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Abstract 

In order to correct or prevent the quantum error caused by quantum noise in quantum 

communication and improve the anti-jamming ability of information, a method of constructing 

quantum code using algebraic geometry code is proposed. Algebraic geometry code has good 

performance parameters and the ability to detect and correct errors, so the quantum code 

constructed using algebraic geometry code also has good performance. Using the CSS 

construction method, a series of quantum two-point codes on a Hermitian curve are 

constructed, and the parameters such as the dimension and the minimum distance of the 

quantum code are calculated. Finally, comparing with the quantum Hermitian one-point code, 

it is shown that the two-point code has better performance parameters than the one-point code. 

Keywords  

Algebraic-geometry code, Hermitian curve, Quantum error correction code, two-point code. 

1. Introduction 

Quantam computer is a combination of quantum mechanics and computational problems. It is a 

research hotspot in recent years and has aroused widespread social attention [1]. Quantum coherence 

plays a fundamental role in various fields of quantum information theory (quantum computer, 

quantum cryptography and quantum communication [2], etc.). But under the influence of noise in 

quantum channels, the information carried by quantum states is destroyed. Quantum coherence 

inevitably decays exponentially with time, leading to quantum decoherence [3]. Therefore, whether 

or not the noise can be effectively controlled can be said to play a decisive role in whether the 
quantum operation process can be effectively realized. The function of quantum error correcting code 

(hereinafter referred to as quantum code) is to protect quantum information from noise interference, 

which is very important for quantum computing. Although the basic idea of quantum code and 

classical code is the same, it is necessary to introduce information redundancy appropriately to 

improve the anti-interference ability of codeword. However, the physical characteristics of quantum 

state determine that it is not a simple extension of classical code, and its coding method is more 

Complex [4]. The first quantum code was discovered by Peter Shor in 1995, which led to efforts to 

find quantum codes that are more efficient and can correct more errors [5]. In the second year, Shor 

and Calderbank discovered the first family of quantum error correction codes [6]. In recent years, 

various types of quantum codes have emerged [7-9]. 

Algebraic geometry was discovered by Goppa in the 1980s. This discovery made the abstract branch 

of mathematics, algebraic geometry, applied to communication engineering through coding theory. 

Starting with the history of algebraic geometry, people have studied the code on the Hermitian curve. 

The first systematic method of constructing a one-point code on a Hermitian curve was proposed by 

Tiersma, who found that the dual code of a one-point code on the Hermitian curve is also a one-point 
code on the curve [10]. Subsequently, Stichtenoth studied the dimension and minimum distance of a 

one-point code on any q, Hermitian curve [11]. In 2001, Matthews studied the two-point code on the 

Hermitian curve [12]. Homma and Kim give a complete description of the minimum distances of all 

two-point Hermitian codes in [13], [14], [15], [16]. [17], further discussion in [18] and [19] has 
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improved our understanding of these codes. The two-point code has better parameters than the 

one-point code while maintaining the ease of construction. 

This paper studies quantum error correction codes constructed with algebraic geometry codes. In 
particular, we studied the quantum codes obtained from the two-point code on the Hermitian curve 

and estimated the relevant parameters of these codes, which show their coding efficiency and error 

correction capability. In [20], the quantum code from the one-point Hermitian code is studied. We 

will compare it to prove that the quantum two-point code has better performance parameters than the 

one-point code. 

2. Basic Concepts 

2.1 Quantum Code 

Definition 1[21] (Quantum code): The negative vector subspace Q of each dimension 1  of the 

Hilbert space 2 2( )
nn   is called a quantum error correcting code, where n is the code length of the 

code Q, and the dimension of Q is dimK Q , 2logk K , since 1 2nK  , so 0 k n  . 

Definition 2 (Error correction capability): A binary quantum error correcting code 2[[ , , ]]n k d  is a 

2k -dimensional subspace of the Hilbert space
2 2( )
n

n , and can correct 1
2

d 
   quantum errors. 

The quantum stable subcode is a subspace of the 
nq -dimensional complex Hilbert space 

nq , so that 

G represents all matrix operators acting on 
nq  , and the matrix operator with eigenvalue 1 in the 

operator set G constitutes a finite Abelian group. The Abel subgroup is called the stable of the 

quantum code, and the resulting quantum code is called a stable subcode. Quantum-stabilized 

subcodes can be constructed using classical linear codes, proposed by Canlderbank, Stean, and Shor, 

called CSS constructors. 

Lemma 1 (CSS construction):  Let 1C  and 2C  be linear codes whose parameters are 21 1[ , , ]
q

n k d  and 

22 2[ , , ]
q

n k d  respectively on the finite field 2q , and satisfy 1 2C C , let 2 1 1 2min{wt \ ,wt \ }d C C C C  ( ) ( ) , then 

there is a quantum code with parameter 22 1[[ , , ]]
q

n k k d .If there are 2 1 2 2wt \ wtC C C d ( ) ( ) , 

1 2 1 1wt \ wtC C C d    ( ) ( ) , the obtained quantum code is pure quantum code. 

The literature [22] gives the CSS construction method of binary quantum code, and the literature [23, 
24] gives the CSS construction method of q-ary quantum code. 

2.2 Hermitian Code 

Let X be a non-singular curve with genus g on the finite field q , and 1 nD P P    be a divisor, 

where 1, , nP P  is n different rational points on X. Let G be another divisor whose support set does not 

intersect with the support set of D, ie SuppD SuppG  . L { |, 0} {0}qG f X div f G   ( ) ( ) ( )  is the 

Riemann-Roch space. 

Definition 3: Considering the assignment map 1 2( ) , , ,...,n

q nL G F f f P f P f P ( ( ) ( ) ( )), it is obvious that this 

map can be defined and is a linear map. The image of this map is a linear code on q , denoted as 
( , )LC D G , ie 

1( , ) {( ( ),..., ( )) | ( )}L nC D G f P f P f L G                                                    (1) 

This code is called the first type of algebraic geometry code. 

The following describes another definition of algebraic geometry. Let X  be the set of all differential 

forms on X and ( )={ | =0or( ) }XG G      be the linear space. 

Definition 4: Consider the assignment map 1
( - ) , ( ( ),..., ( ))

n

n

q P PG D res res     , where ( )
iPres   is the 

residue of   at iP , which can be defined, the mapped image is a linear code on q , denoted as ( , )C D G , 

ie 

1
( , ) {( ( ),..., ( )) | ( - )}

nP PC D G res res G D                                             (2) 

This code is called the second type of algebraic geometry code. 
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Lemma 2[25]: ( , )C D G is the dual code of ( , )LC D G . 

We consider the code on the Hermitian curve X, where curve X is a q+1 -order plane curve, which is 

equivalent to a non-homogeneous equation  
q q+1y + y = x                                                                   (3) 

mapping of 2q elements on field 2q .The genus of curve X is ( 1) 2q q  . The literature [25] proves that 

the number of finite rational points on the Hermitian curve is 3n q and the number of infinite points is 

1. Obviously X has only points (0,1,0) which are infinity points, denoted by P ; ,P  represents point 
( , ,1)  , and abbreviated 0P  to represent 0,0P . Therational point set 2( )

q
X  of curve X on 2q

F  is 

2

1

,{ | , , } { }q q

q
P P

        , which contains 3 1q   points. So X is a great curve in the sense of 

Hasse-Weil. 

3. Classic Hermitian code 

3.1 One-point code 

Let us review the construction properties of one-point codes on curve X. Since the automorphism 

group of the curve X on the finite field 2q  is removable on the 2q -rational point set 2( )
q

X  of  X, we 

can assume that the support set of the division G of the one-point code is P . We use sC  to represent a 

one-point code ( , )LC D sP  on curve X, where the division is 2( )\{ }
q

P X P
D P


 . Specifically, the 

assignment of sC  is mapped to  

3

, 2 2
,

( )\{ } ( )
( ), (..., ( ),...)

q

q q
P X P

f L sP f f P
  

  
 

                                     (4) 

Where 2

*( ) { ( ) | 0} {0}
q

L sP f X divf sP    . 2 ( )
q

X denotes a rational function of curve X on 2q , 2

*( )
q

X  is 

its non-zero function group, and ( )PP X
divf f P


  , where P  is the value at P. 

We define the parameter 

{ | ( 1) i 0,0 j q 1}s max l l iq j q s        ，                                  (5) 

The dimension and minimum distance of a one-point Hermitian code are given in [26], as shown in 

Table 1. 

Table 1 Dimension and minimum distance of a ONE-point Hermitian code 

s  k  d  
20 2,

,   0 1

s q q

s aq b b a q

   

       

( 1)
1

2

a a
b


 

 
n s  

2 22q q s n q q       
( 1)

1
2

q q
s


 

 
n s  

2

2

,

,   

0 , 1

n q q s n

s n q aq b

a b q

   

   

    

( 1)
1

2

q q
s


 

 

  if  ,

  if  

n s a b

n s b a b

 

    

2

2

2,

2 ,

,   0 , 1

n s n q q

s n q q s

s aq b a b q





    

    

      

( 1)
1

2

a a
n b


  

 

2  if  

1  if  

a b a

a b a

 

   

3.2 Hermitian Code 

The classic two-point code is the code LC (D,G)  and C (D,G)  with the decimation sG P tQ  . 

To construct the required two-point Hermitian code, we first need to determine two rational points P 

and Q. The typical choice is: P is the infinity point P , and Q is zero point 0P . Then, we let the divisor 

D be 2 0q
( )\{ , }P X P P

P
 , so that the code length of the two-point code we construct is, which makes the 

code length of the two-point code shorter than the one-point code. In order to compare the 

performance of these two codes, we shorten the code length of the one-point code. Since the 

automorphism group of a one-point code is removable on the coordinate set, the choice of coordinates 
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is not necessary. This feature makes it easy to compare a two-point code with a code length to an 

equal-sized shortened one-point code. 

Homma and Kim give the relevant parameters of the first type of Hermitian two-point code in [13], 
[14], [15], [16]. 

Lemma 3: For two different rational points Q, 2X( )
q

Q , there is an automorphism map   of  X in 2q  

so that  ( )P Q  , 0( )P Q  . 

Due to the nature of the automorphism mapping   in the above lemma, 2q
( )\{ , }

( , Q Q )L P X Q Q
C P s t


  

and 2 0q

0( )\{ , }
( , )L P X P P

C P sP tP



  are equidistant in the sense of Hamming distance. We use ( , )C s t  to 

represent 0( , )LC D sP tP  , where D is 2 0q
( )\{ , }P X P P

P
 . If 1n q  , there is isomorphism  

0 0( ) (( + +1) ( 1) )L sP tP L s q P t q P                                                     (6) 

By multiplying by y we get an equidistant    
~( , ) ( 1, 1)CC s t s q t q                                                          (7) 

Since there are ( ) 0y P   for all 2 0( ) \{ , }
q

P X P P , we can assume 0 t q  . 

Lemma 4: Given the integer t, 0 t q  . Let ( , )s aq b A q    be where s is the integer in set 
{ | dim ( , ) dim ( 1, ) 1}s C s t C s t    , 0 b q  . 

(1) If 0 b a q-t-1   ,then 
1

dim ( , ) ( 1) 1
2

C s t a a b    . 

(2) If  max , a q-2q t b   ,then 
1

dim ( , ) ( 3) 2
2

C s t a a b t q      . 

(3) If 1, 1 a q-2b q q t      ,then 
1

dim ( , ) ( 2)( 3)
2

C s t a a t q     . 

(4) If 
2 21 a min{ 1, ( 3)}q q q q t       ,then 

1
dim ( , ) 1 ( 1)

2
C s t s t q q     . 

(5) If 
2 2 2a min{ ( 3), 1}q q q t b q       ,then   2 21 1

dim ( , ) 1 1 ( 1)( 2)
2 2

C s t s t q q a q a q          . 

(6) If 
2 2b q-2, ( 2) a q 1q q t b        ,then 

2 21 1
dim ( , ) 1 ( 3) ( 2)( 3)

2 2
C s t s q q a q a q         . 

where we let ( , )A q  be an array of integers of infinite length columns 

-q 1 ( 1)

0 1 ( 1)

1 ( 1)

2 2 1 2 ( 1)

q q q

q

q q q q

q q q q

    



  

  

 

The minimum distance of code ( , )C s t  is divided into three cases of t 0 , t q  and 1 1t q   . 

Lemma 5: Let t 0  

(1) If ( , )s aq b A q   , where 0 b q  , and satisfied 
20 b a q -q-1b    , then 

3( ( ,0)) 1d C s q s    

(2) If 
2( )s q i q j   ,and 1 i q  , 0 j q i   ,then ( ( ,0)) 1d C s iq   

(3) If 
2( )s q k q l   , and 1 3k q    , 1 1k l q    , then ( ( ,0)) 2d C s q k    

Regarding 1 1t q   , there are the following theorems. 

Lemma 6: Determine an integer t, 1 1t q   , and let s aq b   be a non-negative integer, of which 
0 b q  . 

(1) If b ( 1)a q t    ,then 
3( ( , )) 1d C s t q s    

(2) If s satisfies 
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     i) 2 20 2 1 1b q q a b q       ， , or 

     ii) 2 21 1 ( 3)b q q a q q t       ， , 

then 2( ( , )) 2d C s t q q a     

(3) If s satisfies 

i) 
20 ( 1)b q t a q t     ， , or 

ii) 1 2b q   , 

  2 2max , min{ ( 1), ( 2)}b q n a b q q q t        , or 

iii) 1b q  , 2( 1) ( 2)q t a q t       

then 3( ( , )) 1 ( )d C s t q s t     

To describe the minimum distance of other s values, let 2(q )s q b   . 

Lemma 7: Fix an integer t,1 1t q   .Let 2(q )s q b    be an integer,  where 0 b q  . 

(4) If 1 , 1 ,b t b q     ,then ( ( , )) ( 1)d C s t q t   . 

(5) If 1,t q b     ,then ( ( , )) ( 1) ( 1)d C s t q b    . 

(6) Assume 2 ,t b q      

i) If 2t q   or 1,t q b q    ,then ( ( , )) ( 1)d C s t q   ； 

ii) If 1,t q b q    ,then ( ( , )) ( 1)d C s t q  . 

Next, we consider code ( , )C s q . 

Lemma 8: Let ( , )s aq b A q    be the integer in set { |dim ( , ) dim ( 1, ) 1}s C s t C s t    , 0 b q  . 

(1) If s satisfies 

i) 20 b 2, 1q b a b q q        , or 

ii) 21, 1 3b q a q      , 

then 3( ( ,q)) 1d C s q q s     

(2) If s satisfies 
2 2 2b q q a q     ,then 

2( ( ,q)) ( 1)d C s q a q    

(3) If s satisfies 
2 20 2, 1 1b q q a b q        ,then 

2( ( ,q)) 2d C s q q a     

The relevant parameters of the second type of Hermitian two-point code are given in [27]. 

Lemma 9: Assume that the divisor G is satisfied 

(a) deg degG K q  , or 

(b) deg deg degK G K q   , and s, t are not 0. 

Let 0s tG K P P
    ,where K is the canonical divisor, degs t s t K      

0 1 1( 1) ,0s s q s s q       

0 1 1( 1) ,0t t q t t q       

Let deg degKd G s t      . 

(1) If 1 1 0 00 ,s t s t   ,then ( ( , ))d C D G d
 . 

(2) If 1 0 0 10 t s t s    ,then 1 0 0( ( , )) ( )d C D G d s s t
     

(2’) If 1 0 0 10 s s t t    ,then 1 0 0( ( , )) ( )d C D G d t s t
     

(3) If 0 0 1 1s t s t q    ,then 1 1 0 0( ( , )) 2( )d C D G d s t s t
      

(3’) If 0 0 1 1s t t s q    ,then 1 1 0 0( ( , )) 2( )d C D G d s t s t
      

(4) If 0 0 1 1,s t s t  ,and 1 1s q q ，t ,then 0 0( ( , )) q ( )d C D G d s t
     
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3.3 Comparison between two-point code and one-point code 

Example1: Let X be the Hermitian curve defined on 16 . The curve equation is 4 5y y x  , the genus of 

the curve is 6g  , and the number of rational points is 65. We will record these rational points as 

0 1 63,P ,... ,P P P . Let 0 (0,0,1)P   is the origin and (0,1,0)P   is the infinity point. Let 1 1(D,G )LC C , 2 2(D,G )LC C , 

where 1G 60P , 2 0G 56 4P P  , 1 63D P P   . According to the above lemma, the parameter of 1C  is 

16[63,55,3] , and the parameter of 2C  is 16[63,55,4]  . It can be seen that in the case of equal code length 

and dimension, the two-point code has a larger minimum distance than the one-point code. 

4. Literature References 

4.1 Construction method 

Recall that the one-point Hermitian code has the form ( , )LC D sP , where P is the 2q -rational point on 

the Hermitian curve, and the dimension and minimum distance of the one-point Hermitian code are 

given in [22]. Klappenecker and Sarvepalli studied the specific parameters of quantum Hermitian 

one-point codes in [16]. In this section we use the classical Hermitian two-point code to construct the 

quantum code. 

We construct quantum code according to Lemma 1. 

Theorem 1: Let  1 1,LC C D G ,  2 2,LC C D G ,where 1 1 1 0G s P t P  , 2 2 2 0G s P t P  , 1 2 1 2,s s t t  . 

1 nD P P   ,where 3 1n q  . Assume 1 2G G , 1 2(supp supp )G G D  , and 2degG n , there is a 

quantum code 2[[ , , ]]
q

n k d ,where 

2 1 L 2 1dim(C (D,G )) dim(C (D,G ))Lk k k                                                (8) 

 

 

2 1 1 2

L 2 1 1 2

L 2 1

min{wt( \ ),wt( \ )}

  min (C (D,G ) \ C (D,G )), (C (D,G ) \ C (D,G ))

  min (C (D,G )), (C (D,G ))

L

d C C C C

d d

d d

 

 









                               (9) 

L 2(C (D,G ))d  and 1(C (D,G ))d   are identified in Chapter II. 

Prove of Theorem 1: According to the Hermitian code construction method, we know 

when 1 2 1 2,s s t t  , 1 2C (D,G ) C (D,G )L L , from which we can see L 2 1 L 2(C (D,G ) \ C (D,G )) (C (D,G ))Ld d , 

1 2 1(C (D,G ) \ C (D,G )) (C (D,G ))d d   , using Lemma 1 we can get the parameters of the quantum code. 

We use the following example to illustrate how to construct a quantum code using this theorem. 

Example 2: Suppose 1C  and 2C  are both Hermitian two-point codes on 16 , ie q 4 . Let 1 218, 44s s  , 

and 1 2 4t t  , that is 1 018 4G P P  , 2 044 4G P P  . 1 63D P P    and 1 2(supp supp )G G D  . 

According to the calculation in Chapter II, we get the parameter of 1C is 16[63,17,41]  and the parameter of 

2C is 16[63,43,15] . The minimum distance of the dual code 1C 
 of 1C  is 12, so we can get the quantum 

code with the parameter 16[[63,26, 12]] . 

4.2 Code comparison 

This section compares the quantum Hermitian two-point code with the shortened quantum Hermitian 

one-point code. 

In order to make the code lengths of the one-point code and the two-point code coincide, let G mP  in 

the one-point codes ( , )LC D G  and ( , )C D G  and 1 nD P P   , where 
3 1n q  . We use the parameters of 

the classical Hermitian one-point code shown in the shortened [22] to calculate the parameters of the 

quantum Hermitian one-point code and compare it with the quantum Hermitian two-point code 

constructed in this paper. 

Example 3: In Example 2, a quantum Hermitian two-point code with the parameter 16[[63,26, 12]]  is 

obtained. The parameters of the quantum Hermitian one-point code of the same dimension are 

calculated below. Suppose 3C  and 4C  are both Hermitian one-point codes on 16 , ie q 4 . Let 

1 222, 48s s  , that is 3 22G P , 4 48G P . Let 1 63D P P   , and 3 4(supp supp )G G D  . By calculation, the 
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parameter of 3C  is 16[63,17,41] , and the parameter of 4C  is 16[63,43,15] . The minimum distance of dual 

code 3C 
 of 3C  is 11, so we can get the quantum code with the parameter 16[[63,26, 11]] . 

Example 4: Suppose 1C  and 2C  are both Hermitian two-point codes on 16 , ie q 4 . Let 

1 2 1 210, 36 11s s t t   ， , that is 1 010 11G P P  , 2 036 11G P P  . 1 63D P P    and 

1 2(supp supp )G G D  . According to the calculation in Chapter II, we get the parameter of 

1C is 16[63,16,42]  and the parameter of 2C is 16[63,42,16] . The minimum distance of the dual code 1C 
 of 1C  

is 12, so we can get the quantum code with the parameter 16[[63,26, 12]] .The parameters of the quantum 

Hermitian one-point code of the same dimension are calculated below. Suppose 3C  and 4C  are both 

Hermitian one-point codes on 16 , ie q 4 . Let 3 421, 47s s  , that is 3 421 , 47G P G P   . Let 

1 63D P P   , and 3 4(supp supp )G G D  . By calculation, the parameter of 3C  is 16[63,16,42] , and the 

parameter of 4C  is 16[63,42,16] . The minimum distance of dual code 3C 
 of 3C  is 11, so we can get the 

quantum code with the parameter 16[[63,26, 11]] . 

Example 5: Suppose 1C  and 2C  are both Hermitian two-point codes on 64 , ie q 8 . Let 

1 2 1 282, 442 7s s t t   ， , that is 1 082 7G P P  , 2 0442 7G P P  . 1 511D P P    and 1 2(supp supp )G G D  . 

According to the calculation in Chapter II, we get the parameter of 1C is 64[511,62,422]  and the parameter 

of 2C is 64[511,422,62] . The minimum distance of the dual code 1C 
 of 1C  is 38, so we can get the quantum 

code with the parameter 64[[511,360, 38]] .The parameters of the quantum Hermitian one-point code of 

the same dimension are calculated below. Suppose 3C  and 4C  are both Hermitian one-point codes on 

64 , ie q 8 . Let 3 489, 449s s  , that is 3 489 , 449G P G P   . Let 1 511D P P   , and 

3 4(supp supp )G G D  . By calculation, the parameter of 3C  is 64[511,62,422] , and the parameter of 4C  is 

64[511,422,62] . The minimum distance of dual code 3C 
 of 3C  is 34, so we can get the quantum code 

with the parameter 64[[511,360, 34]] . 

It can be seen from the above example that the quantum Hermitian two-point code has a larger 

minimum distance and a stronger error correction capability than the quantum Hermitian one-point 

code when the code length and the dimension are equal. 

5. Conclusion 

In this paper, the two-point code on the Hermitian curve is quantized using the CSS construction 

method. Due to the better performance of the classical Hermitian two-point code relative to the 

one-point code, the quantum code constructed by it has better performance than the quantum 

Hermitian one-point code. At the end of the paper, the two-point code and the one-point code are 

compared, and the two-point code can be proved to be superior to the one-point code. 
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