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Abstract 

In this paper we discuss existence problem of travelling wave solutions of a class of nonlinear 

Schrödinger equation with time delay. When the parameter is sufficiently small we establish 

results of the existence of periodic loop solutions of the nonlinear Schrödinger equation with 

time delay by the geometric singular perturbation theory and the Melnikov function method. 
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1. Introduction 

The nonlinear Schrödinger (NLS) equation which describes the law of the state of microscopic 

particles evoluting with time is widely applied in many fields, including nonlinear optics, atom、
solid state physics, nuclear physics, chemistry and other fields [1-6]. This equation is completely 

integrable and its solitons, especially traveling wave solutions has been ongoing to investigate for 

several years [7-14]. 

The numerical analysis the effect of time delay on the solution of the NLS equation in [15-16]. Yang 
et al [17, 18] discuss the NLS equation with delay term that has much actual significance. Zhao and 

Ge [19] investigate the NLS equation with distributed delay and give the conditions that assure 

existence of the solitary wave and periodic solutions. We investigate existence of kink and anti-kink 

wave solutions in the distributed delay equation in [22]. We’ll continue to study the NLS distributed 

delay equation and discuss existence of periodic loop wave solutions. 

We’ll consider the following NLS equation with distributed delay, 

0)(
22

 xxxt UUUUfUiU  , , t   x ,                       (1.1) 

where 0  is time delay,  xUU )(
2

means the nonlinear response delay term and 



0

)( dtttf , 

the convolution Uf   is defined by 

 


t

dssxUstftxUf ),()(),)(*( ,                                            (1.2) 

and  the kernel ),0[),0[: f , that satisfies: 0)( tf  for all 0t  and 

)),,0(()(,1)( 1

0
RLttfdttf 



. 

If 0 and )()( ttf  , where   denotes Dirac   function, Eq. (1.1) turns to the corresponding 

undelayed and undisturbed NLS equation: 

0
2
 UUUiU xxt .                                                       (1.3) 
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In addition, if the different delay kernels were chosen, then the different types equations can be 

derived from Eq. (1.3) . For example, when we take the kernel to be )()( ttf  , then Eq. (1.1) 

becomes the corresponding original NLS equation: 0)(
22

 xxxt UUUUUiU  . 

Gamma distribution delay kernel is often used ...,,2,1,
)!1(

)(
1







n
n

et
tf

tnn 
where 0  is a constant, 

n  is a integer, with the average delay 0  n .  

Two special cases )1(
1

)(   netf t 


 and )2()(

2
  ne

t
tf t 


are called the weak generic 

kernel and the strong generic kernel, respectively. 

In this paper, the distributed delay kernel )(tf  of Eq. (1.1) has the following form 

,)(
2

iwtte
t

tf  


                                                          (1.4)   

where the parameter 0w . 

The remaining parts are organized as follows. In Section 2, some preliminary theory and discussion 

are introduced. The periodic loop orbits of traveling waves for the non-delay equation (1.3) are given. 

In Section 3, we transform Eq. (1.1) with the strong generic kernel into a non-delay four-dimensional 

ordinary differential system. When the parameter   is sufficiently small, he four-dimensional 

ordinary differential system is reduced to the two-dimensional system by the singular perturbation 
theory. We’ll prove that there exists the periodic loop wave solutions of system (1.1) with the 

Melnikov function method. 

2. Preliminaries 

With traveling wave transformation, 
 ietxU )(),(  , ctx , wtax , and 0c , where   

is real valued function and represents the amplitude of the traveling wave with wave number 

0a and frequency 0w .  

Now substituting 
)()()(),( wtaxii ectxetxU   
 into the non-delay Eq. (1.3), one gets 

,02

,032









ac

aw
                                                     (2.1) 

where ′denotes the derivative with respect to the variable  .  

Let 2ca   and 42cw , Eq. (2.1) becomes 

3      .                                                             (2.2) 

Taking u  and z  to Eq. (2.2), one gets  

3u u u   ,                                                                (2.3) 

where · denotes the derivative with respect to the variable z .  

Namely 

.

,

3uuv

vu








                                                                (2.4) 

Lemma 2.1  In the ),( vu  phase plane, Eq. (2.4) has a periodic loop orbit around the center )0,0( , so 

the periodic wave solution of non-delay equation (1.3) exists. 

Proof. It’s easy to see that Eq. (2.4) has three critical points )0,0( , )0,1( . The origin is a center and 

)0,1(  are saddles. Eq. (2.4) is a Hamiltonian system with the Hamiltonian function 
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224 22),( vuuvuH  .                                                   (2.5)  

Let kvuH ),( , and when 1k , it has a heteroclinic loop connected by the two critical points 

)0,1( , namely )1(22 2  uv , so the corresponding kink wave and anti-kink wave solutions of 

the non-delay equation (1.3) exist. When 01  k , system (2.4) has a periodic orbit 

,222 24 kuuv  ,1111 kuk  so the corresponding periodic wave 

solution of non-delay equation (1.3) exists. 

To study the existence problem of the periodic orbit of the above ODE, we need the following 

Geometric Singular Perturbation Theorem [23-24].  

Lemma 2.2 (Geometric Singular Perturbation Theorem). For the system 

),,,()(

),,,()(





yxgty

yxftx




                                                          (2.6) 

where ln RyRx  , and   is a real parameter, gf , are 
C on the set IV  , where 

lnRV  and I  is 

an open interval, containing 0. If when 0 , the system has a compact, normally hyperbolic 

manifold of critical points 0M , which is contained in the set }0)0,,({ yxf . Then for any 

 r0 , if 0 , but sufficiently small, there exists a manifold M : 

(i)  which is locally invariant under the flow of (2.6); 

(ii)  which is 
rC in yx,  and  ; 

(iii) )}(:),{( yhxyxM 
   for some 

rC  function )(yh
 and y  in some compact K ; 

(iv)  there exist locally invariant stable and unstable manifolds )( MW s  and )( MW u  that lie within 

)(O , and are diffeomorphic to )( 0MW s  and )( 0MW u  respectively. 

3. Existence of Solitary Wave of the Equation with Delay 

Let )()()(),( wtaxii ectxetxU    , and substituting it into Eq. (1.1), one gets 

,02

,02)( 222









ac

gaw
                                       (3.1) 

where 

dscse
s

g

s

)())((
0 2




 


  .                                            (3.2)                                             

Let 2ca   and 42cw , the system (3.1) with (3.2) is rewritten as 

02)( 22   g ,                                            (3.3) 

where  ′ denotes the derivative with respect to the variable  . 

Taking u  and z  to Eq. (3.3) with (3.2), it becomes 

uuuuguu  22 2)(  ,                                               (3.4)        

where · denotes the derivative with respect to the variable z  and  

.)())((
0 2

dscs
z

e
s

zg

s










                                            (3.5) 

Let ))(()( zugzp  .  

Differentiating p  with respect to z , one gets that 
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)(
1

qp
cdz

dp



,                                                        (3.6) 

where dscs
z

uezq

s

)(
1

)(
0







 . 

Differentiating q  with respect to z , one gets 

)(
1

uq
cdz

dq



.                                                        (3.7) 

Let uv  , Eq. (3.4) can be rewritten as 

.

,

,2

,

22

uqqc

qppc

vupuuv

vu






















                                                   (3.8)               

When 0 , the system (3.8) becomes the following system 

.0

,0

,

,

2

uq

qp

puuv

vu













 

Namely 
3uuu  .                                                              (3.9) 

When 0 , the system (3.8) determines a system of ODEs and its solutions exist in the 

four-dimensional ),,,( qpvu  phase space in which system (3.9) has three critical points: 

)1,1,0,1(),0,0,0,0(  and )1,1,0,1(  . 

Let z , the system (3.8) turns to the following fast system: 

.

,

),2(

,

22

uqqc

qppc

vupuuv

vu

















                                               (3.10) 

where  ′denotes the derivative by  . If 0 , the slow system (3.8) and the fast system (3.10) are 

equivalent. 

In the slow system (3.8), if 0 , the flow of this system is confined to the following set 

},),,,{( 4

0 uqpRqpvuM  , which is a two-dimensional invariant manifold for the system 

(3.8). It’s easy to obtain that 0M  is normally hyperbolic by the method of the linearization matrix [22, 

26, 28]. According to the Geometric Singular Perturbation Theorem, there exists a locally invariant 

two-manifold M  with sufficiently small 0 , which can be expressed as 

)},,(),,,(:),,,{( 4  vuuqvuqpRqpvuM  ,                    (3.11) 

where , depend smoothly on   and satisfy 0)0,,()0,,(  vuvu  . 

We expand the functions   and   into the following form  
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.),(),(),,(

,),(),(),,(

2

2

1

2

2

1









vuvuvu

vuvuvu




                                       (3.12) 

Substituting (3.11) into the slow system (3.8), we get 

.)2)((

,)2)()(()(

22

22





























































vuuuu
v

v
u

vc

vuuuu
vv

v
uu

vc

       (3.13) 

Substituting (3.12) into (3.13), one gets ., 11 cvcv    

Thus (3.11) becomes 

)}.(),(2:),,,{( 224  OcvuqOcvupRqpvuM         (3.14)     

Then the slow system (3.8) restricted to M  is written as 

).()1(2

,

223  Ovucuuv

vu




                                      (3.15) 

When 0 , the system (3.15) reduces to the wave equation (2.4) of the corresponding non-delay 
system (1.3).  

  When 0 , the system (3.15) has a periodic loop L . Generally speaking, the periodic orbits will 

break as 0  and small. According to the Melnikov function method [26-28], 

Let ,),( 11

usMMnLd   where  )()())(),(( 11111 MHMHMHMHn uvvu   [20-21], we obtain 

the following theorem. 

 
Figure 1. Orbits of system (3.15) for the case 10  . 

Theorem 3.1  For 0 , but sufficiently small, we have 

)()(),( 2 OLMNLd  ,                                            (3.16) 

where )()()1(
15

8
)( 


OkhcLM  , )0,1(,0)(  kkh  and 0N  is a constant. 

Proof. Rewrite system (3.15) into  

),,(

),,(

3 vuQuuv

vuPvu








                                                   (3.17) 

where  

).()1(2),(

,0),(

2  OvucvuQ

vuP




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Form [20, 21, 27, 28] and noticing that system (3.17) 0  is Hamiltonian, we have (3.16), and 

,)),(())(,()()]([)( dvvvuPduuvuQdssXPHQHLM
L L

iu
L

v     

where ,),(  ssX  is a parametric expression for L . 

By lemma 2.1, we have the expression for L : 

,1111),2(
2

1
)( 242 kukkuuuv 

 

Hence, )()()1(
15

8
))(,()( 


OkhcduuvuQLM

L
  ,  

where ))
11

11
(

11

11
((11)43()

11

11
(

11
)(

k

k
EllipticK

k

k
EllipticEkk

k

k
EllipticK

k

k
kh
















  

and 
4

2c
w . By calculation of mathematical software, it can be proved that 0)( kh  when 

01  k . 

Furthermore, by noting that as 0,1  c , 0)( LM , we get  

0
4

1
,

15

8)(
)0,1(),( 




 w

c

LM
c  . 

For 10  , when )1(Uc , according to the Implicit Function Theorem, we have that there 

exists a function )(1 Oc   such that 0),( Ld  . From the definition of the function ),( Ld  , we 

conclude that system (3.15) has a periodic loop orbit for 10  . In other words, system (1.1) has a 

periodic loop wave solution for 10  .  

4. Conclusion 

In this work, by the geometric singular perturbation theory and the Melnikov function method we 

establish existence of periodic loop wave solutions for the NLS equation with distributed delay 

having form (1.1) when 10  , )(1 Oc  .  
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