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Abstract

With the aid of Maple, we use Lou’s direct method to study a (1+1)-dimensional KdV-type
equation with variable coefficients. And we give the symmetry transformations and exact
solutions of the KdV-type equation.
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1. Introduction

Differential equations with variable coefficients have more physical backgrounds and practical
significances because of its coefficients’ arbitrariness. Recently, scientists have become more
interested in symmetric properties, construction of exact solutions and corresponding physical
phenomenon of differential equations with variable coefficients. Many effective methods have been
applied to such equations successively [1-3].

In this paper we investigate a (1+1)-dimensional KdV-type equation with variable coefficients by
Lou’s direct method [4-5]. The plan of the present paper is as follows: Section 2 presents two sets of
symmetric transformations and exact solutions of the KdV-type equation, and gives the
corresponding numerical examples. Section 3 gives a short summary.

2. Symmetry reductions and exact solutions of the KdV -type equation
This paper will consider the following KdV-type equation with variable coefficients,
u, +uu, +a(t)u, +b(t)u,, =0, )

where u is a function about x,t, and the coefficients a(t),b(t) are differentiable functions about t.
Replacing the functions a(t),b(t) with constants k,k,, we have
u, +uu, +ku, +k,u,, =0. @)

In order to obtain the symmetric transformations of Eq. (1), we assume
u=A+ BU(X,T), (3)

where A B,U, X, T are functions of x,t, and U satisfies the same form as Eq. (2) but with the new
independent variables,

U, +UU, +kU, +kU,, =0. )
Substituting (3) into Eq. (1), and eliminating U,,, by Eq. (4), we have
b(t)BT, Uy +V (x,1,U) =0, 5)
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where V is a complex function which is independent of U.; . Eq.(5) holds for arbitrary solution U ,
if and only if all coefficients of the derivatives of U are zero. Obviously, b(t)BT? =0, without loss
of generality we assume that

T=T(). ©)

Using Eq.(6) to reduce Eq.(5), collect the coefficients of the derivatives of U and constant terms, we
can get the determining equations about A,B, X, T,

A +AA +a(t)A +b(b)A,, =0,
B, + AB, + AB+a(t)B, +b(t)B,, =0,

XXX

3
BX, + ABX  +a(t)BX, +3b(t)B, X, +30b(t)B, X, —%+b(t) BX , =0, -
2
BB, =0, 3b(t)(B,X > +BX X, )=0,
3 3
B?X, —b(t) BX, =0, BT, —h(t) BXx _0,
k k

With the aid of symbolic software Maple, we can get two cases as follows.
Case 1:

~( 1O+ (A -d,)e,

d, 8)

A(x,t)=d,,B(t)=d,, T(t)=d,d,t +d,,x(t) =

dk,
2 1)
2

where d,(i=12,3,4) are arbitrary constants, and f(t) is an arbitrary function. The KdV-type
equation (1) can be reduced to

X(x,t) =d,x+ f(t),b(t) =

d
—(, f®)+(dk -d,)d,
u, +uu, +—3t u, + d1|§2 Uy, =0. 9)
d, d;

The symmetry transformation of Eq.(9) is
u=d,+dU (d,x+ f(t), dd,t+d,. (10)
It is easy to get a exact solution of Eq. (4) ,

_ 3
U(X,T) = ~12k,C2 tanh(C,x + C,t + C,)? — —C2Ke (+:C2k1 G (11)
2
where C,(i =1,2,3) are arbitrary constants.
We can get an exact solution of Eq. (9) by combining (10) and (11),
3
u(x,t)=d, +dl{—12k2C22 tanh[C, (d, X+ f (6))+ C, (dyd,t +, )+ o, f ——EC2Ke Zczkl G } (12)
2

Next, we consider the evolution of the exact solution (12).
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C,=3C,=1C,=2, C,=3C,=1C=2
Fig. 1 d,=5d,=1d,=1d, =1, Fig.2 d,=5d,=1d,=1d, =1
k =1k, =3k, =2, f(t)=sin(t). k, =1k, =3k, =2, f(t)=sech(t).
A solution (12) of u. A solution (12) of u.
Case 2:
d
(d,t+d,)(= f () +d,ft)+dd
Axty=— 0% AT K g gt SR,
dt+d, d, dt+d, d, (13)
1 (d,t+d,)k d d,x
B(t) =— b(t) =720 () = 3 d,, X (X, 1) = —2—+ £ (1).
O="4t+a, "V iz O gdya e =g 1O

Eq. (1) can be reduced to

d
(d1t+d2)(a f(t))+d, f(t) +dsd, o (dt+d,)k,

u, +uu, +— U, =0, 14
t X d3 X d?? XXX ( )
and the symmetry transformation of Eq.(14) is
__dx 4fO kg1 %X r % L)
dt+d, d, dt+d, dt+d, ‘dt+d, (d,t+d,)d,
(15)

We obtain an exact solution of Eq. (14) by combining (11) and (15),

dx_ df) _k

u(x,t)= r
t+d, d, dt+d,

+d, -

2
d,x d
—12k,C2tanh| C 3+ f) [+C(——2—+d,)+C, | -
22 ( 2£d1t d2 ()] 3((d1t+d2)d1 4) 1]
dt+d,

Next, we consider the evolution of the exact solution (16).

_8C23k2 +C2kl+C3 (16)

2
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C,=3C,=1C, =2, C,=3C,=1C,=2,
Fig.3d =5d,=1,d,=1,d, =1,d, =3 Fig. 4d, =5,d,=1d,=1d, =1,d, =3,
ki =1k, =3k, =2, f(t)=tan(t). k. =1k, =3k, =2, f(t)=sin(t).

A solution (16) of u. A solution (16) of u.
3. Summary

In this paper we study a (1+1)-dimensional KdV-type equation with variable coefficients. We obtain
the symmetry transformations and exact solutions of the KdV-type equation by Lou’s direct method.
Moreover, we establish the transformation between the solutions of differential equations with
constant coefficients and the ones with variable coefficients.
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