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Abstract 

Wehave solved the constrained optimization problem max min{𝜆1(𝒗), … , 𝜆𝑛(𝒗)},  ∀v ∈  Ω, 

subject to the affine combination conditions ∑ 𝝀𝒊(𝒗)𝒏
𝒊=𝟏 = 𝟏 and ∑ 𝝀𝒊(𝒗)𝒗𝒊

𝒏
𝒊=𝟏 = 𝒗, where Ω is 

an arbitrary polytope with vertices v1,v2,··· ,vn. The resulting coefficient functions λi, i = 1,2,···,n 

are unique and turn out to be both analytically elegant and geometrically intuitive. They also 

satisfy all the desired properties of generalized barycentric coordinates. We name these 

functions “max-min” coordinates and provide an efficient algorithm to compute them. 

Throughout this paper, we confine our discussions to the planar case, but all the results can 

easily be extended to higher dimensions. 

Keywords  

Barycentric coordinates, convex polygon, convex optimization, max-min.  

1. Introduction 

1.1 Barycentric coordinates 

Barycentric coordinates for simplices are commonly used in various computational sciences. They 

provide a natural and often the unique way of parameterizing the inside points, or weighting all kinds 

of data sampled on the vertices. The need to generalize these coordinates to arbitrary convex 

polytopes has long been the interest in many applications such as boundary interpolation, texture 

mapping and free-form deformation. 

 

Figure 1. A convex n-gon with labeled vertices. 

The algebraic definition of this coordinates system is similar for all dimensions, so we will confine 

our discussion to the 2D case. Let Ω be a planar convex n-gon, as shown in Figure 1, where bold v1, 

v2, ..., vn are used to denote all the vertices. For convenience, we will henceforth identify all points p 
∈ Ω with points p ∈ R3, whose third coordinates are all one. 

For any point v ∈ Ω, a set of non-negative real numbers (λ1, λ2, ... , λn) are called barycentric 

coordinates of v with respect to Ω, if 
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For any point v ∈ Ω, a set of non-negative real numbers (λ1, λ2, . . . , λn) are called barycentric 

coordinates of v with respect to Ω,  if 

                                                         (1) 

And 

                                                               (2) 

Since all the points lie on the same plane and we already add a third component “1” to each of them, 
the property (2) can be deduced from (1) and is thus redundant in our discussion. 

The fact that Ω is convex guarantees that the above defined barycentric coordinates always exist for 

any v ∈ Ω. They also are unique if v lies on the boundary of Ω. We provide a short proof here, which 

again shows the convenience of adding a third component. Suppose v lies on the edge v1v2, and v = 

λ1v1 +λ2v2. Assume there is another tuple of barycentric coordinates (µ1,µ2,...,µn) other than 

(λ1,λ2,0,...,0), then 

v = λ1v1 + λ2v2  = µ1v1 + µ2v2 + · · · +  µnvn.                        (3) 

Thus 

|v1v2v| = 0 = µ3|v1v2v3| + · · · + µn|v1v2vn|                          (4) 

Where, for example, |v1v2v3| is the determinant and represents the signed area of the triangle v1v2v3. 

All the determinants |v1v2vk|(k = 3,...,n) share the same sign because all the vk(k = 3,...,n) lie on the 

same side of the edge v1v2. Thus all the µk(k = 3,...,n) equal zero considering their non-negativity, and 

then λ1 = µ1, λ2 = µ2 follow. 

For v that lies inside Ω and not on the boundary, there are infinitely many ways of choosing its 
barycentric coordinates if n ≥ 4. The correspondences between points in Ω and their barycentric 

coordinates are called barycentric coordinates functions. We will denote these functions by bi, i = 

1,...,n, and rewrite property (1) as 

  ∑ 𝑏𝑖(𝒗)𝒗𝑖
𝑛
𝑖=1 = 𝒗,     ∀𝑣 ∈ Ω.                                                            (5) 

Although there are infinitely many ways of choosing bi, continuous functions are preferred in various 
applications and smooth functions, sometimes even rational functions are required [7]. 

1.2 A note on previous work 

In fact, there are infinitely many ways of constructing barycentric coordinates, but three main 

constructions are widely used, namely the Wachspress coordinates proposed by Wachspress[4], 

further investigated and generalized by others[6][3][7], the Sibson coordinates[5], and the mean value 

coordinates[1]. Floater etc[2] actually give a general construction method for all generalized 

barycentric coordinates, and categorize both Wachspress coordinates and mean value coordinates into 

a group called three-point coordinates. Here we provide an alternative geometric construction that is 
both intuitive and general enough to coincide with Floater’s general construction. 

As is shown in Figure 2(b), the dashed line polygon (a loop) is formed by vectors that are 

perpendicular to all the radial vectors. For example, you can rotate vector vvi counterclockwise and 

then rescale it to get uiui+1. According to equation (5), we know that ∑ 𝑏𝑖(𝒗)(𝒗𝑖 − 𝒗)𝑛
𝑖=1 = 0, which 

means barycentric coordinates are just the weights that balance the radial vectors to sum up to zero. 

Notice that the dashed vectors already sum up to zero because they form a loop, and the rotation 

transformation doesn’t change this. So barycentric coordinates can just be the ratios used in the 

rescaling process. 
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(a)                                                             (b) 

Figure 2: (a) The non-normalized weight ω. Wachspress: ωi(𝒗) =
2

𝑟𝑖
2 (cot𝛾𝑖−1 + cot𝛽𝑖); Mean value: ωi(𝒗) =

2

𝑟𝑖
2 (tan

𝛼𝑖−1

2
+ tan

𝛼𝑖

2
). (b) A general geometric construction 

By using angles θ1,θ2 as shown in Figure 2(b), it is not difficult to get the length of the vector viui+1, 

denoted by l2, and likewise the length of the vector uivi, denoted by l1. We get 

 

 

 

Since all kinds of loops can be formed by just changing the length of the radial vectors, say, ri to 
arbitrary ai ( i = 1···n, noting that this only changes the skeleton of the dashed virtual loop, not the 

original n-gon). So the edge length of the resulting dashed loop is 

 

 

 

And the edge length of the original n-gon is ri. Thus 

 

 

 

Which is just the general construction of Floater’s in[2]. 

There are also other ways to generalize barycentric coordinates. For example, the maximum entropy 
coordinates [9] are constructed from the maximum entropy principle but difficult to compute. The 

affine generalized barycentric coordinates [10] are similar to our coordinates but with different norms. 

2. The max-min coordinates 

We now propose a completely new way of generalizing barycentric coordinates. Denote by S the set 

of all possible tuples of barycentric functions, whose element can be written as F = (f1,...,fn). The 

thought that the “barycenter” should have the coordinates (
1

𝑛
, ⋯ ,

1

𝑛
), gave the author the idea that we 

could pick from infinitely many tuples of barycentric functions the one whose components are more 

“equal” to each other. Hence the following definition: 

Definition 2.1. Using the same notations as that of Figure 1. An element B = (b1, . . ., bn) ∈ S is called 

max-min if 
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min{𝑏1(𝒗), … , 𝑏𝑛(𝒗)} = max
F=(𝑓1,⋯,𝑓n)∈S

min{𝑓1(𝒗), … , 𝑓𝑛(𝒗)},  ∀  𝒗 ∈ Ω 

The idea is that we want the smallest component to be as large as possible. To justify this definition, 
we have to prove that the max-min barycentric coordinates functions always exist and are unique. 

Theorem 2.2. For convex n-gon Ω, the above defined max-min barycentric coordinates functions 
(b1,...,bn) always exist. 

Proof. First, we describe a procedure we called coordinates convergence, which modifies an 

arbitrarily chosen tuple of barycentric coordinates functions to make it more “max-min”. Let F = 

(f1,...,fn) be the starting tuple where n ≥ 4 and for a point v ∈ Ω, fi(v) = λi, i = 1,...,n, then v = 

λ1v1+···+λnvn. Without loss of generality, let λ1 ≤ λk, k = 2,...,n. If there is already an equality in these 

constraints, say λ1 = λ2, then combine the two terms to make 

 

v = λ1(v1 + v2) + λ3v3 + · · · + λnvn                                               (6) 

 

Otherwise, express v1 as v1 = µ2v2+µ3v3+···+µnvn, where µ2+···+µn = 1. Let 

 

 

                                                (7) 

 

Then clearly ∆λ > 0 and we get 

 

v = (λ1 + ∆λ)(v1  + v2) + (λ3  − µ3∆λ)v3  + · · · + (λn  − µn∆λ)vn                (8) 

 

An expression just like that of (6). Also, (7) indicates that λ1+∆λ ≤ λi−µi∆λ, for i = 3,...,n. If still n−1 

≥ 4, then perform the same procedure to expression (6) or (8). Continue with this n − 3 times, we will 

reach the final modified expression looking like this: 

 

v                                 (9) 

 

where λ1
′ ≤ 𝜆𝑛−1

′ , λ1
′ ≤ 𝜆𝑛

′  and λ1
′ ≥ 𝜆1. There are exactly (𝑛

3
)  modified expressions that all 

others can convergent into. So the values of the max-min barycentric coordinates functions at point v 
must be the coefficients of one of the modified expressions, thus exist.  

According to this proof, the max-min barycentric coordinates of any points v ∈ Ω must take the form 

of (λ,...,λi,...,λj,...,λ), where i < j, λi ≥ λ, λj ≥ λ and all other components equal λ. 

Theorem 2.3. For convex n-gon Ω, the max-min barycentric coordinates functions (b1,...,bn) are 
unique. 

Proof. It is enough to prove that for any point v ∈ Ω, the coordinates form (λ,...,λi,...,λj,...,λ) is unique. 

First, we show that for this form to be max-min, it must be that 

case 1: λi = λ or λj = λ; Or else, 

case 2: if λi > λ and λj > λ, then either j = i + 1, or i = 1 at the same time j = n, which means, vi and vj 

are adjacent points. 

Let c be the barycentric center of Ω, which means 

 

                                                       𝒄 =
1

𝑛
(𝒗1 + 𝒗2 + ⋯ + 𝒗𝑛)                                                      (10) 

Then 
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v = λv1  + · · · + λivi + · · · + λjvj  + · · · + λvn                              

= (λi − λ)vi + (λj  − λ)vj  + nλc                                               (11) 

 

We can solve this to get 

 

𝜆𝑖 − 𝜆 =
|𝒄𝒗𝒗𝒋|

|𝒄𝒗𝒊𝒗𝒋|
≥ 0,                                                                          (12) 

 

𝜆𝑗 − 𝜆 = −
|𝒄𝒗𝒗𝒊|

|𝒄𝒗𝒊𝒗𝒋|
≥ 0,                                                (13) 

 

𝑛𝜆 =
|𝒗𝒗𝒊𝒗𝒋|

|𝒄𝒗𝒊𝒗𝒋|
≥ 0,                                                     (14) 

 

If λi > λ and λj > λ, we show that points vi and vj are adjacent: If not, then there must be a point vk 

between them which can be expressed as  

vk − c = µ1(vi − c) + µ2(vj  − c), µ1  + µ2  > 1, µ1  > 0, µ2  > 0.                 (15) 

We then have vk = µ1vi + µ2vj + (1 − µ1 − µ2)c, and could get two new coordinates form 

(λ’,...,λ’i,...,λ’k,...,λ’) and (λ’’,..., λ’’j ,..., λ’’k,..., λ’’), by solving two similar vector equations as that of 

(11), where (i,j) is replaced by (i,k) and (j,k) respectively. We have 

 

𝜆𝑖
′ − 𝜆′ =

|𝒄𝒗𝒗𝒌|

|𝒄𝒗𝒊𝒗𝒌|
=

𝜇1|𝒄𝒗𝒗𝒊|+𝜇2|𝒄𝒗𝒗𝒋|

𝜇2|𝒄𝒗𝒊𝒗𝒋|
,                                               (16) 

 

𝜆𝑘
′ − 𝜆′ = −

|𝒄𝒗𝒗𝒊|

|𝒄𝒗𝒊𝒗𝒌|
= −

|𝒄𝒗𝒗𝒊|

𝜇2|𝒄𝒗𝒊𝒗𝒋|
> 0,                                        (17) 

 

𝑛𝜆′ =
|𝒗𝒗𝒊𝒗𝒌|

|𝒄𝒗𝒊𝒗𝒌|
=

𝜇2|𝒗𝒗𝒊𝒗𝒋|+(1−𝜇1−𝜇2)|𝒄𝒗𝒗𝒊|

𝜇2|𝒄𝒗𝒊𝒗𝒋|
                 

 

        =
|𝒗𝒗𝒊𝒗𝒋|

|𝒄𝒗𝒊𝒗𝒋|
+

1−𝜇1−𝜇2

𝜇2

|𝒄𝒗𝒗𝒊|

|𝒄𝒗𝒊𝒗𝒋|
> 𝑛𝜆,                                     (18) 

 

and 

      𝜆𝑘
′′ − 𝜆′′ =

|𝒄𝒗𝒗𝒋|

|𝒄𝒗𝒌𝒗𝒋|
=

|𝒄𝒗𝒗𝒋|

𝜇1|𝒄𝒗𝒊𝒗𝒋|
> 0,                                  (19) 

 

𝜆𝑗
′′ − 𝜆′′ = −

|𝒄𝒗𝒗𝒌|

|𝒄𝒗𝒌𝒗𝒋|
= −

𝜇1|𝒄𝒗𝒗𝒊|+𝜇2|𝒄𝒗𝒗𝒋|

𝜇1|𝒄𝒗𝒊𝒗𝒋|
,                               (20) 

 

𝑛𝜆′′ =
|𝒗𝒗𝒌𝒗𝒋|

|𝒄𝒗𝒌𝒗𝒋|
=

𝜇1|𝒗𝒗𝒊𝒗𝒋|+(𝜇1+𝜇2−1)|𝒄𝒗𝒗𝒋|

𝜇1|𝒄𝒗𝒊𝒗𝒋|
                          

 

        =
|𝒗𝒗𝒊𝒗𝒋|

|𝒄𝒗𝒊𝒗𝒋|
+

𝜇1+𝜇2−1

𝜇1

|𝒄𝒗𝒗𝒋|

|𝒄𝒗𝒊𝒗𝒋|
> 𝑛𝜆.                                            (21) 

 

Notice that both λ’ and λ’’ are greater than λ, and either λ’i − λ’ ≥ 0 or λ’’j − λ’’ ≥ 0. This means, at 

least one of the two new coordinates form is more max-min than (λ,...,λi,...,λj,...,λ), which is a 

contradiction. Thus vi and vj must be adjacent points. 

Now we can go back to the proof of uniqueness. Assume there is another max-min coordinates form 
(λ,...,λ’i,...,λ’j,...,λ), which also falls into the above two cases. Then 
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v = λv1  + · · · + λivi + · · · + λjvj  + · · · + λvn                                  

= λv1  + · · · + λ’ivi + · · · + λ’jvj + · · · + λvn                         (22) 

 

Which means 

 

(λi − λ)vi + (λj − λ)vj = (λ’i− λ)v’i + (λ’j − λ)v’j                                (23) 

 

If both forms fall into case 1, then without loss of generality, let λj = λ, λ’j = λ. Equation (23) then 

becomes (λi − λ)vi = (λ’i − λ)v’i. This is possible only if i = i’, which means the two forms are the same. 

On the other hand, if at least one of the two forms (for example the first one) falls into case 2, equation 

(23) can be normalized to: 

 

                                 (24) 

 

Considering the fact that (λi−λ)+(λj −λ) = (λ’i −λ)+(λ’j −λ) = 1−nλ. Since vi and vj are adjacent points, 

the left part of equation (24) can be viewed as a boundary point of Ω, lying on edge vivj. We already 

proved that the boundary points of Ω have unique non-negative coordinates, thus in equation (24), i 

= i’, j = j’. The uniqueness of the max-min coordinates form for v follows, and so does the conclusion 

of this theorem.  

This proof is also a way of calculating the max-min coordinates. We have already implemented in 
C/C++ the above algorithms for finding these coordinates. 

3. Geometric interpretation of the max-min coordinates 

As it turns out, the max-min coordinates have a very clear geometric interpretation. They are the 

simplest kind of barycentric coordinates, the triangulation coordinates, where the triangulations are 

determined by barycenters. See the pentagon example in Figure 3, where c is the barycenter. First 

determine which sub-triangle the point v falls in (in this case 4cvi−1vi), then 

                                        𝑏𝑖−1(𝒗) =
|𝒗𝒗𝒊−𝟏𝒗𝒊|+5|𝒄𝒗𝒗𝒊|

5|𝒄𝒗𝒊−𝟏𝒗𝒊|
,                                                   

𝑏𝑖(𝒗) =
|𝒗𝒗𝒊−𝟏𝒗𝒊|+5|𝒄𝒗𝒊−𝟏𝒗|

5|𝒄𝒗𝒊−𝟏𝒗𝒊|
,                                                                  (25) 

𝑏𝑗(𝑗≠𝑖−1,𝑖)(𝒗) =
|𝒗𝒗𝒊−𝟏𝒗𝒊|

5|𝒄𝒗𝒊−𝟏𝒗𝒊|
,                                                                     

 

Figure 3. A pentagon example, where c is the barycenter 
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Figure 4. A Quadratic Interpolation with Control Points 

4. C++ implementation of the max-min coordinates 

Finally, we supply the main C++ function for computing the max-min coordinates. 

double* CbcView::GetBaryc(double p[]) 

{ 

int flag1 = 0; int flag2 = 0; double coordiff1 = 0.0; double coordiff2 = 0.0; double mindiff = 1.0; for 

(int i = 0; i < numvert-1; i++) 

{ 

for (int j = i + 1; j < numvert; j++) 

{ double tempdenom = Det2(VectSub(vert[i], vert[numvert]), VectSub(vert[j], vert[numvert])); if 

(tempdenom != 0) 

{ double tempnumer1 = Det2(VectSub(p, vert[numvert]), VectSub(vert[j], vert[numvert])); double 

tempdiff1 = tempnumer1 / tempdenom; if (tempdiff1 >= 0) 

{ double tempnumer2 = Det2(VectSub(p, vert[numvert]), VectSub(vert[i], vert[numvert])); double 
tempdiff2 = -tempnumer2 / tempdenom; if (tempdiff2 >= 0) 

{ if (tempdiff1 + tempdiff2 <= mindiff) 

{ 

coordiff1 = tempdiff1; coordiff2 = tempdiff2; mindiff = coordiff1 + coordiff2; flag1 = i; flag2 = j; 

} 

} 

} 

} 

} } double* bcp = new double[numvert]; for (int i = 0; i < numvert; i++) 

{ bcp[i] = (1 - mindiff) / numvert; 

} bcp[flag1] += coordiff1; bcp[flag2] += coordiff2; return bcp; 

} 
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