S  and R  can be set as 
2

S, pi iP I g  and 
2

R pP I f , where pI  denotes the maximum 
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tolerate interference power at the PU  [5]. Thus, the instantaneous signal-to-noise ratios (SNRs) of 

the links 
 i

S D , 
 i

S R  and R D  are given by 
2 2

SD, p SD,i i ih g  ,
2 2

SR, p SR,i i ih g   

and 
2 2

RD p RDh f  , where 
p p 0I N , and 

0N  denotes the variance of the additive white 

Gaussian noise at R  and D . It is obvious that these two random variables 
SD,i  and 

SR,i  are not 

statistically independent. 

The optimal transmit antenna 
 k

S  at the source can be selected as  

SD,
1

SD,

arg max , 0

arg max , 0

t

i
i N

i
i C

C
k

C





 



 


 


                                                      (1) 

where  SR, th1 ,t iC i i N       denotes the decoding set, and C  denotes the cardinality of the 

decoding set [4]. Thus, the end-to-end instantaneous SNR   can be expressed as follows:  

SD,
1

SD, RD

max , 0

max , 0

t

i
i N

i
i C

C

C



 

 



 


  
 

                                                   (2) 

Furthermore, we assume that all the channels are subject to independent Rayleigh fading, so 
2

ig , 

2

SD,ih , 
2

SR,ih , 
2

f  and 
2

RDh  follow independent exponential distribution with mean 
g , SD , 

SR , f  and RD , respectively. Then the distribution of 
SD,i ,

SR,i , and RD  can be given by the 

general case as follows: let 
pZ X Y , where X  and Y  follow independent exponential 

distribution with mean x  and 
y , respectively, then the cumulative distribution function (CDF) 

and probability density function (PDF) of Z  can be given respectively by 

 
p

Z

z
F z

z



 



,  

 
p

2

p

Zf z
z



 



                                         (3) 

where 
y x   . Let 

SD g SD   , 
SR g SR    and RD f RD   , then the CDFs and 

PDFs of SD,i , SR,i  and RD  possess the same forms as (3).                                                           

3. Outage Probability 

In accordance with the law of total probability, the outage probability can be expressed as 

   
t

t

out th 0

1

Pr Pr
N

n

n

N
P I C n I

n




 
      

 
                                   (4) 

where nI ,  t0,1, ,n N , denotes the outage probability when the cardinality of the decoding set is 

n , and 

     
t

t

SR , SR ,

SR
th th

SR SR

Pr 1
i i

n N n
n N n

C n F F 


 

   


    

                  
                    (5) 

where  
SR ,i

F   denotes the CDF of SR,i , th  denotes a certain threshold SNR, and 
p th    can be 

treated as the normalised SNR. Firstly, 0I  can be derived as follows: 
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 

 
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 


      



    

    
      

    

  
     

     

                                (6) 

where  2

ig
f   denotes the PDF of 

2

ig . Moreover, conditioned on 
SR, thi  , we can defined a new 

random variable as  SD, SR, thi i iZ    , then 
nI ,  t1, ,n N , can be expressed as 

 RD th
1

Pr maxn i
i n

I Z  
 

                                                       (7) 

According to Bayes’ theorem, the CDF of 
iZ  can be derived as follows: 

   
 

 
SD, SR, th p SR th

SD, SR, th

SD p SR thSR, th

Pr ,
Pr 1

Pri

i i

Z i i

i

z
F z z

z

     
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    

  
     

 
         (8) 

Then the CDF of 
1
max i

i n
Z

 
 can be given by    

1
max i i

i n

n

Z ZF x F z
 

    , and nI ,  t1, ,n N , can be 

derived with the aid of the binomial theorem as follows: 

   

 

th

RD
1

th

max th
0

p pRD th SR th

0
1p RD th RD SD SD

i
i n

n Z

k
n

k

I F x f x dx

n
P x dx

k









    

     

 



 

  
    

   



 
                             (9) 

where  
RD

f   denotes the PDF of RD , and 

 
2

p p SR th
th

RD SD SD

1
k

P x

x x
   


  

   
      

    

                                    (10) 

Using [7, eq. (2.102)], we can obtain the partial faction expansion of  P x  as follows: 

  2 1 1

2
p p SR thp

th

RD SDRD

1
1

1
1

p SR th
th

SD SD

k
k j

k j
j

A A B
P x
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B

x

   


 

  


 
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 

 
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  
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  


  
    
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
                                (11) 

where  2 th1
k

A    ,    
1

1 th

k
A k 


    ,    

1 1

1 th1
j j

k jB j 
 

 
   
 

, 1,2, ,j k , and 

SR SD SD RD1          . Substituting (11) into (9), and after some manipulations, we can 

have 
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



                           (12) 

Finally, substituting (5), (6) and (12) into (4), we can obtain a closed-form expression for the outage 
probability. 

4. Simulation Results 

To validate the analytical result, computer simulations are performed to evaluate the outage 

performance. Without loss of generality, we set 
g f 2   , 

SD 2.5  , SR 3   and RD 3.5  . 

Fig. 1 shows the outage probability against   for t 1,2,3,4N  . As can be seen from Fig. 1, the 

simulated result math completely with the analytical result (?), the secondary relaying system with 

TAS ( t 2N  ) outperform significantly that one without TAS ( t 1N  ), and the TAS scheme can 

achieve more diversity gain with larger tN . 
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Fig. 1 Outage probability against   for t 1,2,3,4N 
 

5. Conclusion 

A TAS scheme for a secondary DF relaying system coexisting with a PU is investigated in a 

spectrum-sharing network, and an exact closed-form expression for the outage probability is derived. 

The analytical result shows that the TAS scheme can achieve more diversity gain with more transmit 

antennas at the secondary source. 
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