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Abstract 

Structural health monitoring aims to detect damages in man-made engineering structures by 

monitoring changes in their vibration response. Unsupervised learning algorithms can be used 

to obtain a model of the undamaged condition and detect which new samples of the structure 

are not in agreement with it. However, in real structures with a sensor network configuration, 

the number of candidate features usually becomes large. Therefore, complexity increases and 

it is necessary to perform feature selection and/or dimensionality reduction to achieve good 

detection accuracy. In this paper, we propose to exploit the three-way structure of data and 

apply a true multi-way data analysis algorithm: Parallel Factor Analysis. A simple model is 

obtained and used to train novelty detectors. The methods are tested both with real and 

simulated structural data to assess that the three-way analysis can be successfully used in 

structural health monitoring. Furthermore, the usefulness of the approach for feature selection 

is also analyzed. 
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1. Introduction 

The purpose of structural health monitoring (SHM) is to identify damages in engineering structures 

[1]. To achieve that, it compares certain damage-sensitive features, extracted from measured data of 

the monitored structure, to those of a baseline model of the normal condition. Therefore, when the 
model is obtained from data, this process can be framed as a problem of intelligent feature extraction 

and machine learning [2]. This is the usual case in real large structures where, generally, limited prior 

knowledge about the model is available. 

A three-way decomposition is suitable because data in this application are naturally represented as a 
three-way structure with J features measured in K different locations during I time periods. This type 

of data has been successfully analyzed in other application fields, such as multichannel 

electroencephalograms (EEG) [3] or chemometrics [4], by means of multi-way data analysis 

algorithms[5-6], which take advantage of the additional modes of data to produce simple and robust 

models. Parallel Factor Analysis(PARAFAC) has been selected among those methods because it 

presents certain advantages regarding simplicity [4]. Indeed, the aim is to produce parsimonious 

models that are useful in understanding the monitored structure and result in better damage detection. 

This approach is tested on three different structures and the results are assessed with four standard 

novelty detection algorithms. They are evaluated in terms of the area under the ROC (receiver 

operating characteristic) curve [7], which gives a single number measure of the decision threshold-

independent diagnostic accuracy of the classifiers. 

2. Experimental 

Parallel Factor Analysis, also known as Canonical Decomposition, is a method for decomposing 

Nth-order tensors that extend the idea of bilinear factor models to multilinear data [4]. It was 
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originally proposed in[8-9]. For the three-way case, this algorithm decomposes data into triads or 

trilinear components. The result is given by three loading matrices, A, B and C, with elements aif, bjf 

and ckf, where f=1,…,F and F is the number of components. A graphical illustration can be seen in 

Fig. 1.  

 

Fig. 1. Parallel Factor Analysis decomposition. 

The first experiment uses data from a wooden bridge structure in laboratory conditions [10]. This 
structure was investigated also in our previous work [11-12]. An electrodynamic shaker excites its 

vertical, transverse and torsional modes to simulate random ambient excitation in the structure. Small 

masses are attached to simulate damages in seven different locations. The heaviest ones only weigh 

0.5% of the mass of the structure, which is 36 kg. The bridge is instrumented with 15 sensors, which 

measure acceleration in two directions, as shown in Fig. 2, and whose locations are not optimized 

according to the known locations of the damages. Data were acquired with a sampling frequency 256 
Hz. We considered transmissibility magnitudes below 120 Hz, obtained by means of a Fast Fourier 

Transform (FFT) [13]. Among 105 possible pairs of sensors, only those linking adjacent ones were 

considered. This choice was suggested by the concept of nearest-neighbor coupling [14], which 

assumes that transmissibility between two certain sensors is only sensitive to the changes between 

them when a single excitation is applied anywhere except near a boundary condition. The undamaged 

measurements are randomly distributed between the training and the test sets for each iteration: 70% 

of them are used for training whereas the rest is used for the test set, along with all the faulty samples. 

 

Fig. 2. Bridge structure and placement of the sensors. 

Fig. 3 shows the damage detection results for the three experiments. From them all, a common 

conclusion can be drawn: Both parameters are important to achieve an optimal diagnostic accuracy. 

Indeed, the results suggest that larger averaging windows produce more accurate detectors. The noisy 

nature of the signals used to train the detectors explains this finding, which confirms the results 
pointed out in [15]. High variance and the presence of outliers in data make it difficult to obtain good 

classifiers, so it seems advisable to use the largest window, as long as there are enough data to train 

a good detector. From a wireless sensor network (WSN) perspective, this is a good characteristic, 

since it contributes to reduce transmission rate. Wireless sensor nodes are usually equipped with a 

limited power source and data communication consumes a significant amount of energy, so sensor 

lifetime is strongly affected by the transmission power efficiency. Nevertheless, if on-line monitoring 

is considered, it will also be necessary to take into account how often the SHM reports are expected. 
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Fig. 3. AUROCs for varying averaging window lengths and frequency resolutions with standard 

PARAFAC. (a) Bridge. (b) Bookshelf. (c) Beam. 

It was explained before that the number of components is a free parameter of the PARAFAC algorithm. 
For that reason, the behavior of the novelty detection methods was analyzed with respect to the 

number of factors, using the optimal combination of resolution and averaging according to the 

previous results. From the results shown in Fig. 4, we can conclude that the number of components 

selected by CORCONDIA, which only considers undamaged data and is done before novelty 

detection, is optimal for the bridge and bookshelf structures and slightly underestimated for the 

simulated beam. 

 

Fig. 4. Performance with respect to the number of components for bridge, bookshelf and beam. The 
highlighted number is the one selected by CORCONDIA for each structure. 

3. Results and discussion 

It can be seen that, in general, the distribution of the instances labeled as damaged is different to the 

baseline model. Nevertheless, there are some undistinguishable points that generally correspond to 

damages caused by the lighter weights, which may not change the response of the bridge enough. 

This is shown in Fig. 5, although this figure must be interpreted with care, because PARAFAC scores 
are not expressed on an orthonormal basis [4].  However, detectability varies for different weights 

and positions of the damage. A line plot of the components reveals that damages tend to be strongly 

detectable in one of the components whereas they show values close to normal in the other ones, and 

those discriminant components are different depending on damage location (see Fig. 6). For instance, 

component 1 shows a mismatch between the model and the instances corresponding to damage 5, 

whereas component 2 shows a clear mismatch for damages 4 and 7 (these damages have been 

annotated in Fig. 2 for a clear interpretation). It should be noted that the first component of the spatial 

mode gives the highest score to the pair 7–8 and the second component to the pair 1–4 (see Fig. 7). 

These locations highlighted in the decomposition of the training data are consistent with the situation 

of the corresponding damages. 
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Fig. 5. Training and test data of the bridge experiment for plain PARAFAC and PARAFAC on 
centered data. Damaged and undamaged test cases are labeled with different markers. 

 

Fig. 6. Visual comparison of training (blue solid line) and test data (red dashed line) of the bridge 
experiment in the three components. The shaded area is used to represent the test instances labeled 

as damaged. In the first row, the results obtained with PARAFAC are shown. The second row 

shows the results nonnegative PARAFAC and the third row the ones for PARAFAC on centered 

data. The components have been rearranged to make them match and ease the visualization. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

 

Fig. 7. The plots show the sensor pair scores for each component in the bridge experiment. 
Connections with a dark color represent higher scores. 

For the bookshelf structure, the input data were obtained from a 4096-point FFT and with averaging 

windows of 20.48 s. The number of components for the decompositions was set to 2 using the 

CORCONDIA criterion (30×640×12). The analysis of the results shows, in general, similar effects to 
the ones discussed before. However, in this case, centering apparently succeeds in projecting data 

onto a space where the decomposition is computed more easily. Again, detection of damage is easier 

in certain components, as the one shown in Fig. 8. Nevertheless, there is no interpretable association 

in this experiment between components with high damage detectability and scores of loading matrices. 

Nearest neighbors classifier gives the worst detection results. 
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Fig. 8. Abnormal behavior in damaged instances of the bookshelf. Obtained with PARAFAC on 

centered data. 

Four components were used for the cantilever beam. Features were obtained every 20 s by averaging 
the ones obtained with a 2500-point FFT (20×160×19). Detectability of damages is again high in this 

experiment. In this case, both the regular decomposition and the one on centered data provide better 

results than the constrained decomposition. One component shows a visible drift from the baseline 

model (Fig. 9) in every decomposition. That agrees with the growing nature of damage. 

Decompositions of training data always show a high score for the pair 9–10, located in the middle of 
the structure, in the discriminant component. The best results in this experiment are achieved by the 

k-NN classifier. 

 

Fig. 9. Drift caused by increasing damage in the cantilever beam. Obtained with PARAFAC on 
centered data. 

4. Conclution 

We presented a structural health monitoring problem as a novelty detection problem in the three-way 

analysis setting. The three aspects of data are time windows, frequencies and sensor pairs. We 

demonstrated that this approach can yield good damage detection results as well as a criterion to 
select the features of the system. 
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